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1. Introduction

Understanding the deconfinement phase diagram of QCD is one of the chajtenges of
particle physics. In this talk | will report on a description of the deconfindrpbase transition
at zero baryon density within the Hamiltonian approach to Yang—Mills theoryouldnb gauge,
extending the previously developed variational approach for the Ydiig-vacuum [1] to finite
temperatures. This approach has been quite successful in undargtdredinfrared properties of
Yang—Mills theory: One finds a gluon energy which is infrared diver§iEand a linearly rising
quark potential [2], both being signals of confinement. In addition, ors fam infrared enhanced
running coupling constant with no Landau pole [3], a perimeter law fortthi®oft loop [4] and,
within an approximate Dyson—Schwinger equation, an area law for the IsSpalsan loop [5].
Also the topological susceptibility was found in accord with the lattice data [Brithe success
of this approach in the vacuum sector we can also expect a deceriptiea®f the deconfinement
phase transition. The outline of my talk is as follows: | will first review the basigedients of
the Hamiltonian approach to Yang—Mills theory in Coulomb gauge. Within this apprbwvill
then study the grand canonical ensemble in a mean-field type approximatidnvastigate the
deconfinement phase transition.

2. Hamilton approach to Yang—Mills theory

The Hamilton approach to Yang—Mills theory is based on the canonical gatiatizn Weyl
gaugeAg = 0, which yields the Hamiltonian

H— ;/d3x(ﬂ2(x) LB(x)) (2.1)

wherell(x) = —id/dA(X) is the canonical momentum operator. Due to the use of the Weyl gauge
Gauss’ law escapes the quantum equations of motion and has to be impaseahasraint to the
wave functional

DMyl[A =0. (2.2)

HereD denotes the covariant derivative in the adjoint representation of trgeggoup. The op-
erator in Gauss’ lawDI1 is nothing but the generator of (time-independent but space-depg@nden
gauge transformations and Gauss’ law ensures that (in the absencteffials) the wave func-
tional must be gauge invariant. To respect gauge invariance one alnwith explicitly gauge
invariant wave functionals, which has been pursued mainly inl2dimensions but which be-
comes exceedingly involved in81-dimensions. A more convenient way is to fix the gauge and
resolve Gauss’ law explicitly. For this purpose Coulomb gauge is convaamelrafter gauge fixing
one finds the following Hamiltonian

H= ;/oex (JA1M(x)Ia- N (x) +B?(X)) +Hc, (2.3)

whereJa = Det(—D0) is the Faddeev—Popov determinant and

H :gz/d3xd3 I pP(X)IF®(x,y)pb 2.4
c=3 YIa P ()IAFT (X y)P"(Y) (2.4)
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Figure 1: Comparison of the results of the variational calculatiod Eattice data for the gluon propagator.

is the so-called Coulomb Hamiltonian. Hep = — f3°APM¢ is the color charge density of the
gluons. The gauge fixed Hamiltonian is highly non-local due to the presétice Faddeev—Popov
determinant and the Coulomb tekig. Although the gauge fixing gives rise to a more complicated
(non-local) Hamiltonian it has the advantage that the gauge invariancebagdken care of once
and for all and that after Coulomb gauge fixing any wave functional midipg on the transversal
gauge field only lies in the physical Hilbert space. Fortunately it turns atitrtithe gluon sector, in
particular for the investigation of the infrared properties, the Coulomb tambe ignored, which

| will do in the following.

With the Coulomb gauge fixed Hamiltonian (2.3) the Yang—Mills Schrddingertemguhas
been solved by a variational principle using Gaussian type ansatze fadhem wave functional.
The approach developed in our group differs from previous attemp®] [y the ansatz for the
vacuum wave functional, by the full inclusion of the Faddeev—Popovmiétant and by the renor-
malization. Our ansatz for the vacuum wave functional reads

WA = I, Y exp [; /AwA} , (2.5)

wherew is a variational kernel, which is determined by minimizing the enéfg |). The pre-
exponential factor has the advantage that it cancels the Faddeev—&tpaninant in the scalar
product of the Coulomb gauge fixed wave functionals. Furthermordghfewave functional the
gluon propagator is given by

(AA) = (2w) L, (2.6)

which identifies the Fourier transform of as quasi-gluon energy. Figure 1 shows the result of
the variational calculation for the gluon propagator in comparison with the lattite As one
observes, the cross feature of the lattice data are well reproducealrticular, in the deep infrared
regime our variational calculations agree perfectly with the lattice data. Ererdeviations in
the mid-momentum regime, which can be substantially reduced by using n@si@awave func-
tionals, Ref. [9]. What is also remarkable is that the lattice data can be nittely fiiy Gribov’s

formula
w(p) = 1/ P?+M4/p? (2.7)

with the masdv = 0.88 GeV.
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3. The grand canonical ensemble

Since the gluons have vanishing chemical potential their grand canongainble is defined
by the density operator
D=exp(—BH), (3.2)

whereH is the gauge fixed Hamiltonian (2.3) afid= 1/kgT is the inverse temperature. By means
of the density matrix thermal averages are defined by

. Tr(D...)
(..)7:= D’
where the trace can be calculated, in principle, in any complete basis. Epwevwill necessarily
have to introduce approximations and then the choice of the basis matters.illithogse an
optimal basis by exploiting the variational principle. Inspired by the zero testyne calculations,
see Eq. (2.5), we will choose our basis in the form

1

(3.2)

K= ———|K), 3.3
where the statelk) are defined by the Fock basis
‘0>a aT(p)‘0>a aT(pl)aT(pZ)‘0>a (34)
obtained by decomposing the gauge field in terms of creation-annihilatioatoper
1
AKK) = ———— (a(k)+a'(—k 3.5
(00 = s (00 +a'(=K) (35)

with a so far arbitrary kernedo(k) and the vacuum state, being defineddf)|0) = O, is the

Gaussian
(A0) = exp( / AwA> (3.6)

Inserting this state into Eq. (3.3) we find that the st@leis nothing but the trial ansatz (2.5) for
the zero temperature variational calculation. However, in the preseatiovakerneko(k) is not
determined by minimizing the energy but at the moment an arbitrary kernel.

We cannot treat the full density operator, Eq. (3.1). Therefore place in the density opera-
tor the full Hamiltonian (2.4) by a single-particle one

D—exp(~ph), h— [ dpe(pia'(p)a(p). (37)

As a consequence, for the thermal averages (3.2) Wick's theorelieapwhich tremendously
simplifies the calculations of thermal expectation values. With the density matrixd@erfinds
the usual Bose occupation numbers

(@'(p)a(p)) =n(p) = (exp(Be(p)) — 1), (3.8)
while the finite-temperature gluon propagator is given by

(AB)T = (1+2n)/(2w). (3.9)
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It differs from the zero-temperature propagator (2.6) only by thegmes of the finite-temperature
occupation numbers(p). In the limit of a vanishing temperature — 0 the n(p) vanish and
Eq. (3.9) reduces to the zero-temperature propagator, Eqg. (2.6).

With the density operator (3.7) at hand, we can straightforwardly calcthlatentropy

S=—kgTrDInD (3.10)

and the free energy
Fle,w]=(H)T—-TS. (3.11)

A comment is here in order: We cannot calculate in here the free enemptiiie partition function

Z = TrD since the density matri® (3.7) is not yet known. Rather we calculate the free energy by
taking the thermal expectation value of the full Hamiltonian. This has in additicaxdtxntage that
also two-body correlations are included, which cannot be capturedebsirigle-particle density
matrix (3.7).

4. The deconfinement phase transition

So far, we have two unknown kernels. The single-particle enegfips occurring in the
single-particle density operator (3.7) and the kemaép) occurring in the vacuum state (3.6) of
our Fock basis (3.4), (3.6). We now determine these kernels by minimizinggbefergy (3.11).
Sincen(p) is a monotonous function af{ p) we can varyF [, n] with respect ta( p), which yields
the relation [11]

g(p) = w(p). (4.1)

This relation is not surprising given the form of the thermal gluon profmadga.9), which identifies
w(p) as quasi-gluon energy. Let us stress, however, that if one goesdbélye present approxi-
mation and includes also the Coulomb term (2.4), one obtains still a linear relatiomedne(p)
andw(p), however, the proportionality factor differs from one by an additionaplmtegral [10].
Finally, variation with respect to the choice of our basis, i.e. with respect(ty) yields the gap
equation

wW?(p) = P>+ x2(p) +1[n], (4.2)

where x(p) denotes the ghost loop calculated from the finite-temperature gluon @topamnd
I[n] denotes the tadpole of the transversal spatial gluons, see Fig. 2. prexgation (4.2) has
to be solved together with the Dyson—Schwinger equation for the ghastfeartord(p). These
eguations can be solved analytically in the infrared by power law ansatze

A B

=—, d(p)=—. 4.3
Assuming the horizon conditicsi*(p = 0) = 0 one finds at zero temperature from the ghost DSE
the sum rule

w(p)

a=28+2-d, (4.4)
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Figure 2: Tadpole term [n]. Figure 3: Infrared exponeng of the ghost form

factor as a function of temperature.

whered is the number of spatial dimensions. With this sum rule one finds then from {he ga
equation the following solutions for the infrared expongnt

d=3: B=100, B~0.795
d=2: pB=050. (4.5)

The same exponents are extracted numerically from the self-consisiaidisof the equations of
motion.

At arbitrarily finite temperature an infrared analysis is impossible due to théaicthe gluon
energyw(p) occurs in the occupation number (3.8) in exponential form. One can,Veonearry
out the infrared analysis at infinite temperature, where the Bose occupaiimbers given by
Egs. (3.8), (4.1) reduce to

T—o: n(p)— (Bw(p) . (4.6)

One finds then the same sum rule (4.4) as at zero temperature and a dimipe sath
T—o: d=3: =05, a=0. 4.7)

Figure 3 shows the infrared exponent of the ghost form faBtas function of temperature. At
low temperature one finds the two solutions for the infrared exponents edt&iom the zero-
temperature infrared analysis. These exponents stay more or lessnt@ssthe temperature in-
creases up to a critical temperature, where the two solutions for the mhfexponent3 merge

to a single one, which with increasing temperature approaches the&&ué predicted by the
infrared analysis in the high temperature limit. Figure 4 shows the numericaiosofar the ghost
form factord(p) and the gluon energg(p) for various temperatures. The obtained results are in
agreement with the predictions of the infrared analysis. At zero temperatihd(p) and w(p)

are infrared diverging. Abové&; the ghost form factor is still infrared diverging but its infrared ex-
ponent is halved while the gluon energy becomes infrared finite in acooedaith the prediction

of the infrared analysis (4.7). Furthermore abdydhe plateau value of the gluon energy in the
infrared increases with the temperature. This is seen in Fig. 5, whereametsh gluon energy at
an infrared cut-offAir. w(Air) = M(T) jumps at the deconfinement phase transition from a very
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Figure 4: Zero- and finite-temperature solutions for the ghost forotdiad(p) (left panel) and the gluon
kernelw(p) (right panel).
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Figure 5: The effective gluon mas®(Ar) as a Figure 6: Critical behavior of the effective gluon
function of temperature. mass forT — T..

large to a small value and afterwards increases linearly with the temper&ooening into the
transition regime, which is done in Fig. 6 one can extract the critical expaifenfA;r) = m(T)
defined by

Merit (T) ~ (T /Te — D)X (4.8)

and obtains the valug = 0.37. This value compares well with the value= 0.41 obtained in
Ref. [12] in a phenomenological quasi-particle model for the gluons usipgt data from the

d = 3 Ising model, which is in the same universality class a$Z3dauge theory. Fitting our scale
at the value of the Gribov ma#s = 0.88 GeV, see Eq. (2.7), determined in Ref. [13] on the lattice,
we find a critical temperature for the deconfinement phase transitign-0275...290 MeV. This

is in reasonable agreement with the lattice valug.cE 295 MeV. This result is also in reasonable
agreement with the valuR ~ 270 MeV obtained from the effective potential of the Polyakov loop
calculated in Ref. [14] within the Hamiltonian approach. Let me also mention ¢eantly the
Hamilton approach to Yang—Mills theory in Coulomb gauge has been also ustadiioglueballs

at finite temperature [15]. The results obtained in the gluon sector at finiteetatnpe are quite
encouraging for an extension of the Hamilton approach to full QCD at fimteéeature and baryon
density.
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