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1. Introduction

The observation of the enigmatic D∗s0(2317)± and Ds1(2460)± states at BABAR [1] and CLEO
[2] along with the discovery of many unexpected states in the hidden-charm sector, has forced
charm physics back into the theoretical and experimental spotlight. The nature of these states is
unknown since they do not fit well with current theoretical understanding, i.e. they do not match,
or in some cases fit into, the pattern expected by quark potential models [3, 4]. Some of the states
have been suggested to be molecular mesons, hybrid mesons (in which the gluonic field is excited)
or tetraquarks but the emergence of a common consensus on the nature of any of these states seems
unlikely without further work from both experimentalists and theorists.

On the experimental side, BESIII along with the planned PANDA experiment at GSI/FAIR
will explore the charm sector in detail, while on the theoretical side, lattice field theory, due to its
ab initio nature, is perfectly placed to comment on these unexplained states. For example, we have
recently studied the charmonium sector via the extraction of a highly excited spectrum. The results
of this study are presented in Refs. [5, 6]. In this proceeding we focus on the open-charm sector,
and present highly excited spectrum in both the charm-light and charm-strange cases.

The rest of this paper is organised as follows: in section 2 we give our computational details
along with a brief discussion of our operator construction, while also explaining the details of our
analysis and spin identification scheme. In section 3 we present the charm-light and charm-strange
spectra, interpret our results and compare with experiment.

2. Lattice calculation and analysis

The calculations presented here make use of the anisotropic ensembles generated by the Hadron
Spectrum Collaboration [7, 8], in which there are two degenerate dynamical light quarks and a dy-
namical strange quark (N f = 2+1). We use a discretisation in which the spatial lattice spacing, as,
and the temporal lattice spacing, at , are related via ξ = as/at ∼ 3.5. This ensures that we simulate
with atmc� 1 and that the standard relativistic formulation of fermions can be used.

The gauge sector is described by a Symanzik-improved anisotropic action with tree-level tad-
pole improved coefficients while the fermionic fields are described by a tree-level tadpole improved
Sheikholeslami-Wohlert anisotropic action with stout-smeared spatial links [7, 8]. The same action
is used for the charm quark as for the light and strange quarks except that the parameter describing
the weighting of spatial and temporal derivatives in the lattice action is chosen to give a relativistic
dispersion relation for the ηc meson as described in Ref. [5].

We set the scale by considering the ratio of the Ω-baryon mass measured on these ensembles to
the experimental mass. This corresponds to a spatial lattice spacing of as ∼ 0.12 fm and a temporal

Volume mπ/MeV Ncfgs Ntsrcs Nvecs

243×128 391 553 16 162

Table 1: The gauge-field ensembles used in this work. Ncfgs and Ntsrcs are respectively the number of gauge-
field configurations and time-sources per configuration used; Nvecs refers to the number of eigenvectors used
in the distillation method [9].
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lattice spacing approximately 3.5 times smaller a−1
t ∼ 5.7 GeV. Table 1 summarises the ensembles

used in our calculation with full details given in Refs. [7, 8].

2.1 Operator construction and spectroscopy on the lattice

In lattice calculations, spectral information is obtained via Euclidean two-point correlation
functions,

Ci j(t) = 〈0|Oi(t)O
†
j (0)|0〉 , (2.1)

where O†(0) and O(t) are the source and sink interpolating fields respectively. When inserting a
complete set of eigenstates of the Hamiltonian, the correlation function becomes a spectral decom-
position,

Ci j(t) = ∑
n

Zn∗
i Zn

j

2En
e−Ent , (2.2)

where the sum is over a discrete set of states due to the finite volume of the lattice. The vacuum-
state matrix elements Zn

i ≡ 〈n|O
†
i |0〉, are known as overlaps and allow for a spin identification of

states as described in section 2.2.

In order to maximise the spectral information we can obtain from correlation functions we use
a large basis of operators. We employ the same derivative based operator construction scheme as
in Ref. [10] including operators that contain up to three derivatives. We apply the distillation [9]
smearing procedure to the quark fields in each operator. This provides an efficient method to
calculate correlation functions with large bases of operators while also reducing the contamination
of noisy UV modes that do not make a significant contribution to the low-energy physics we wish
to extract.

The lattice breaks three-dimensional rotational symmetry down to that of the cubic group, Oh.
So instead of an infinite number of labels on states, J ≥ 0, one instead has a finite number of lattice
irreps; the five single-cover irreps for states at rest are A1, A2, E, T1 and T2. States of J ≥ 2 have
their components split across many lattice irreps. For each lattice irrep, ΛP (where P is parity), and
flavour sector (D and Ds), we compute an N×N matrix of correlation functions (equation 2.1).
Here, N is the number of operators used within each lattice irrep as shown in Table 2.

The extraction of spectroscopic states from these correlation matrices will be the subject of
the next section.

Λ Λ− Λ+

A1 18 18
A2 10 10
T1 44 44
T2 36 36
E 26 26

Table 2: The number of operators used in each lattice irrep ΛP.
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2.2 Analysis

We apply the variational method [11, 12] to our correlation matrices in order to find the optimal
extraction, in the variational sense, of energies in a given channel. This amounts to solving the
generalised eigenvalue problem,

Ci j(t)vnj = λ
n(t, t0)Ci j(t0)vnj , (2.3)

where an appropriate reference time-slice, t0, must be chosen as described in Ref. [10]. The en-
ergies are determined by fitting the dependence of the eigenvalues (principal correlators), λ n, on
(t− t0). The eigenvectors vn are related to the operator-state overlaps, Z, and hence play a vital role
in the spin identification of states which is not as straight forward as one might expect.

In principle, the spin of a single-hadron state can be determined by extracting the spectrum at
various lattices spacings and then extrapolating to the continuum limit. There, where full rotational
symmetry is restored, energy degeneracies between different lattice irreps should emerge. How-
ever, there are difficulties with this procedure. First, this requires high precision calculations with
successively finer lattice spacings and so with increasing computation cost; this is not practical with
currently available resources. Second, the continuum spectrum can exhibit physical near degenera-
cies and the question arises as to how to identify, without infinite statistics, which degeneracies are
due to the lattice discretisation and which are physical degeneracies.

To circumvent these problems we use the spin identification scheme described in Refs. [10, 13]
which can be used at a single finite lattice spacing. Lattice operators respect the symmetry of
the lattice but they also carry a ‘memory’ of the continuum spin, J, from which they came. If
our lattice is reasonably close to restoring continuum symmetry, at least on the hadronic scale,
then we expect that an operator coming from a continuum spin J will overlap predominantly onto
states of continuum spin J [14]. This has been shown to be the case on these ensembles in many
previous studies, for example Ref. [5]. We hence use the operator-state overlaps to preform a
spin identification of each extracted state in a given irrep, and use the pattern of the Z values to
recombine components of J ≥ 2 states since components of the same J state spread across different
irreps have the same Z values up to discretisation effects. In order to quote masses for the J ≥ 2
states we preform joint fits to the principal correlators in each irrep as described in Ref. [13].

3. Results

The spin-identified charm-light and charm-strange spectra are shown in Figs. 1 and 2 respec-
tively. The calculated (experimental) masses have had half of the calculated (experimental) ηc

mass subtracted from them in order to reduce the systematic error from the tuning of the bare
charm quark mass, which is described in Ref. [5]. In Fig. 1, we show the lowest non-interacting
Dπ and DsK̄ thresholds from both our calculated values (coarse green dashing) and using exper-
imental values (fine black dashing). The lines in Fig. 2 represent the lowest non-interacting DK
threshold, again using our calculated values (coarse green dashing) and experimental values (fine
black dashing).
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Figure 1: The charm-light (D) meson spectrum up to around 3.8 GeV labelled by JP. The green boxes
are our calculated masses while the black boxes correspond to experimental masses of neutral charm-light
mesons from the PDG summary tables [15]. We present the calculated (experimental) masses with half the
calculated (experimental) ηc mass subtracted. The vertical size of each box indicates the one sigma statistical
uncertainty. The dashed lines show the lowest non-interacting Dπ and DsK̄ thresholds, using our measured
masses (coarse green dashing) and experimental masses (fine black dashing).

3.1 Interpretation of results and comparison with experiment

The overlap factors, Z, can aid in the interpretation of extracted states as they can be used
to identify their structure. As can be seen in Figs. 1 and 2, the extracted spectrum of states in
the charm-light and charm-strange sectors follow a similar pattern. Most of the states fit into the
n2S+1LJ pattern expected by quark potential models, where n is the radial quantum number, S is the
spin of the quark-antiquark pair, L is the relative orbital angular momentum and J is the total spin
of the meson.

In the negative parity sector of both spectra we find an S-wave pair [0−,1−] along with their
first and second excitations ∼ 700 MeV and ∼ 1400 MeV respectively higher. Also in the negative
parity sector, we find a full D-wave set [(1,2,3)−,2−] at ∼ 1400 MeV, what appears to be parts of
an excited D-wave set and parts of a G-wave set [(3,4,5)−,4−] at ∼ 2000 MeV. We do not observe
the 5− state needed to complete the G-wave set but this is to be expected; we only use operators
subduced from those that have continuum spins 0≤ J ≤ 4. Operators that contain four derivatives
will posses the required angular structure to access states of spin five.

In the positive parity sector we calculate a full P-wave set [(0,1,2)+,1+] around the DsK̄
threshold in the charm-light spectrum and around the DK threshold in the charm-strange spectrum.
About 600 MeV higher in both spectra we find the first excitations of the P-wave set. We also see
a full F-wave set [(2,3,4)+,3+] at ∼ 1700 MeV in both spectra.

In the negative parity sector of both spectra we observe four states at ∼ 1600 MeV that appear
to be supernumerary to the pattern of states predicted by quark potential models. Due to their
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Figure 2: As Fig. 1 but for the charm-strange (Ds) meson spectrum. The dashed lines indicate the lowest
non-interacting DK threshold using our measured masses (coarse green dashing) and using experimental
masses (fine black dashing).

strong overlap with operators proportional to the field strength tensor we interpret these states as
the lightest supermultiplet of hybrid mesons and highlight them in red in Fig. 3. The pattern of
states observed in the supermultiplet is the one expected if a quark-antiquark pair in an S-wave
configuration is coupled to a 1+− quasi-gluon, and its appearance at an energy scale ∼ 1200 MeV
above the lightest quark-antiquark state is in agreement with what was observed in both the light
meson sector [16] and the charmonium sector [5].

The four supernumerary states in the positive parity sector ∼ 1500 MeV above the lightest
conventional quark-antiquark state are also interpreted as candidate hybrid mesons, again due to
their relatively strong overlap with operators proportional to the field strength tensor. We note, that
in the previous studies of Refs. [5, 16], a first excited supermultiplet of hybrid mesons is observed
at a similar energy scale, but we do not complete the supermultiplet as other states in this energy
region were not robustly determined.

The pattern of our extracted states agree qualitatively with current experimental determinations
but some of our states differ quantitatively. The S-wave hyperfine splittings we calculate differ by
∼ 20 MeV from experimental values but this can be explained as an O(a) discretisation effect as
in Ref. [5]. In the charm-light sector we find our P-wave states heavier than their experimental
counterparts which could be due to our unphysically heavy light quarks (our strange quarks are
of the correct scale) and/or interaction with the nearby thresholds. In the charm-strange case, two
of our P-wave states are consistent with experiment but the other two states, which are expected
to correspond to the enigmatic D∗s0(2317)± and Ds1(2460)±, are significantly higher than their
experimental counterparts. We note that the 0+ and 1+ states are very close to, respectively, the
DK and D∗K thresholds, and both the experimental and calculated 0+ states lie the same distance
from their appropriate thresholds. This may suggest that the unphysically heavy light quarks are
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Figure 3: The negative-parity charm-light (left panel) and charm-strange (right panel) meson spectra show-
ing only channels where we identify hybrid candidates. The red boxes are identified as states belonging to
the lightest hybrid supermultiplet as discussed in the text and other notation is as in Figs. 1 and 2.

a major contribution to the discrepancy. However, because of the interaction with the threshold,
further study is required with multi-hadron operators included in our bases.

4. Summary and outlook

We have presented preliminary spectra in both the charm-light and charm-strange sectors on
N f = 2+ 1 dynamical ensembles generated by the Hadron Spectrum Collaboration. The use of a
large basis of carefully constructed operators along with a variational analysis has allowed us to
extract a large number of states. Our spin identification scheme is crucial to our interpretation as it
allows us to identify the JP of not only the low-lying states but also the highly excited states.

We have identified candidate hybrid mesons due to their relatively strong overlap with opera-
tors proportional to the field strength tensor. We observe a pattern of states that is consistent with
the lightest hybrid supermultiplet found in previous studies of the light meson [16] and charmonium
sectors [5].

In the near future we plan to further study the open-charm sector via calculations along the
lines of Refs. [17, 18].
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