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1. Introduction

Investigations of the phase structure of strongly-interacting matter have received a consider-
able amount of attention in the last years, both, theoretically as well as experimentally. Among the
most prominent features of the QCD phase diagram is the crossover from a confined phase with
spontaneously broken chiral symmetry to a chirally symmetric and deconfined phase. A confined
phase can be linked to a ground state that respects center symmetry,1 and the associated order pa-
rameter is the Polyakov loop. It vanishes in the center symmetric phase and becomes finite as soon
as the center symmetry is broken [1]. At vanishing quark chemical potential both transitions occur
roughly at the same temperature which led to the idea and introduction of new dual observables in
lattice QCD [3–6]. In particular, the dual chiral condensate pioneered in [3] is constructed from
the chiral condensate, the order parameter of chiral symmetry breaking. More recently, dual ob-
servable have also become accessible within functional methods [7–9] and have been successfully
applied to investigate the center transition. In the present work novel order parameters for the center
symmetry and its breaking are introduced and analyzed in QCDas well as fundamentally charged
scalar QCD. The order parameters are determined by the corresponding matter propagators without
any additional renormalization.

2. (Scalar) Quantum Chromodynamics

We address the deconfinement transition in ordinary QCD as well as in scalar QCD, where the
quarks are replaced by fundamentally charged scalars (see e.g. [10]) both in Landau gauge.

The matter propagators are calculated by means of the corresponding Dyson-Schwinger equa-
tion (DSE) [11]. As an example, the DSE for the quark propagator is shown diagrammatically in
Fig. 1, where thin lines and dots represent bare propagatorsand one-particle irreducible vertices
while thick lines and dots denote the corresponding dressedquantities. Accordingly, the DSE for
the scalar propagator, which is shown in Fig. 2, is more involved and contains more diagrams due
to the presence of additional bare vertices such as the scalar self-interaction and the quartic scalar-
gluon vertices. In one-loop approximation only the momentum-independent tadpole diagrams are
left in addition to the gluon exchange diagram. The tadpoles, however, can be treated by adjusting
the renormalization constants appropriately. Hence, in a one-loop approximation, the DSE for the
scalar propagator is of the same structure as the one for the quark propagator, cf. Fig. 1.

Explicitly, at finite temperatureT the DSE for the quark propagatorS(p) reads

S−1(p) = Z2S
−1
0 (p)−Z1F CF g2T ∑

ωk(θ )

∫

d3k
(2π)3 γµS(k)Γν(k, p;q)Dµν(q) (2.1)

and correspondingly for the scalar propagatorDS(p)

D−1
S (p) = Ẑ2(p

2+ Ẑmm2
0)− Ẑ1FCFg2T ∑

ωk(θ )

∫

d3k
(2π)3 (p+k)µDS(k)Γν

S(k, p;q)Dµν(q) . (2.2)

1In a strict sense center symmetry is realized only in the limit of infinitely heavy quarks while in real QCD the
symmetry is always explicitly broken, see e.g. [1, 2].
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Figure 1: DSE for the quark propagator.
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Figure 2: DSE for the fundamentally charged scalar propagator.

For the four-momenta we usek=(~k,ωk(θ)) and the gluon momentum is constrained by momentum
conservation toq = p− k. The wave function renormalization of the quark (scalar) fields are
denoted byZ2 (Ẑ2), the renormalization constants of the quark-gluon (scalar-gluon) vertex byZ1F

(Ẑ1F ) andZm labels the scalar mass renormalization constant. The quadratic Casimir invariant in
the fundamental representation of the gauge groupSU(3) isCF = 4/3 and the coupling constant at
the renormalization scale is given byg.

In general, exp(iθ)-valued boundary conditions in the fourth spacetime direction are realized
by introducing generalized Matsubara frequenciesωk(θ) = (2πnk + θ)T , where the sums over
ωk(θ) in the DSEs run over the corresponding discrete valuesnk ∈ Z. The usual (anti-)periodic
boundary conditions for (fermions) bosons are obtained by setting (θ = π) θ = 0, respectively.

Both DSEs depend on the gluon propagatorDµν as well as on the corresponding matter-gluon
verticesΓν andΓν

S. Solutions of the DSE for the Landau gauge gluon propagator at non-vanishing
temperatures have been obtained in [12]. In addition, data are available from (quenched) lattice
simulations at finite temperatures and have already been successfully implemented in functional
equations for the quark propagator [8, 13]2. In this work we will apply the fit functions for the
gluon propagator proposed in [13] and hence we omit explicitexpressions.

For the matter-gluon vertices the situation is less satisfactory since the temperature behavior
of these vertices is not known generally. Some modeling has to be employed such as in [8] where
the following expression

Γν(k, p;q) = Z̃3

(

δ 4ν γ4C(k)+C(p)
2

+δ jνγ j A(k)+A(p)
2

)

×

{

d1

d2+q2 +
q2

q2+Λ2

(

β0α(µ) ln
[

q2/Λ2+1
]

4π

)2δ
} (2.3)

for the quark-gluon vertex can be found and will be used also in this work. The Ansatz is motivated
by Slavnov-Taylor identities of the Abelian gauge theory (see e.g. [15]) and by the running of the
non-perturbative coupling of the Yang-Mills theory. The purely phenomenological parametersd1

2Recently, also unquenched lattice data for the Landau gaugegluon propagator are available [14], which will be
used in future studies of the system.
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Figure 3: Solution of the truncated DSE Eq. (2.2) for the scalar propagator as function of~p2 = x at the
lowest Matsubara frequency for periodicθ = 0 (left panel) and antiperiodicθ = π (right panel) boundary
conditions at different temperatures with renormalization scaleµ = 4 GeV and massm= 1.5 GeV.

andd2 are specified in [13], whereas the anomalous dimension 2δ = −18/44 andβ0 = 11Nc/3
ensure a correct perturbative running coupling in the UV regime for SU(Nc) gauge theory. The
renormalization scale of the Yang-Mills sector has been fixed by α(µ) = 0.3 andΛ = 1.4 GeV.
The factorZ̃3 allows to apply the Slavnov-Taylor identityZ1F = Z2/Z̃3 in Landau gauge [16] which
yields finally only a dependence on the quark wave function renormalizationZ2. The gluon mo-
mentum is denoted byq andk andp are the in- and outgoing quark momenta, respectively.

In a similar context we employ

Γν
S(k, p;q) = Z̃3

D−1
S (p2)−D−1

S (k2)

p2−k2 (p+k)ν

×d1

{

Λ2

Λ2+q2 +
q2

q2+Λ2

(

β0α(µ) ln
[

q2/Λ2+1
]

4π

)2δ
} (2.4)

for the scalar-gluon vertex, where one additional parameter d1 = 0.53 has been introduced and all
remaining parameters are the same as in the quark-gluon vertex. In contrast to the quark-gluon
vertex, the scalar-gluon vertex is dressed only with the vacuum propagatorsD−1

S (p2). For the nu-
merical solution of the corresponding DSEs we rewrite the propagatorsS−1(p) = iγ4ωp(θ)C(p)+
i/~pA(p)+B(p) andDS(p) = ZS(~p2,ωp(θ))/(~p2+ωp(θ)2) in terms of dressing functions in a stan-
dard way. Details on the numerical implementation as well ason the renormalization scheme will
be published elsewhere [17], cf. also [18,19].

Numerical results for the scalar propagator around temperatures of the center transition in
the quenched theory withTc ≈ 277 MeV are shown in Fig. 3 for periodic (left panel) as well as
antiperiodic boundary conditions (right panel). The mass of the scalars has been fixed tom= 1.5
GeV which results in a quite inert behavior aroundTc. These results demonstrate that there are no
direct modifications of the scalar propagator in the vicinity of the transition. This motivates the
construction of more sensitive order parameters for the center phase transition.
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3. Center Phase Transition and Dual Order Parameters

Order parameters for the center phase transition can be composed with functional methods
via dual observables like e.g. the dual chiral condensate [7, 8] or the dual density [9]. As has
been discussed in the latter reference, dual quantities canbe evaluated in two different ways. In
general, dual order parameters are constructed from some boundary-condition dependent operator
Ôθ , whereθ denotes the phase of theU(1)-valued boundary conditions. Originally, such operators
were introduced in lattice calculations [3–6] and evaluated in QCD with the original boundary
conditions, i.e., with (anti-)periodic boundary conditions for (fermions) bosons.

On the other hand, these operators can also be evaluated withfunctional methods in various
theories with general boundary conditions, referred to as QCDθ in [9]. However, dual observables
evaluated in this way can serve as order parameters only if the deconfinement transition temperature
at physical boundary conditions is a lower bound for the transition temperatures in the different
theories QCDθ [9].

In previous studies of the center phase transition the dual chiral condensate has been calculated
with functional methods based on the quark propagator [7, 8,13]. It is given by an expansion in
complex Fourier modes

Σn =
∫ 2π

0

dθ
2π

e−inθ 〈ψ̄ψ〉θ (3.1)

with a θ -dependent quark condensate

〈ψ̄ψ〉θ = Z2NcT ∑
ωp(θ )

∫

d3p
(2π)3 trD S(~p,ωp(θ)) . (3.2)

For arbitraryn that is not a multiple ofNc, Σn can then serve as an order parameter for center
symmetry. Usually, the dual chiral condensateΣ1 is used, also called dressed Polyakov loop.
In a lattice formulation it contains contributions from alltime-like loops around the torus with
winding numbern = 1 [3, 4, 6] and transforms similar to the ordinary Polyakov loop [1] under
center transformations.

Hence, the calculation of the dual chiral condensate requires the chiral condensate with general
boundary conditions, which has to be regularized for non-vanishing quark masses. As an already
finite alternative we propose

ΣQ =

∫ 2π

0

dθ
2π

e−iθ ΣQ,θ , ΣQ,θ = T ∑
ωp(θ )

[

1
4

trD S(~0,ωp(θ))
]2

(3.3)

as an order parameter for the center phase transition.ΣQ,θ is finite, because the sum scales like
1/ω4

p for large Matsubara modes. Similarly, for scalar QCD we propose the order parameter

ΣS=
∫ 2π

0

dθ
2π

e−iθ ΣS,θ , ΣS,θ = T ∑
ωp(θ )

D2
S(~0,ωp(θ)) . (3.4)

More details on these order parameters will be presented in an upcoming publication [17].
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Figure 4: Left: ΣS,θ of Eq. (3.4) as a function of the boundary conditions for temperatures around the
transition. Right: The dual condensateΣS as a function of the temperature (µ = 4 GeV andm= 1.5 GeV).
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Figure 5: Parameter dependency of the dual condensateΣS as a function of temperature for three different
values of the vertex parameterd1 (left) and for three different values of the mass of the scalar field (right);
(µ = 4 GeV andm= 1.5 GeV).

4. Results

In order to confirm that both quantities,ΣQ in Eq. (3.3) andΣS in Eq. (3.4), are well-defined
order parameters we investigate both theories, QCD and scalar QCD, at finite temperatures.

In the left panel of Fig. 4 theθ -dependence ofΣS,θ for the quenched scalar theory is shown for
temperatures around the transition. From the definition Eq.(3.4) it is clear thatΣS vanishes as long
as theΣS,θ is constant while aθ -dependency is necessary for a non-vanishing order parameter.
However, these findings forΣS,θ are qualitatively similar to QCD with finite quark masses [3].
In the right panel of Fig. 4 the dual condensateΣS is shown as a function of the temperature
which nicely demonstrates its property as an order parameter for the center symmetry. Below the
transition temperature of the quenched theory aroundTc ≈ 277 MeV it vanishes and is finite at
higher temperatures. In the vicinity of the critical temperature the temperature behavior of the
order parameter depends crucially on the model parameters used for the scalar-gluon vertex. This
is demonstrated in Fig. 5, where the temperature behavior ofΣS is shown for different values of the
d1 parameter in the scalar-gluon vertex Eq. (2.4) (left panel)and for various values of the mass of
the scalar field (right panel). Stronger deviations from a vanishing order parameter slightly below

6



P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
 
X
)
1
9
5

Center Phase Transition from Matter Propagators Mario Mitter

 0

 0.05

 0.1

 0.15

 0.2

0 0.2 0.4 0.6 0.8 1

[G
ev

-1
], 

[G
eV

3 ]

θ/2π

〈—ψψ〉θΣQ,θ

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.1  0.2  0.3  0.4  0.5  0.6

[G
ev

-1
], 

[G
eV

3 ]

T [GeV]

Σ1
ΣQ

Figure 6: Left panel: The quark condensates〈ψ̄ψ〉θ andΣQ,θ , as defined in Eq. (3.3), as a function of
the boundary angle for different temperatures in the chirallimit (dashed lines:T = 273 MeV, solid lines:
T = 283 MeV). Right panel: The order parametersΣQ andΣ1 as defined in Eq. (3.1) and (3.3) as a function
of the temperature.

the transition temperature are observed for smaller mass. This indicates that the vertex sensitivity
increases towards smaller masses.

Finally, the proposed new order parameter for ordinary QCD shows a similar behavior which
is presented in the left panel of Fig. 6. In the figure theθ -dependency ofΣQ,θ in comparison to the
chiral condensate is plotted as a function of the generalized boundary conditions for two different
temperatures. The results have been obtained in the chiral limit of the quenched theory. Above
the transition temperature,ΣQ,θ shows the same characteristic plateau as the chiral condensate for
θ ’s close to the physical antiperiodic boundary conditionsθ = π. Due to the restoration of chiral
symmetry the condensate vanishes which also affectsΣQ,θ through the scalar dressing function
B(p) in the quark propagator. The slight variations ofΣQ in the center symmetric phase belowTc

results from a non-constantΣQ,θ and can be attributed to lattice artifacts as well as the choice of
the quark-gluon vertex model. However, this effect is more pronounced inΣQ,θ than in the chiral
condensate. The right panel of Fig. 6 shows the corresponding order parameterΣQ in comparison
to the dual chiral condensate. Both vanish belowTc and jump immediately to non-vanishing values
aboveTc. Their deviation at larger temperatures can be assigned to different dimensionalities.

5. Conclusions

We investigated the center phase transition of QCD as well asfundamentally charged scalar
QCD in a quenched formulation. Novel order parameters are proposed along the lines of previously
constructed dual observables accessible by functional methods. Solving the Dyson-Schwinger
equations for the corresponding matter propagators numerical results for these order parameters
are presented. A parameter dependency of the employed matter-gluon vertices on the presented
results is found and motivates a more detailed investigation of its temperature dependence (see
also [20] for corresponding investigations at vanishing temperature).
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