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1. Introduction

Investigations of the phase structure of strongly-inténgcmatter have received a consider-
able amount of attention in the last years, both, theorgtiea well as experimentally. Among the
most prominent features of the QCD phase diagram is the @res$rom a confined phase with
spontaneously broken chiral symmetry to a chirally symimetnd deconfined phase. A confined
phase can be linked to a ground state that respects centeredyyh and the associated order pa-
rameter is the Polyakov loop. It vanishes in the center syimeghase and becomes finite as soon
as the center symmetry is broken [1]. At vanishing quark dbahpotential both transitions occur
roughly at the same temperature which led to the idea anobinttion of new dual observables in
lattice QCD [3-6]. In particular, the dual chiral condesptoneered in [3] is constructed from
the chiral condensate, the order parameter of chiral symrbe¢aking. More recently, dual ob-
servable have also become accessible within functionahodet[7—9] and have been successfully
applied to investigate the center transition. In the presenk novel order parameters for the center
symmetry and its breaking are introduced and analyzed in @CW®ell as fundamentally charged
scalar QCD. The order parameters are determined by thespomding matter propagators without
any additional renormalization.

2. (Scalar) Quantum Chromodynamics

We address the deconfinement transition in ordinary QCD dsww@ scalar QCD, where the
guarks are replaced by fundamentally charged scalars ($€d@]) both in Landau gauge.

The matter propagators are calculated by means of the pomdisng Dyson-Schwinger equa-
tion (DSE) [11]. As an example, the DSE for the quark propagest shown diagrammatically in
Fig. 1, where thin lines and dots represent bare propagatatone-particle irreducible vertices
while thick lines and dots denote the corresponding dregeadtities. Accordingly, the DSE for
the scalar propagator, which is shown in Fig. 2, is more wewland contains more diagrams due
to the presence of additional bare vertices such as ther sdfdnteraction and the quartic scalar-
gluon vertices. In one-loop approximation only the momenindependent tadpole diagrams are
left in addition to the gluon exchange diagram. The tadpdiesever, can be treated by adjusting
the renormalization constants appropriately. Hence, inealoop approximation, the DSE for the
scalar propagator is of the same structure as the one foutim gropagator, cf. Fig. 1.

Explicitly, at finite temperatur& the DSE for the quark propagatstp) reads

1 1 2 d3k v . v
S0 =28 1p) -2 G 5 | GV SR kpaD@ @)
Wy

and correspondingly for the scalar propagdda(p)

- 43
DS (p) = 2a(F + 20m) ~ 2 CeGPT 3 [ 3ok (p+ KDL PO (@) - (22)
()

1in a strict sense center symmetry is realized only in thetlohinfinitely heavy quarks while in real QCD the
symmetry is always explicitly broken, see e.g. [1,2].



Center Phase Transition from Matter Propagators Mario Mitter

o= - &

Figure 1: DSE for the quark propagator.
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Figure 2: DSE for the fundamentally charged scalar propagator.
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For the four-momenta we uge= (k, ax(8)) and the gluon momentum is constrained by momentum
conservation tag = p— k. The wave function renormalization of the quark (scalardd§ieare
denoted byZ, (Z,), the renormalization constants of the quark-gluon (segllzon) vertex byZ;r
(Z1¢) andZy, labels the scalar mass renormalization constant. The gti@dasimir invariant in
the fundamental representation of the gauge g&lu(8) is Cg = 4/3 and the coupling constant at
the renormalization scale is given by

In general, ex(if)-valued boundary conditions in the fourth spacetime divacare realized
by introducing generalized Matsubara frequenai@$0) = (2rmy + 6)T, where the sums over
wx(0) in the DSEs run over the corresponding discrete vatyes Z. The usual (anti-)periodic
boundary conditions for (fermions) bosons are obtainedeltyng @ = 1) 6 = 0, respectively.

Both DSEs depend on the gluon propagd@ét as well as on the corresponding matter-gluon
verticesl" andl"g. Solutions of the DSE for the Landau gauge gluon propagétooravanishing
temperatures have been obtained in [12]. In addition, daaeailable from (quenched) lattice
simulations at finite temperatures and have already beasessfully implemented in functional
equations for the quark propagator [8,4.3]n this work we will apply the fit functions for the
gluon propagator proposed in [13] and hence we omit exmigiressions.

For the matter-gluon vertices the situation is less satisfg since the temperature behavior
of these vertices is not known generally. Some modeling thnhe ttmployed such as in [8] where
the following expression

rY(k,p;a) = Z%a“w‘% L §ivy) w>

% { dp q2 (Boa(y)m [q2//\2+1]>25} (23)

d2+q2+q2+/\2 am

for the quark-gluon vertex can be found and will be used alsbis work. The Ansatz is motivated
by Slavnov-Taylor identities of the Abelian gauge theome(.g. [15]) and by the running of the
non-perturbative coupling of the Yang-Mills theory. Thegly phenomenological parameteats

2Recently, also unquenched lattice data for the Landau gglugs propagator are available [14], which will be
used in future studies of the system.
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Figure 3: Solution of the truncated DSE Eq. (2.2) for the scalar prepamgas function ofi?2 = x at the
lowest Matsubara frequency for periodic= 0 (left panel) and antiperiodi@ = T (right panel) boundary
conditions at different temperatures with renormalizagoaleu = 4 GeV and mass= 1.5 GeV.

andd, are specified in [13], whereas the anomalous dimensi®ge-2-18/44 andfy = 11N./3
ensure a correct perturbative running coupling in the UMmegfor SU(N;) gauge theory. The
renormalization scale of the Yang-Mills sector has beerdfixga (1) = 0.3 andA = 1.4 GeV.
The factorZs allows to apply the Slavnov-Taylor identiBir = 22/23 in Landau gauge [16] which
yields finally only a dependence on the quark wave functioom®alizationZ,. The gluon mo-
mentum is denoted by andk and p are the in- and outgoing quark momenta, respectively.

In a similar context we employ

5 Dgt(p?) — Dgt(K?
rék.pia) = Zs—> (ppi_k; ()

N2 q2 BOG(U) In [qZ/A2+ 1] 25 (2-4)
< ALHF+¥+A2< an )

(p+k)"

for the scalar-gluon vertex, where one additional paranthte- 0.53 has been introduced and all
remaining parameters are the same as in the quark-gluoexvedr contrast to the quark-gluon
vertex, the scalar-gluon vertex is dressed only with thmuatpropagatorﬁ)gl(pz). For the nu-
merical solution of the corresponding DSEs we rewrite thippagatorsS—(p) = iyawp(68)C(p) +
iBA(p) + B(p) andDs(p) = Zs(p?, wp(6)) /(B2 + wp(6)?) in terms of dressing functions in a stan-
dard way. Details on the numerical implementation as wetirathe renormalization scheme will
be published elsewhere [17], cf. also [18, 19].

Numerical results for the scalar propagator around tentypes of the center transition in
the quenched theory witli, ~ 277 MeV are shown in Fig. 3 for periodic (left panel) as well as
antiperiodic boundary conditions (right panel). The mdshe scalars has been fixedno= 1.5
GeV which results in a quite inert behavior aroufid These results demonstrate that there are no
direct modifications of the scalar propagator in the vigirf the transition. This motivates the
construction of more sensitive order parameters for théecgrase transition.
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3. Center Phase Transition and Dual Order Parameters

Order parameters for the center phase transition can beasmdpwith functional methods
via dual observables like e.g. the dual chiral condensat8] [@r the dual density [9]. As has
been discussed in the latter reference, dual quantitiebeavaluated in two different ways. In
general, dual order parameters are constructed from souorabo/-condition dependent operator
Og, where6 denotes the phase of th 1)-valued boundary conditions. Originally, such operators
were introduced in lattice calculations [3-6] and evaldate QCD with the original boundary
conditions, i.e., with (anti-)periodic boundary conditgofor (fermions) bosons.

On the other hand, these operators can also be evaluateduwittional methods in various
theories with general boundary conditions, referred to @®gin [9]. However, dual observables
evaluated in this way can serve as order parameters only dfigbonfinement transition temperature
at physical boundary conditions is a lower bound for thedition temperatures in the different
theories QCIQ [9].

In previous studies of the center phase transition the duilcondensate has been calculated
with functional methods based on the quark propagator [[3B, It is given by an expansion in
complex Fourier modes

_ (7O g,
n=— 0 5’[6 <¢”~l—’>9 (3-1)
with a 8-dependent quark condensate
_ d3p
(@)o=ZNT 5 [ o troS(p.wp(0)). (3.2)
wp(6)

For arbitraryn that is not a multiple ofN;, Z, can then serve as an order parameter for center
symmetry. Usually, the dual chiral condensaigis used, also called dressed Polyakov loop.
In a lattice formulation it contains contributions from &lne-like loops around the torus with
winding numbem = 1 [3, 4, 6] and transforms similar to the ordinary Polyakoedd1] under
center transformations.

Hence, the calculation of the dual chiral condensate reqtiive chiral condensate with general
boundary conditions, which has to be regularized for namskang quark masses. As an already
finite alternative we propose

21de 1 o 2
ZQ = —e ZQ’Q s ZQQ =T Z - trp S(0,0)p(e)) (33)
o 2T 4
wp(6)

as an order parameter for the center phase transifigyy is finite, because the sum scales like
1/w§ for large Matsubara modes. Similarly, for scalar QCD we psapthe order parameter
2rde g 2/%
ZS: — ZSQ R ZSQ =T Z DS(O,wp(Q)) . (34)
o A ()

More details on these order parameters will be presented ipeoming publication [17].
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Figure 4. Left: 359 of Eq. (3.4) as a function of the boundary conditions for tenagures around the
transition. Right: The dual condensaigas a function of the temperatune £ 4 GeV andn= 1.5 GeV).
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Figure5: Parameter dependency of the dual condersates a function of temperature for three different
values of the vertex parametey (left) and for three different values of the mass of the gcfidd (right);
(=4 GeV andn= 15 GeV).

4. Results

In order to confirm that both quantitieEq in Eq. (3.3) and:s in Eq. (3.4), are well-defined
order parameters we investigate both theories, QCD andraQ&D, at finite temperatures.

In the left panel of Fig. 4 th@-dependence dsg for the quenched scalar theory is shown for
temperatures around the transition. From the definition(E4) it is clear thaks vanishes as long
as theXgp is constant while @-dependency is necessary for a non-vanishing order pagamet
However, these findings fdfsg are qualitatively similar to QCD with finite quark masses. [3]
In the right panel of Fig. 4 the dual condensaigis shown as a function of the temperature
which nicely demonstrates its property as an order pararfatéhe center symmetry. Below the
transition temperature of the quenched theory arolywt 277 MeV it vanishes and is finite at
higher temperatures. In the vicinity of the critical tergtere the temperature behavior of the
order parameter depends crucially on the model paramegetsfar the scalar-gluon vertex. This
is demonstrated in Fig. 5, where the temperature behavibg &f shown for different values of the
di parameter in the scalar-gluon vertex Eq. (2.4) (left paaef) for various values of the mass of
the scalar field (right panel). Stronger deviations from riskaing order parameter slightly below
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Figure 6: Left panel: The quark condensat@gy)g andZq g, as defined in Eq. (3.3), as a function of
the boundary angle for different temperatures in the chiimét (dashed linesT = 273 MeV, solid lines:

T = 283 MeV). Right panel: The order paramet&gsandZ; as defined in Eqg. (3.1) and (3.3) as a function
of the temperature.

the transition temperature are observed for smaller mdsis. iffdicates that the vertex sensitivity
increases towards smaller masses.

Finally, the proposed new order parameter for ordinary Q@@s a similar behavior which
is presented in the left panel of Fig. 6. In the figure hdependency okq g in comparison to the
chiral condensate is plotted as a function of the genedhlimeindary conditions for two different
temperatures. The results have been obtained in the cimvialdf the quenched theory. Above
the transition temperatur&g ¢ shows the same characteristic plateau as the chiral comeefos
6’s close to the physical antiperiodic boundary conditiéns 1. Due to the restoration of chiral
symmetry the condensate vanishes which also afiegtg through the scalar dressing function
B(p) in the quark propagator. The slight variations>gf in the center symmetric phase beldw
results from a non-constallly ¢ and can be attributed to lattice artifacts as well as thecehof
the quark-gluon vertex model. However, this effect is maxnpunced irtq g than in the chiral
condensate. The right panel of Fig. 6 shows the correspgrafiter parameteXg in comparison
to the dual chiral condensate. Both vanish belgwand jump immediately to non-vanishing values
aboveT.. Their deviation at larger temperatures can be assigneifféoesht dimensionalities.

5. Conclusions

We investigated the center phase transition of QCD as wdlirrdamentally charged scalar
QCD in a quenched formulation. Novel order parameters amggsed along the lines of previously
constructed dual observables accessible by functionahadst Solving the Dyson-Schwinger
equations for the corresponding matter propagators naaiegsults for these order parameters
are presented. A parameter dependency of the employedrghite vertices on the presented
results is found and motivates a more detailed investigabiits temperature dependence (see
also [20] for corresponding investigations at vanishingperature).
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