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1. Dalitz plots and final-state interactions

A precise study of final-state interactions is increasingly becoming of high rianpee for
our understanding of diverse aspects of hadronic particle decdnes. dan be of significance for
various reasons: if final-state interactions are strong, they can signifieshance decay probabil-
ities; they can significantlghapethe decay probabilities, most prominently through the occurrence
of resonances; besides resonances, also new and non-triiigi@eftuctures can occur, such as
threshold or cusp effects [1]; and finally, they introduce strong hasanaginary parts, the exis-
tence of which is e.g. a prerequisite for the extraction of CP-violating ghasecak decays. While
strictly model-independent methods have been suggested to investigatel@@wim Dalitz plot
analyses [2], requiring no hadron-physics input at all, it is obviousthieeuse of powerful methods
such as analyticity, unitarity, and low-energy constraints from chiral symymell lead to a much
more refined picture, and is probably the only way to investigate and idenéfgdbrces of new
physics in precision studies, once it is found.

2. Scattering and form factors

Analyticity, unitarity, and crossing symmetry provide a high degree of caimstior the pion—
pion scattering amplitude. They can be exploited using dispersion relatibid) wan be formu-
lated as a coupled system of partial-wave equations, the so-called Ratyoe3]. Modern preci-
sion analyses of the Roy equations have been performed [4], partly gnagénof constraints from
chiral perturbation theory on the scattering lengths appearing as didrtracnstants therein [5],
and a similarly rigorous study exists also for pion—kaon scattering [6]s& peovide us with high-
precision parametrizations of the most relevant scattering amplitudes for ligoinappearing in
the final states of heavy-meson decays.

Final-state interactions betweenly twostrongly interacting particles as asymptotic states can
be described in terms of form factors, which in turn can be linked to theeptiep of scattering
amplitudes using analyticity and unitarity. As illustrated in Fig. 1, the unitarity reldtoa form
factorF} (s) (here: of the pion) of isospihand angular momentuthreads

discF} (s) = 2i ImFJ(s) = 2iF] (s) x 8(s—4M2) x sing}(s)e" 3 (2.1)

from which one immediately deduces Watson'’s final-state theorem [7]: thefctor shares the
phased) (s) of the (elastic) scattering amplitude. The solution to Eg. (2.1) is obtained in térms o

Figure 1: Graphical representation of the discontinuity relationdion form factors. The black disc denotes
the form factor, while the gray disc denotes the pion—pi@itecingT -matrix, projected onto the appropriate
partial wave.
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the Omnes functio®)(s) [8],

Fl(s) = P (9)Q)(s), Q)(s) = exp E/w gg_2() 2.2)
whereP}(s) is a polynomial. For the pion vector form factor, i.d.= 1, 1 = 1, we assume a

decrease of its modulus according tsTor larges, as suggested by perturbative QCD, and that
the phas@i(s) approachestin the same limit, which leads to a fall-off 6#1(s) ~ 1/s, such that

the polynomial is required to be a constant. Gauge invariance finally reghigenormalization to
equal unity, such tha@l(s) = 1. The representation (2.2) then holds to very good accuracy in the
kinematic region wherelastic unitarity is a reasonable approximation, which for the pion—pion
P-wave is phenomenologically found to be reliable up to about 1 GeV.

The description of the pion’scalar form factor(s),d = 0, | = 0, is slightly complicated by
the strong impact of inelasticities generated Kl intermediate states right from the threshold
s=4M2, which is enhanced due to the presence offi880) resonance. The analogy to Eq. (2.1)
is formulated as a matrix equation for ttveo-channelrtrt andKK_) Muskhelishvili-Omnés prob-
lem, which, by an appropriate parametrization of the two-chahfahtrix, depends on three input
functions, thertrt phase shift as well as modulus and phase oftire- KK_ampIitude. With sim-
ilar assumptions on the asymptotics of form factor(s) and phases a p#fersolution then de-
pends on the normalizations of the scalar form factors of both pion anmdd¢ae= 0, which, while
not fixed exactly by gauge symmetry as in the case of the vector channdbeceery well con-
strained using chiral perturbation theory and lattice QCD simulations; se¢9Rahd references
therein for details. This holds for both scalar quark—antiquark sounsesténat can be considered,
(uu+ d_d)/2 andss with obviously very different coupling strengths to pions and kaons.

An extremely important aspect of the discussion above is that the fornrsasdtaracterizing
the final-state interactions between two pionswarersal and may be applied in many different
contexts in a model-independent way. In particular, they may be used tovienprothe hadron
physics aspects of new physics searches in low-energy precisioastdd an example, we discuss
the lepton-flavor-violating decay — pum™mr [10]. It may be investigated based on an effective
Lagrangian of the form

n S
Lo =02 (@ u dyd) (yer) + | 5 (@ da) + 55 (). 2.3)
The effective current—current couplings (vector—vector) andg/ ® (scalar—scalar) can be calcu-
lated from any underlying fundamental new-physics model; in Ref. fb@ly have been derived
from supersymmetric particle exchange with interactions given by an Rqvéolating superpo-
tential. The matrix elements for the quark currents of Eq. (2.3) creating tws piat of the vacuum
then preciselylefinethe vector and scalar form factors discussed above.

In Fig. 2, we show the differential rate§ (1 — pum" m)/ds wheresis the invariant mass
squared of ther" rr— pair, assuming total dominance by one of the currents respectivelyettind)s
the corresponding effective coupling arbitrarily to 1 G&VY The bands in the scalar form factors
are given by the uncertainty in the kaon form factor normalizations. We asigi that both
the spectral forms and the normalizations are constrained in a fully modgléndent way: no
assumptions on dominance by certain resonances (e.@2 {20) or the fo(980)) or their specific
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Figure 2: The predicted signals fail (T — ur"r)/dsfor the currents (aQJy“u—d_y"d)/Z, (b) (uu+
dd)/2, and (c)ss In all cases the effective coupling constant is set to 1 GeWigure taken from Ref. [10].

qguark substructure need to be made, in contrast to alternative appsdddh Experimental upper
limits on the decayr~ — u~ " have been given by the Belle collaboration [12] with and
without kinematical cuts to isolate certain resonances. Integrating ouetiebispectra as shown
in Fig. 2 in the appropriate invariant-mass ranges, we can translate thebmitd@n the products
of fundamental coupling constants and supersymmetric masses, whiah sigoificantly more
restrictive than given in the literature so far [10].

3. Dispersion relations for three-body decays

The application of dispersion relations to three-body decays is more coteplitzan the
treatment of form factors due to the more involved analytic structure, aqubsthility of crossed-
channel rescattering. Here, we concentrate on the three-pion defdhagslightest isoscalar vector
mesonsw/@ — O [13]. We start by decomposing the amplitud#&(s,t, u) according to

A (St,u) :iswaﬁn“p‘gp?rpﬁoﬁ(s,t,u), (3.1)

wherenH is the polarization vector of the decaying/¢@. Due to Bose symmetry, only partial
waves of odd angular momentum contribute; neglecting discontinuities ofd=higiher partial
waves,.Z (s,t,u) can be further decomposed .&5s,t,u) = .7 (s) +.Z (t) + .# (u). The unitarity
relation for.Z (s), assuming elastic final-state interactions, then leads to the following expressio
for the discontinuity of%# (s):

discZ (s) = 2i {7 (s) +.7(5)} x 6(s—4M2) x sindL(s)e %S, (3.2)

wheredi (s) is therrrr P-wave phase shift. Were it not for thhomogeneityZ (s), Eq. (3.2) would
correspond to the discontinuity equation of the vector form factor, Et)).(Zhe function% (s) is
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Figure 3: Successive iteration steps of real (left panel) and imagifrdght panel) part of the amplitude
Z (s) for @ — 3m. The vertical dashed lines denote the physical region ofi&uay.

given by angular averages ovét according to

~ 1 st
F(9=3((1-2)F)9), <z”f>(s):élldz£f<%(3%—s+w(s))),
:“"323“"’%, K(s) = AY2(MZ,M2,s) 14'\8"’27, (3.3)

whereA (x,y,2) = X2 +y? + 22 — 2(xy+xz+y2), andMy is the mass of the decaying vector meson.
The angular integration including thes) function is non-trivial and generates a complex analytic
structure, with three-particle cuts due to the fact veind ¢ are unstable and decay [13]. The
analog to the Omnes solution (2.2) are then integral equations involving thmagemeity

= ds sindi(s).7 (¢
(9 _Qi(s){a+ ZAM%S,T&({;”ZZ_(S))}, (3.4)

with the subtraction constamt The number of subtractions is chosen such that the dispersion
integral is guaranteed to converge.

Equations (3.3) and (3.4) can be solved iteratively: starting from an ampitnput function
Z (s), we can calculate the inhomogeneif(s) according to Eq. (3.3), from which a nefi(s) is
obtained from Eq. (3.4); the procedure is stopped once a fixed pdiing¢ @eration is reached with
sufficient accuracy. In the example discussed here, see Eq. (24uliraction constant works
as an overall normalization factor of the solution; we match it to the partialydeih, but note
that anormalizedDalitz plot distribution is subsequently a pure prediction. While the result is
independent of the starting function, for the case at hand, we ch@gsp= aQl(s) in order to
allow us to quantify crossed-channel effects (generated by the iteratiarplausible way.

Figure 3 shows the result of such an iteration for the degay 3T it converges fast, with
the third iteration already all but indistinguishable from the final result. Tifferdnce to the
starting point of the iteration, the Omnés function without any crossedrehaascattering, is,
however, quite significant. The picture far— 37T (not shown here) is qualitatively similar, with
convergence reached even faster (after two iterations, see Rpf. [13
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Figure 4: Dalitz plots forw — 37 (left) and@ — 3 (right), normalized by the P-wave phase space.

The resulting Dalitz plots for botkw — 3T and @ — 31T are shown in Fig. 4, normalized by

the P-wave phase space factor and using the kinematical variables

t—u S—S 2

X=——, Y= ——, = =-My(My —3My). 3.5

R VTR R g (My -3V (35)
Comparison to the experimental— 37t Dalitz plot of Ref. [14] shows that crossed-channel effects
improve the reduceg? from 1.71...2.06 (with 7 (s) = aQl(s)) to 1.17...1.50; further improve-
ment and perfect agreement with the data can be achieved by introducaugizional subtraction
constant in Eq. (3.4).

4. Dispersion relations for transition form factors

The w/¢@ — mPy* transition form factors, in addition to being interesting quantities in their
own right, have attracted further attention due to their link to the doubly-virabrm factor
Frop-y (M2, 02,03) for fixed isoscalar photon virtualitiesf = M2. The latter, in turn, fixes the
strength of the® pole term in the hadronic light-by-light scattering contribution to the anomalous
magnetic moment of the muon, which may soon constitute the dominant theoretieafainty in
the determination of that quantity. See in particular Ref. [15] for an owarefethe interrelations
of the various form factors in this context, and Ref. [16] for an outlinb@f to utilize dispersive
methods for an analysis of the@ form factor itself.

Assuming that thev/ @ — mPy* transition form factorfy ,(s) (V = w/ @) is dominated byt
intermediate states, one can derive the unitarity relation [17, 18]

is 4M?2

discfy o(s) = a8 a3(s)fi(s)FY*(s), oa(s)=1/1— S", (4.1)

where fy(s) = .7 (s) +.%(s) is the previously determined — 377 partial-wave amplitude and
FY(s) = Fi(s) is the pion vector form factor. This relation leads to a once-subtractedrdisp

relation 309\ (V- (g
S o o FY*
(9 = hp(0)+ g | s TS EEIECLE), @2)

where the subtraction constant is fixed by the real-photon partial Wigth,,. In principle the
asymptotic behavior of the partial-wave amplitude and the pion vector fortorfagen allows




Precision tools in hadron physics for Dalitz plot studies Bastian Kubis

‘ 100—

100’ NAG0 '09 ]

L NA60 '11 g
Lepton-G

VMD

Terschliisen et al.

VMD
fi(s) = af)(s)

once subtracted fi(s)

twice subtracted fi(s)

fi(s) = af)s)

full dispersive

Bttt

|Eoo(s)]2
‘FOWU(S) ‘2

Figure 5: Left: normalizedw — r°y* form factor. We show pure VMD (with a finite width, dashed Jine
the results of a chiral Lagrangian treatment with explieittor mesons [19] (yellow band), the dispersive
solution for f1(s) = aQ(s) (blue band), and the full dispersive solution with one saittfon in theV — 37
partial-wave amplitude (red band). The data is taken frofh R6]. Right: normalizedp — n°y* form
factor. We compare pure VMD (dashed line), the dispersilation for f1(s) = aQ(s) (blue band), and the
full dispersive solution with one subtraction (red band) &mo subtractions (yellow band).

for an unsubtracted dispersion relation. We have calcult{ed, by a sum rule forfy ,0(0)
and find that it is saturated to about 90-95% by two-pion intermediate statisgusiifying the
approximation of neglecting inelastic effects.

In Fig. 5 we display the numerical results for the normalized transition footof&, 0 (s) =
fym(S)/ Ty (0). Although we significantly improve on the vector-meson-dominance (VMP) re
sult, we cannot reproduce the steep rise in the experimental data. Pherlogieal monopole fits
of the transition form factor lead to a pole close to the border of phase gfdbe decay, which
cannot be accommodated within an approach that respects the strictared\dgicity and unitar-
ity. We also find that three-particle effects in the partial-wave amplitude (crarpa blue and red
bands in the left panel of Fig. 5) do not perturb the spectrum in a wagrehisle at the current
precision level of the data.

We have to remark that ouo — 377 partial-wave amplitude is not yet backed up by experi-
mental data; this caveat is absent in the case ofpthe °y* transition form factor. The twice-
subtracted partial-wave amplitude is an extremely precise representatiatapfdd thus all input
in this channel is well constrained. Our numerical results again showneaheent over VMD,
while crossed-channel rescattering effects are not particularlygstrdfe wish to point out that
for this decay, the physical decay region encompasses the full ersergyg of thep resonance; in
contrast taw — 1°y* (or the OZI-favoredp — ny* transition, where in the limit of isospin conser-
vation thew is the relevant resonance structure influencing the dilepton spectruyrgnamalous
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enhancement should therefore be directly accessible. We therefonglgtadvocate an exper-
imental investigation ofp — m°¢* ¢~ in order to significantly advance our understanding of the
vector-meson transition form factors.
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