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1. Introduction

Understanding the deconfinement phase diagram of QCD is one of the majorchallenges of
particle physics. In this talk I will report on a description of the deconfinement phase transition
at zero baryon density within the Hamiltonian approach to Yang–Mills theory in Coulomb gauge,
extending the previously developed variational approach for the Yang–Mills vacuum [1] to finite
temperatures. This approach has been quite successful in understanding the infrared properties of
Yang–Mills theory: One finds a gluon energy which is infrared divergent [1] and a linearly rising
quark potential [2], both being signals of confinement. In addition, one finds an infrared enhanced
running coupling constant with no Landau pole [3], a perimeter law for the ’t Hooft loop [4] and,
within an approximate Dyson–Schwinger equation, an area law for the spatial Wilson loop [5].
Also the topological susceptibility was found in accord with the lattice data [6]. Given the success
of this approach in the vacuum sector we can also expect a decent description of the deconfinement
phase transition. The outline of my talk is as follows: I will first review the basicingredients of
the Hamiltonian approach to Yang–Mills theory in Coulomb gauge. Within this approach I will
then study the grand canonical ensemble in a mean-field type approximation and investigate the
deconfinement phase transition.

2. Hamilton approach to Yang–Mills theory

The Hamilton approach to Yang–Mills theory is based on the canonical quantization in Weyl
gaugeA0 = 0, which yields the Hamiltonian

H =
1
2

∫

d3x
(

Π2(x)+B2(x)
)

, (2.1)

whereΠ(x) = −iδ/δA(x) is the canonical momentum operator. Due to the use of the Weyl gauge
Gauss’ law escapes the quantum equations of motion and has to be imposed asa constraint to the
wave functional

DΠψ [A] = 0. (2.2)

HereD denotes the covariant derivative in the adjoint representation of the gauge group. The op-
erator in Gauss’ lawDΠ is nothing but the generator of (time-independent but space-dependent)
gauge transformations and Gauss’ law ensures that (in the absence of matter fields) the wave func-
tional must be gauge invariant. To respect gauge invariance one can work with explicitly gauge
invariant wave functionals, which has been pursued mainly in 2+ 1-dimensions but which be-
comes exceedingly involved in 3+ 1-dimensions. A more convenient way is to fix the gauge and
resolve Gauss’ law explicitly. For this purpose Coulomb gauge is convenient and after gauge fixing
one finds the following Hamiltonian

H =
1
2

∫

d3x
(

J−1
A Π(x)JA ·Π(x)+B2(x)

)

+HC , (2.3)

whereJA = Det(−D∂ ) is the Faddeev–Popov determinant and

HC =
g2

2

∫

d3x d3yJ−1
A ρa(x)JAFab(x,y)ρb(y) (2.4)
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Figure 1: Comparison of the results of the variational calculation and lattice data for the gluon propagator.

is the so-called Coulomb Hamiltonian. Here,ρa = − f abcAbΠc is the color charge density of the
gluons. The gauge fixed Hamiltonian is highly non-local due to the presenceof the Faddeev–Popov
determinant and the Coulomb termHC. Although the gauge fixing gives rise to a more complicated
(non-local) Hamiltonian it has the advantage that the gauge invariance has been taken care of once
and for all and that after Coulomb gauge fixing any wave functional depending on the transversal
gauge field only lies in the physical Hilbert space. Fortunately it turns out that in the gluon sector, in
particular for the investigation of the infrared properties, the Coulomb term can be ignored, which
I will do in the following.

With the Coulomb gauge fixed Hamiltonian (2.3) the Yang–Mills Schrödinger equation has
been solved by a variational principle using Gaussian type ansätze for thevacuum wave functional.
The approach developed in our group differs from previous attempts [7, 8] by the ansatz for the
vacuum wave functional, by the full inclusion of the Faddeev–Popov determinant and by the renor-
malization. Our ansatz for the vacuum wave functional reads

ψ [A] = J−1/2
A exp

[

−
1
2

∫

AωA

]

, (2.5)

whereω is a variational kernel, which is determined by minimizing the energy〈ψ |H|ψ〉. The pre-
exponential factor has the advantage that it cancels the Faddeev–Popov determinant in the scalar
product of the Coulomb gauge fixed wave functionals. Furthermore, forthis wave functional the
gluon propagator is given by

〈AA〉 = (2ω)−1 , (2.6)

which identifies the Fourier transform ofω as quasi-gluon energy. Figure 1 shows the result of
the variational calculation for the gluon propagator in comparison with the latticedata. As one
observes, the cross feature of the lattice data are well reproduced. Inparticular, in the deep infrared
regime our variational calculations agree perfectly with the lattice data. Thereare deviations in
the mid-momentum regime, which can be substantially reduced by using non-Gaussian wave func-
tionals, Ref. [9]. What is also remarkable is that the lattice data can be nicely fitted by Gribov’s
formula

ω(p) =
√

p2 +M4/p2 (2.7)

with the massM = 0.88 GeV.
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3. The grand canonical ensemble

Since the gluons have vanishing chemical potential their grand canonical ensemble is defined
by the density operator

D = exp(−βH) , (3.1)

whereH is the gauge fixed Hamiltonian (2.3) andβ = 1/kBT is the inverse temperature. By means
of the density matrix thermal averages are defined by

〈. . .〉T :=
Tr(D . . .)

TrD
, (3.2)

where the trace can be calculated, in principle, in any complete basis. However, we will necessarily
have to introduce approximations and then the choice of the basis matters. We will choose an
optimal basis by exploiting the variational principle. Inspired by the zero temperature calculations,
see Eq. (2.5), we will choose our basis in the form

|k̃〉 =
1

√

Det(−D∂ )
|k〉 , (3.3)

where the states|k〉 are defined by the Fock basis

|0〉 , a†(p)|0〉 , a†(p1)a
†(p2)|0〉, . . . (3.4)

obtained by decomposing the gauge field in terms of creation-annihilation operators

A(k) =
1

√

2ω(k)

(

a(k)+a†(−k)
)

(3.5)

with a so far arbitrary kernelω(k) and the vacuum state, being defined bya(k)|0〉 = 0, is the
Gaussian

〈A|0〉 = exp

(

−
1
2

∫

AωA

)

. (3.6)

Inserting this state into Eq. (3.3) we find that the state|0̃〉 is nothing but the trial ansatz (2.5) for
the zero temperature variational calculation. However, in the present case the kernelω(k) is not
determined by minimizing the energy but at the moment an arbitrary kernel.

We cannot treat the full density operator, Eq. (3.1). Therefore we replace in the density opera-
tor the full Hamiltonian (2.4) by a single-particle one

D = exp(−βh) , h =
∫

dpε(p)a†(p)a(p) . (3.7)

As a consequence, for the thermal averages (3.2) Wick’s theorem applies, which tremendously
simplifies the calculations of thermal expectation values. With the density matrix (3.7) one finds
the usual Bose occupation numbers

〈

a†(p)a(p)
〉

≡ n(p) = (exp(βε(p))−1)−1 , (3.8)

while the finite-temperature gluon propagator is given by

〈AA〉T = (1+2n)/(2ω) . (3.9)
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It differs from the zero-temperature propagator (2.6) only by the presence of the finite-temperature
occupation numbersn(p). In the limit of a vanishing temperatureT → 0 the n(p) vanish and
Eq. (3.9) reduces to the zero-temperature propagator, Eq. (2.6).

With the density operator (3.7) at hand, we can straightforwardly calculatethe entropy

S= −kBTrD lnD (3.10)

and the free energy

F [ε,ω ] = 〈H〉T −TS. (3.11)

A comment is here in order: We cannot calculate in here the free energy from the partition function
Z = TrD since the density matrixD (3.7) is not yet known. Rather we calculate the free energy by
taking the thermal expectation value of the full Hamiltonian. This has in addition theadvantage that
also two-body correlations are included, which cannot be captured by the single-particle density
matrix (3.7).

4. The deconfinement phase transition

So far, we have two unknown kernels. The single-particle energiesε(p) occurring in the
single-particle density operator (3.7) and the kernelω(p) occurring in the vacuum state (3.6) of
our Fock basis (3.4), (3.6). We now determine these kernels by minimizing the free energy (3.11).
Sincen(p) is a monotonous function ofε(p) we can varyF [ε,n] with respect ton(p), which yields
the relation [11]

ε(p) = ω(p) . (4.1)

This relation is not surprising given the form of the thermal gluon propagator (3.9), which identifies
ω(p) as quasi-gluon energy. Let us stress, however, that if one goes beyond the present approxi-
mation and includes also the Coulomb term (2.4), one obtains still a linear relation betweenε(p)

andω(p), however, the proportionality factor differs from one by an additional loop integral [10].
Finally, variation with respect to the choice of our basis, i.e. with respect toω(p) yields the gap
equation

ω2(p) = p2 + χ2(p)+ I [n] , (4.2)

whereχ(p) denotes the ghost loop calculated from the finite-temperature gluon propagator and
I [n] denotes the tadpole of the transversal spatial gluons, see Fig. 2. The gap equation (4.2) has
to be solved together with the Dyson–Schwinger equation for the ghost form factord(p). These
equations can be solved analytically in the infrared by power law ansätze

ω(p) =
A
pα , d(p) =

B

pβ . (4.3)

Assuming the horizon conditiond−1(p = 0) = 0 one finds at zero temperature from the ghost DSE
the sum rule

α = 2β +2−d , (4.4)
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Figure 2: Tadpole termI [n].
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Figure 3: Infrared exponentβ of the ghost form
factor as a function of temperature.

whered is the number of spatial dimensions. With this sum rule one finds then from the gap
equation the following solutions for the infrared exponentβ

d = 3 : β = 1.00, β ≈ 0.795

d = 2 : β = 0.50. (4.5)

The same exponents are extracted numerically from the self-consistent solution of the equations of
motion.

At arbitrarily finite temperature an infrared analysis is impossible due to the fact that the gluon
energyω(p) occurs in the occupation number (3.8) in exponential form. One can, however, carry
out the infrared analysis at infinite temperature, where the Bose occupation numbers given by
Eqs. (3.8), (4.1) reduce to

T → ∞ : n(p) → (βω(p))−1 . (4.6)

One finds then the same sum rule (4.4) as at zero temperature and a single solution with

T → ∞ : d = 3 : β = 0.5, α = 0. (4.7)

Figure 3 shows the infrared exponent of the ghost form factorβ as function of temperature. At
low temperature one finds the two solutions for the infrared exponents obtained from the zero-
temperature infrared analysis. These exponents stay more or less constant as the temperature in-
creases up to a critical temperature, where the two solutions for the infrared exponentβ merge
to a single one, which with increasing temperature approaches the valueβ = 1

2 predicted by the
infrared analysis in the high temperature limit. Figure 4 shows the numerical solution for the ghost
form factord(p) and the gluon energyω(p) for various temperatures. The obtained results are in
agreement with the predictions of the infrared analysis. At zero temperature bothd(p) andω(p)

are infrared diverging. AboveTc the ghost form factor is still infrared diverging but its infrared ex-
ponent is halved while the gluon energy becomes infrared finite in accordance with the prediction
of the infrared analysis (4.7). Furthermore aboveTc the plateau value of the gluon energy in the
infrared increases with the temperature. This is seen in Fig. 5, where we show the gluon energy at
an infrared cut-offλIR. ω(λIR) = m(T) jumps at the deconfinement phase transition from a very

6
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Figure 4: Zero- and finite-temperature solutions for the ghost form factor d(p) (left panel) and the gluon
kernelω(p) (right panel).
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Figure 5: The effective gluon massω(λIR) as a
function of temperature.
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Figure 6: Critical behavior of the effective gluon
mass forT → Tc.

large to a small value and afterwards increases linearly with the temperature.Zooming into the
transition regime, which is done in Fig. 6 one can extract the critical exponentof ω(λIR) = m(T)

defined by

mcrit (T) ∼ (T/TC−1)κ (4.8)

and obtains the valueκ = 0.37. This value compares well with the valueκ = 0.41 obtained in
Ref. [12] in a phenomenological quasi-particle model for the gluons usinginput data from the
d = 3 Ising model, which is in the same universality class as SU(2) gauge theory. Fitting our scale
at the value of the Gribov massM = 0.88 GeV, see Eq. (2.7), determined in Ref. [13] on the lattice,
we find a critical temperature for the deconfinement phase transition ofTc = 275. . .290 MeV. This
is in reasonable agreement with the lattice value ofTc = 295 MeV. This result is also in reasonable
agreement with the valueTc ≃ 270 MeV obtained from the effective potential of the Polyakov loop
calculated in Ref. [14] within the Hamiltonian approach. Let me also mention that recently the
Hamilton approach to Yang–Mills theory in Coulomb gauge has been also used tostudy glueballs
at finite temperature [15]. The results obtained in the gluon sector at finite temperature are quite
encouraging for an extension of the Hamilton approach to full QCD at finite temperature and baryon
density.
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