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1. Introduction

The QCD phase diagram and the location of a possible crjtmiakt (CP) are subject to intense
theoretical and experimental research. Lattice QCD callicunis support a crossover at vanishing
baryon densities [1], while model studies indicate theterise of a first-order phase transition
at high baryon densities ending at a CP [2]. In [3] it was shtww to detect the CP in heavy
ion collisions by searching for divergences in event-bgr\fluctuations of transverse momentum
or particle multiplicity, an ansatz that has recently begfimed to higher order cumulants [4, 5].
However, it is expected that finite size and time effects amsbibly initial state fluctuations will
crucially weaken the expected signals [6, 7]. On the othedh&he nonequilibrium evolution
during a heavy-ion collision will enhance effects at thetfinsler phase transition, where spinodal
instabilities may produce domain formation and clusterimgnergy and baryon density [8 —10].
Hadronization of these clusters will lead to large nonistiaal fluctuations in the hadron rapidity
density within single events, providing an important okiabte signal for upcoming experiments
at FAIR and NICA [11].

A successful dynamical model to study effects at the QCD@hlrassition in nonequilibrium
has to go beyond usual hydrodynamics that includes the phasstion only in the equation of
state [12]. A novel approach that includes the dynamics @btider parameters explicitly is given
by chiral fluid dynamics [13—17]. We recently extended thisdel with the Polyakov loop to
consider both the chiral and the deconfinement transition18].

2. Polyakov-chiral fluid dynamics (PxFD)

The basic idea of the model is to explicitly propagate thensidield and an effective Polyakov
loop as the order parameters of the chiral and deconfinenmassegransition. A fluid dynamically
expanding medium of quarks and antiquarks provides thdyabermalized background for these
fields. This enables us to study relevant effects at the CHiestebrder transition in a dynamical
system of finite size.

We use the Polyakov loop extended quark meson model [19]thé&th agrangian

2 =0i (0~ igAo) ~ 90 a+ 5 (3,0)° U (0) ~ % (D) 2.1)

whereq = (u,d) is the constituent quark fieldy, the temporal component of the color gauge field,
o the mesonic field andthe Polyakov loop. The pion degrees of freedom are neglélctedghout
this work. The potential for the sigma field is the usual “M=x hat”

U(o)—)\—z(az—vz)z—h o—U (2.2)
- 4 q 0> .

and the temperature dependent Polyakov loop potentiabiserhin a polynomial form [19, 20]:

v, ~ bo(T)
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Integrating out the quark degrees of freedom in the pantifismction 2 gives us the effective
potential:
T

Here, the quark contributio@qq determines the local equilibrium pressure of the quark flund
mean-field approximation and at zero chemical potentia&dts [19]:

o . e
Q= —4NfT/ﬁln (143t 5 1 3re 2% 4 &%) | 2.5)

We tune the strength of the transition by varying the quadsom couplingg. This allows
us to study first-order phase transitions and transitiorautih the CP at vanishing baryochemical
potential. Figure 1 shows the effective potential dor 4.7 (first-order) andy = 3.52 (CP) at the
respective transition temperature (cf. Ref. [10]). Not& th general one has to choggseuch that
the producigo resembles the constituent quark mass in vacuum, leadingdtua ofg ~ 3.3.
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Figure 1: (a) Effective potential forg = 4.7, corresponding to a first-order phase transitionat
1729 MeV. (b) Effective potential fog = 3.52, corresponding to a CP scenariolat= 1805 MeV. Both
figures are adopted from [10].

On can quantify this behavior by calculating the chiral anty&ov loop susceptibilitiexso
and x,¢. In Fig. 2 they are shown for three different couplings. Wel fitivergent susceptibilities
for g = 3.52 indicating a chiral and deconfinement CP.

Within the two-particle irreducible effective action foatism we self-consistently derived the
coupled dynamics for the sigma field and the quark heat b&ih J¥e obtained a Langevin equa-
tion for the sigma field with temperature dependent dampingnd stochastic noise terég that
are connected via a dissipation fluctuation relation

00" 0 + Ny (T)Ak T + ‘3‘;/;“ — &, (2.6)
(Eo(t.NE (Y, X)) = \%5(t—t’)5(Y—Y)manacoth<%) . 2.7
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Figure 2: (a) Chiral susceptibility as a function of temperature fiffiedlent coupling strengths. (b) Polyakov
loop susceptibility as a function of temperature for diéfietr coupling strengths.

For the Polyakov loop field we deploy a relaxation equatiotictvialso contains stochastic noise:

nae+ S~ g, 9)
(G REWX)T? = 8H—1)8(%—%)20,T 29)

Note here that the Polyakov loop is originally defined onlgguilibrium and it is no# priori clear
what the correct dynamics are [20]. This approach is theegdarely phenomenological. A similar
ansatz with an additional kinetic term has been pursuedln2]. The damping coefficient,
is set to a value of Am. Results are sensitive to this choice only in the vicirfythe first-order
transition temperature [10].

The quarks are propagated via the equations of ideal riskitifiuid dynamics:

TV =S +9 (2.10)

with source term§;; andS/ describing the energy transfer from the fields to the fluiddamping.
The energy transfer due to stochastic fluctuations needs éstimated numerically [10, 17].

3. Numerical results

3.1 Equilibration in a box

We study several temperature quenches in a cubic box wiibdierboundary conditions.
Both fields are initialized at some globg); > T, with T, being the respective critical temperature.
Then the temperature is quenched to a value T, and the energy density and pressure of the
quark fluid are calculated. We let the coupled system evatderalax. As pressure gradients are
small within this setup, we expect the dynamics to be dorathay the fields. The solid red curves
in Fig. 3 show the volume and event averaged sigma@lfor equilibration near the transition
point for both first-order and CP scenarios. At the first-otdansition the significant delay in the
relaxation time is caused by the large barrier separatiagldgenerate minima. Critical slowing
down can be observed near the CP, where the vanishing ofiuses oscillations and prevents the
field from relaxing to its equilibrium state. Similar effsaccur in the Polyakov loop [10].
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Figure 3: (a) Equilibration of the sigma field for several quench terapgesT < T through the first-order
transition. The barrier between the minima in the poternialeases the relaxation time when the system
relaxes neail; = 1729 MeV. We choseTj, = 180 MeV. (b) Equilibration of the sigma field for several
guench temperaturéls < T through the CP. Critical slowing down delays the dynamias$ eeuses oscil-
lations around the flat minimum when the system relaxes Tiear1805 MeV. We chosdj,; = 186 MeV.
Both figures are adopted from [10].

Another critical phenomenon can be observed by studyingntieasity of field fluctuations.
These are given for the sigma and Polyakov loop field as [10, 23

dNy  wf|d0k[?+ |da?  dN, _Tzaf|5€k|2+ |3,y |2

= — = A
d3k (2m)32ax T dBk (211)32ax 3-1)

Hered oy andg; oy are thekth Fourier modes 0do = 0 — 0eqandd; o andw is the corresponding
energy. We compare intensity histograms in the late stageea#volution in the CP and first-order
scenario in Fig. 4. For both order parameter fields we findomgtenhancement of long-wavelength
modes at the CP compared to an equilibration near the fidgrdransition point.
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Figure 4: (a) Intensity of sigma fluctuations after equilibratiort at 24 fm. In the CP scenario we find an
enhancement of the soft modes. (b) Intensity of Polyakop fuctuations after equilibration at= 24 fm.
In the CP scenario we find an enhancement of the soft model.figotes are adopted from [10].

3.2 Fluid dynamic expansion

To explore the influence of the expansion on the dynamicseofidiids, an ellipsoidal region
with a temperaturd = 200 MeV, above both transition temperatures, is providehifial state
of a fluid dynamic expansion. This is to resemble the sitma#ifier the collision of two heavy
nuclei. Fields and fluid are again set to their respectivélibgum values and the system evolves
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according to full (3+1)-dimensional fluid dynamics. Duritige expansion we observe supercool-
ing and reheating in the first-order transition scenariois Bapercooling causes an enhancement
of nonequilibrium fluctuationgAo) = 1/ ((o — aeq)2> and(Al) =/ ((¢— Eeq)2> in both order pa-
rameters at the first-order phase transition, see Fig. 5s&bend bump in the fluctuation strength
neart = 6 fm arises when parts of the system cross the transitiondeatyre a second time after
reheating.
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Figure 5: Nonequilibrium fluctuations of the sigma field (a) and Polyakoop (b) are enhanced at the
first-order transition compared to the CP scenario.

3.3 Domain formation at the first-order phase transition

We now focus on the evolution of a single event to learn momuathe transition processes.
To achieve this we introduce spatial correlations for tleelsastic noise fields over volumegn
and J/m? to obtain a more physical behavior of these fluctuations.

We show a slice in the transversat= 0 plane for the sigma field, Polyakov loop and energy
density in Figs. 6, 7 and 8, each for early, intermediate ate times in the evolution. We see
in the order parameters domains of the high- and low-tentp@rghases coexisting during the
transition process. This phenomenon is typical for the-firder phase transition and does not
occur in evolutions through the CP. It can be best observétkisigma field, but also the Polyakov
loop exhibits a bumpy structure during its evolution. THisisture then translates to the energy
density, leading to a significant amount of inhomogeneity @amping.
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Figure 6: Sigma field in thez =0 plane fot =1 fm (a),t =4 fm (b), andt = 7 fm (c) during a first-order
phase transition. Fig. (b) adopted from [10].
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Figure 7: Polyakov loop field in the =0 plane fort = 1 fm (a),t =4 fm (b), andt = 7 fm (c) during a
first-order phase transition. Fig. (b) adopted from [10].
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Figure 8: Energy density in the= 0 plane fott =1 fm (a),t =4 fm (b), and = 7 fm (c) during a first-order
phase transition. Fig. (b) adopted from [10].

We expect this effect to become even stronger when we go teragsat finite baryon density.
This would then provide an important experimental signaltfi® QCD phase transition, e. g. in
non-monotonic multiplicity fluctuations of hadrons.

4. Conclusions

We presented the extension of nonequilibrium chiral fluichaipics with a Polyakov loop
to include effects of the deconfinement phase transition ©@©QWe were able to observe typi-
cal critical phenomena like critical slowing down and théamcement of soft modes for systems
equilibrating near the CP. For an expanding system coolingugh the first-order phase transition
we found evidence for the formation of a supercooled phasting to subsequent reheating of the
fluid. As a result, large nonequilibrium fluctuations evolor single events, we find significant
difference in the evolution of fields and fluid between the G& the first-order scenario. The latter
one proceeds through the formation of domains in the ordempeter fields leading to irregular-
ities in the energy density. As a next step we investigate affect for systems at finite chemical
potential to provide relevant signals of the QCD phase ttiansfor upcoming experiments at
FAIR.
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