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1. Introduction

We have studied the symmetries of the three heavy-quark system under exchange of the heavy-
quark fields and their implications for the various matching coefficients, i.e. the potentials, of
potential non-relativistic QCD (pNRQCD) for the three heavy-quark system. Moreover, we have
calculated the ultrasoft corrections of order α4

s lnαs to the singlet static energy and of order α4
s ln µ

to the singlet static potential of a three heavy-quark bound state. Whereas this has been achieved
for the case of QQ̄ systems more than ten years ago [1], the result for three heavy-quark systems
are new [2].

2. Three heavy-quark composite fields

Quarks transform under the fundamental representation, 3, of the (color) gauge group SU(3)c.
According to

3⊗3⊗3 = 1⊕8⊕8⊕10 , (2.1)

the three heavy-quark product state, Qi(x1, t)Q j(x2, t)Qk(x3, t) (i, j,k= 1,2,3 denote color indices),
can thus be decomposed into a singlet, two different octets and a decuplet with respect to SU(3)c

gauge transformations at a common point R. Employing equal-time straight Wilson strings,

φ(y,x, t) = P exp
{

ig
∫ 1

0
ds (y−x) ·A(x+(y−x)s, t)

}
, (2.2)

where A = Aaλ a/2 is the color gauge field, λ a are the Gell-Mann matrices, and P denotes path
ordering of the color matrices, we write

Qi(x1, t)Q j(x2, t)Qk(x3, t) = φii′(x1,R, t)φ j j′(x2,R, t)φkk′(x3,R, t)

×
{

S(x1,x2,x3, t)Si′ j′k′+
8

∑
a=1

OAa(x1,x2,x3, t)OAa
i′ j′k′

+
8

∑
a=1

OSa(x1,x2,x3, t)OSa
i′ j′k′+

10

∑
δ=1

∆
δ (x1,x2,x3, t)∆∆∆δ

i′ j′k′

}
, (2.3)

where Si jk, OAa
i jk, OSa

i jk and ∆∆∆
δ
i jk are orthogonal and normalized color tensors that satisfy the relations

Si jkSi jk = 1 , OAa∗
i jk OAb

i jk = δ
ab , OSa∗

i jk OSb
i jk = δ

ab , ∆∆∆
δ
i jk∆∆∆

δ ′

i jk = δ
δδ ′ ,

Si jkOAa
i jk = Si jkOSa

i jk = Si jk∆∆∆
δ
i jk = OAa∗

i jk OSb
i jk = OAa∗

i jk ∆∆∆
δ
i jk = OSa∗

i jk ∆∆∆
δ
i jk = 0 , (2.4)

with a,b ∈ {1, . . . ,8}, and δ ,δ ′ ∈ {1, . . . ,10} [3]. For simplicity, we have omitted an explicit
reference to R in the argument of the singlet, S, two octets, OA and OS, and decuplet, ∆, fields.
Besides the time coordinate t, we rather list the position coordinates (x1,x2,x3) of the heavy-quark
fields in the order (from left to right) of their appearance on the right-hand side of Eq. (2.3). The
same convention is used for the color indices (i, j,k).

The heavy fields fulfill equal-time anticommutation relations,

{Qi(x, t),Q j(y, t)}= 0. (2.5)
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Thus, it is natural to ask for the implications of Eq. (2.5) for the singlet, octet and decuplet fields
in Eq. (2.3). In order to do this, we stick to a specific (matrix) representation of the color tensors,
namely [3]

Si jk =
1√
6

εi jk , OAa
i jk =

1
2

εi jlλ
a
kl , OSa

i jk =
1

2
√

3

(
ε jklλ

a
il + εiklλ

a
jl
)
, (2.6)

and

∆∆∆
1
111 =∆∆∆

4
222 =∆∆∆

10
333 = 1 , ∆∆∆

6
{123} =

1√
6
,

∆∆∆
2
{112} =∆∆∆

3
{122} =∆∆∆

5
{113} =∆∆∆

7
{223} =∆∆∆

8
{133} =∆∆∆

9
{233} =

1√
3
, (2.7)

where the symbol {i jk} denotes all permutations of the indices i jk; all components not listed
explicitly in Eq. (2.7) are zero. Moreover, note that as all six possible orderings of the heavy-quark
fields can be obtained by applying the following two independent operations on the product state
Qi(x1, t)Q j(x2, t)Qk(x3, t),

(i) : Qi(x1, t)↔ Q j(x2, t) , (ii) : Qi(x1, t)↔ Qk(x3, t) , (2.8)

it suffices to determine the transformation behavior of S, OAa, OSa and ∆ under (i) and (ii). We find

(i) :


S(x1,x2,x3, t) = S(x2,x1,x3, t)

∆δ (x1,x2,x3, t) =−∆δ (x2,x1,x3, t)

OAa(x1,x2,x3, t) = OAa(x2,x1,x3, t)

OSa(x1,x2,x3, t) =−OSa(x2,x1,x3, t)

, (2.9)

and

(ii) :


S(x1,x2,x3, t) = S(x3,x2,x1, t)

∆δ (x1,x2,x3, t) =−∆δ (x3,x2,x1, t)

OAa(x1,x2,x3, t) =−cos(π

3 )O
Aa(x3,x2,x1, t)+ sin(π

3 )O
Sa(x3,x2,x1, t)

OSa(x1,x2,x3, t) = sin(π

3 )O
Aa(x3,x2,x1, t)+ cos(π

3 )O
Sa(x3,x2,x1, t)

. (2.10)

3. The pNRQCD Lagrangian for the three heavy-quark system

As pNRQCD for the three heavy-quark system is usually formulated in terms of singlet, octet
and decuplet fields, the symmetry relations (2.9) and (2.10) have some immediate consequences
for the form of the pNRQCD Lagrangian, which is organized as a double expansion in 1/m and in
the relative coordinates ri (i = 1,2,3). To zeroth order in both expansions, it reads [3]

L
(0,0)

pNRQCD =
∫

d3
ρ d3

λ

{
S† [i∂0−V s]S+∆

†
[
iD0−V d

]
∆+OA† [iD0−V o

A ]O
A

+OS† [iD0−V o
S ]O

S +OA† [−V o
AS]O

S +OS† [−V o
AS]O

A
}

+∑
l

q̄ li /Dql− 1
4

Fa
µνFaµν . (3.1)
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Equation (3.1) describes at zeroth order in the multipole expansion the propagation of light quarks
and ultrasoft gluons as well as the temporal evolution of static quarks. Higher order terms, not
displayed explicitly here, account for corrections due to finite heavy-quark masses and interactions
between heavy-quarks and ultrasoft gluons. As there is no preferred ordering of the heavy-quarks,
Eq. (3.1) has to be invariant under different orderings of the heavy-quark fields.

The potentials V can be expressed in terms of the relative vectors

r1 = x1−x2 , r2 = x1−x3 , r3 = x2−x3 . (3.2)

For the ordering of the heavy-quarks as in Eq. (2.3), i.e. S≡ S(x1,x2,x3, t), OA ≡ OA(x1,x2,x3, t),
OS ≡OS(x1,x2,x3, t) and ∆≡ ∆(x1,x2,x3, t), they are defined as V ≡V (r1,r2,r3). Given the sym-
metry relations for the singlet, octet and decuplet fields, Eqs. (2.9) and (2.10), it is straightforward
to also derive corresponding symmetry relations for the potentials in Eq. (3.1). The singlet and
decuplet potentials remain invariant under (i) and (ii), whereas the octet potentials transform as

(i) :


V o

A (r1,r2,r3) = V o
A (−r1,r3,r2)

V o
S (r1,r2,r3) = V o

S (−r1,r3,r2)

V o
AS(r1,r2,r3) =−V o

AS(−r1,r3,r2)

, (3.3)

and

(ii) :

V o
A (r1,r2,r3)

V o
S (r1,r2,r3)

V o
AS(r1,r2,r3)

=

 cos2(π

3 ) sin2(π

3 ) −sin(2π

3 )

sin2(π

3 ) cos2(π

3 ) +sin(2π

3 )
1
2 sin(2π

3 ) −1
2 sin(2π

3 ) −cos(2π

3 )


V o

A (−r3,−r2,−r1)

V o
S (−r3,−r2,−r1)

V o
AS(−r3,−r2,−r1)

 . (3.4)

Similar relations hold, e.g. for the interaction vertices in the pNRQCD Lagrangian appearing at
higher order in the multipole expansion in the relative vectors ri (i = 1,2,3).

The symmetry properties of the three heavy-quark system under exchange of the heavy-quark
fields thus have a deep impact on the structure of the pNRQCD Lagrangian. They in particular in-
duce relations between different matching coefficients in the effective theory and thereby constrain
their form.

4. The singlet static energy up to order α4
s lnαs

Besides studying the symmetries of the three heavy-quark system, we have used the effective
field theory framework of pNRQCD to determine the leading ultrasoft contribution to the singlet
static energy, which is of α4

s lnαs, and to the singlet static potential, which is of order α4
s ln µ . Here,

the symmetry relations (3.3) and (3.4) have served as an important check of the obtained result.
Adding the newly determined leading ultrasoft corrections to the singlet static potential V s,

known analytically at next-to-next-to-leading order (NNLO) [4], the singlet static energy is now
known up to order α4

s lnαs and reads

Es(r1,r2,r3) = V s
NNLO(r1,r2,r3)

−α4
s

3π
lnαs

[(
r2

1 +
(r2 + r3)

2

3

)(
1
|r1|2

+
1
|r2|2

+
1
|r3|2

− 1
4
|r1|+ |r2|+ |r3|
|r1||r2||r3|

)
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×
(

1
|r1|

+
1
|r2|

+
1
|r3|

)
+

(
r2

1−
(r2 + r3)

2

3

)(
1
|r1|2

+
1
|r2|2

+
1
|r3|2

+
5
4
|r1|+ |r2|+ |r3|
|r1||r2||r3|

)
×
(

1
|r1|
− 1

2|r2|
− 1

2|r3|

)
+r1 · (r2 + r3)

(
1
|r1|2

+
1
|r2|2

+
1
|r3|2

+
5
4
|r1|+ |r2|+ |r3|
|r1||r2||r3|

)
×
(

1
|r2|
− 1
|r3|

)]
. (4.1)

In contrast to the static energy, the singlet static potential explicitly depends on the factor-
ization scale µ separating soft from ultrasoft contributions. It is now known up to order α4

s ln µ ,
where the quantity ln µ is in general referred to as an ultrasoft logarithm. In a minimal subtraction
scheme, it is given by

V s(r1,r2,r3; µ) = V s
NNLO(r1,r2,r3)

−α4
s

3π
ln µ

[(
r2

1 +
(r2 + r3)

2

3

)(
1
|r1|2

+
1
|r2|2

+
1
|r3|2

− 1
4
|r1|+ |r2|+ |r3|
|r1||r2||r3|

)
×
(

1
|r1|

+
1
|r2|

+
1
|r3|

)
+

(
r2

1−
(r2 + r3)

2

3

)(
1
|r1|2

+
1
|r2|2

+
1
|r3|2

+
5
4
|r1|+ |r2|+ |r3|
|r1||r2||r3|

)
×
(

1
|r1|
− 1

2|r2|
− 1

2|r3|

)
+r1 · (r2 + r3)

(
1
|r1|2

+
1
|r2|2

+
1
|r3|2

+
5
4
|r1|+ |r2|+ |r3|
|r1||r2||r3|

)
×
(

1
|r2|
− 1
|r3|

)]
. (4.2)

Specializing to an equilateral geometry, characterized by the single length scale r = |r1| = |r2| =
|r3|, we have moreover managed to resum the leading ultrasoft logarithms that start appearing in
the static potential at NNNLO to all orders by solving the corresponding renormalization group
equations. For the singlet static potential this results in

V s(r; µ) =V s
NNLO(r)−9

α3
s (1/r)
β0r

ln
αs(1/r)
αs(µ)

, (4.3)

where β0 = 11− 2/3nl , with nl the number of light-quark flavors. Equation (4.3) provides the
complete expression of the singlet static potential at next-to-next-to-leading-logarithmic (NNLL)
accuracy in an equilateral geometry. Corresponding results for the octet and decuplet potentials
can be found in [2].
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