
P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
 
X
)
2
6
1

Trapped phonons

Massimo Mannarelli∗
LNGS-INFN
E-mail: massimo@lngs.infn.it

We analyze the effect of restricted geometries on the contribution of Nambu-Goldstone bosons
(phonons) to the shear viscosity, η , of a superfluid. For illustrative purpose we examine a sim-
plified system consisting of a circular boundary of radius R, confining a two-dimensional rarefied
gas of phonons. Considering the Maxwell-type conditions, we show that phonons that are not
in equilibrium with the boundary and that are not specularly reflected exert a shear stress on the
boundary. In this case it is possible to define an effective (ballistic) shear viscosity coefficient
η ∝ ρphχR, where ρph is the density of phonons and χ is a parameter which characterizes the
type of scattering at the boundary. For an optically trapped superfluid our results corroborate the
findings of Refs. [1, 2], which imply that at very low temperature the shear viscosity correlates
with the size of the optical trap and decreases with decreasing temperature.
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1. Introduction

The transport coefficients of a fluid depend on the underlying microscopic dynamics and on
the boundary conditions imposed. The effect of the boundary conditions on the transport properties
is seldom considered, but might nevertheless be important in particular circumstances. Actually a
complete knowledge of the microscopic dynamics of a system should include a detailed description
of the boundary and of the interactions of the particles with the boundary.

Here we shall focus on a system consisting of Nambu-Goldstone bosons (phonons) with a sim-
ple boundary, that is a boundary which does not allow particle transfer. Two different geometries
are pictorially shown in Fig.1, which correspond to a spherically symmetric trap (left panel), rel-
evant for the superfluid region of a compact star, and a cylindrically symmetric trap (right panel),
relevant for optically trapped ultracold atoms. In both cases we are interested to the evaluation
of the drag force between the fluid and the boundary when the boundary rotates, with frequency
Ω, or it radially expands. However, for illustrative purposes we shall consider the simplified two-
dimensional system depicted in Fig.2, corresponding to a circular rotating boundary of radius R,
which can be thought as obtained by cutting the rotating configurations of Fig.1 with a plane or-
thogonal to the Ω-axis.

The effect of the boundary on the fluid dynamics is important in the so called Knudsen layer,
which corresponds to a layer close to the boundary of width proportional to the mean free-path
`ph. Any particle moving in this layer is ballistic, meaning that it has a probability of hitting the
boundary equal or larger than the probability of hitting a particle. The fluid in this region cannot
be described by hydrodynamics; the corresponding Boltzmann equation with the proper boundary
conditions should instead be used. In cases where `ph � R, the Knudsen layer can be neglected,
and imposing usual (no-slip) boundary conditions to the Navier-Stokes equations effectively takes
into account the Knudsen layer.

Figure 1: Two pictorial examples of trapped geometries of physical interest. Left panel: Spinning compact
star. Right panel: optical trap. In this case the trap can be put in rotation and/or it can be radially expanded.
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Figure 2: Schematic representation of a two-dimensional trapped fluid. The boundary rotates with velocity
vw = ΩR. Shown is the Knudsen layer, where the Boltzmann equation must be used. The innermost part of
the fluid can be described by the usual Navier-Stokes equations.

However, the finite extension of the trap does play an important role if the Knudsen number,
Kn = `ph/R, is sizable: For Kn . 0.1 (say) the Navier-Stokes equation are still valid, but the trans-
port coefficients must be amended with terms proportional to powers of Kn, which depend as well
on the trap geometry. For Kn � 1 the system is ballistic and no hydrodynamic description can
be used. For 0.1 . Kn . 1 interparticle interactions and interactions with the boundary should be
considered on an equal footing.

2. Boundary description

In the ballistic regime, Kn � 1, the distribution function of the particles can only change by
interactions with the boundary. In general, the presence of a boundary changes the distribution
function of the particles because the particle which have collided with the boundary will keep
memory of it as far as they are in the Knudsen layer [3, 4, 5]. A simple boundary is equivalent
to a wall that specular reflects or diffuses the impinging particles, and in this case it is possible to
use the Maxwell-type boundary conditions, meaning that the distribution function of the particles
at the wall is given by

f̄ =

{
χ fw +(1−χ) f (xxx,ξξξ (1−2(ξξξ − vvvw) ·nnn), t) for (ξξξ − vvvw) ·nnn > 0
f (xxx,ξξξ , t) for (ξξξ − vvvw) ·nnn < 0

, (2.1)

where fw is the distribution function of the particles diffused by the wall, vvvw � 1 is the wall
velocity, nnn is the unit normal vector to the wall, pointed to the fluid, and ξξξ = ppp/p0 is the velocity of
the particle. We shall further simplify the analysis assuming that fw is thermal. The accommodation
coefficient, χ , describes the type of scattering at the boundary (schematically described in Fig.3);
the impinging particle is specularly reflected with probability 1−χ and is diffused with probability
χ . The distribution function f describes the particles that hit the wall at the time t and that are
specularly reflected. Since we are concerned with a ballistic fluid, it corresponds to the distribution
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Figure 3: Schematic representation of the Maxwell theory of a simple boundary. The red arrow corresponds
to the momentum of the impinging particle; the blue arrow corresponds to the momentum of the scattered
particle; the black arrow corresponds to the momentum transferred to the boundary. Specular-reflection does
not produce a shear stress on the boundary but a pressure orthogonal to the surface. Diffusion does produce
a shear stress, because the transferred momentum to the boundary is not orthogonal to the contact surface.

function of the wall hit in a previous collision at the time t0, that is f (xxx,ξξξ , t) = fw(xxx− ξξξ (t −
t0),ξξξ , t0), where t0 < t. Clearly, if χ = 0 phonons do not thermalize with the wall and f (xxx,ξξξ , t)
corresponds to the initial distribution function.

Given the particle distribution function it is possible to determine the shear stress on the wall
from the off-diagonal components of the stress tensor

τ
C
i j =

∫
(pi− pvw,i)(p j− pvw, j) f̄ (xxx,ξξξ , t)

d ppp
(2π)2E

, (2.2)

where i, j are the cartesian coordinates. For the circular symmetry considered here, it is more
appropriate the use polar coordinates (r,φ) and the corresponding stress tensor is obtained by τP =

U(φ)τCU(φ)T , where U(φ) is the rotation matrix. Upon plugging Eq.(2.1) in Eq.(2.2), one readily
obtains that the off-diagonal components vanish for χ = 0, consistent with the fact that specular-
reflected particles do not produce shear stress on the boundary. The shear stress also vanishes if
fw(xxx−ξξξ (t− t0),ξξξ , t0) = fw(xxx,ξξξ , t); the reason is that in this condition the system is stationary and
the wall cannot be subject to neither force nor moment of force [4].

Therefore, for the closed geometry considered, in order to have a shear stress on the wall there
must exist an external agent that perturbs the boundary. In the present case we shall assume that the
boundary is put in rotation with a frequency Ω. The perturbation starts at a certain time ti such that
t0 < ti < t and the external agency maintains the system in rotation at the same frequency Ω. The
impinging particles have memory of the distribution function before the circle was put in rotation
and will try to catch up with the wall. This produces a shear stress (force per unit length) on the
wall given by

τrφ (t) =−C ρphΩRχ , (2.3)

where C is some dimensionless number and ρph is the two-dimensional phonon density of the
normal fluid component. After a certain time, depending on χ , R and cs, the system will equilibrate
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and the phonons will “corotate" with the boundary not exerting any shear stress on it. The above
expression of the stress tensor allows us to define the ballistic (effective) shear viscosity coefficient
for the non-equilibrated system given by

η
2D
ball =C ρph χ R , (2.4)

which should be rather general, meaning that it should be the valid also for the two geometries
in Fig.1, but with a different expression of the constant C. We shall study this issue elsewhere.
This expression has been used in the study of the oscillations of compact stars in [6, 7], for the
description of the oscillations of objects immersed in 4He, see e.g. [8], and for the breathing mode
of ultracold fermionic atoms (discussed below) in [1, 2].

3. Application to ultracold fermionic atoms

The attractive interaction between certain types of fermionic atoms (like 6Li) prepared in two
hyperfine states can be varied at will using a magnetic-field Feshbach resonance. These atoms
can be confined in a cylindrically symmetric optical trap (schematically shown in the right panel
of Fig.1) and the system can be described as a core comprising phonons and gapped fermions
and a corona of unpaired fermions, for a review see [9]. The extension of the corona decreases
with decreasing temperature and at T ' 0.1TF , where TF is the Fermi temperature of the trapped
system, the largest part of the system is superfluid. The core of the system ceases to be superfluid
for T > T trap

c ' 0.21TF [10].
With decreasing temperature the entropy per particle steeply decreases and is not incompatible

with the hypothesis that it receives a sizable contributions by phonons. Present experimental results
do not allow to infer whether at the reached temperature the system is dominated by phonons [11],
however there is little doubt that at sufficiently low temperature phonons will dominate.

The phonon dispersion law (neglecting O(k/kF)
7 terms) can be written as

Ek = csk(1+ γ̃ (k/kF)
2 + δ̃ (k/kF)

4) , (3.1)

where γ̃ ' 0.18 (see [12, 13, 14] and the discussion in [2]), and a numerical estimate of δ̃ was
obtained in [1, 2] from a fit of the experimental values of the shear viscosity to entropy ratio. Indeed
the contribution of binary (hereafter 4ph) and 1↔ 2 (hereafter 3ph) processes to the shear viscosity
depends on the phonon dispersion law and in Refs. [1, 2] the η3ph contribution was evaluated with
the dispersion law in Eq. (3.1). When compared with the experimental data obtained by the Duke
group [15, 16], one obtains δ̃ =−(0.02÷0.04).

The contribution of the ballistic shear viscosity must be included in the description of the
system because, as realized in [1, 2] and shown in Fig.4, the mean free-path of phonons diverges
at sufficiently low temperature. In this case the typical length scale appearing in Eq.(2.4) is the
smallest radial extension of the harmonic trap of [15, 16], that is Rx ' 7µm.

In principle, for any value of the Knudsen number the shear viscosity can be obtained plugging
in Eq.(2.2) the distribution function solution of the Boltzmann equation where both collisions of
phonons with the boundary and the collisions among phonons are taken into account. Solving this
problem is complicated even for ideal gases [3, 4, 5]. However, since we know the behavior of the
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Figure 4: Mean free-path of phonons in unit of Rx as a function of T/TF , for optically trapped superfluid
fermionic atoms. The black dashed line corresponds to the mean free path associated to the 4ph process. The
solid red line (named 3ph-a) corresponds to the 3ph process with δ̃ ' 0.02, the dot-dashed blue line (named
3ph-b) corresponds to the 3ph process with δ̃ ' 0.03 and the dotted red line (named 3ph-c) corresponds to
the 3ph process with δ̃ ' 0.04. The horizontal black dashed line corresponds to Kn = 1. The hydrodynamic
description is valid for Kn� 1. The vertical dashed green line approximately corresponds to the transition
temperature between the normal phase and the superfluid phase [10]. Adapted from [2].

relaxation time τb (corresponding to the time between two collisions with the boundary), as well as
the relaxation time τph (corresponding to the relaxation time of 3ph or 4ph processes), it is possible
to employ the same reasoning at the basis of the Matthiessen’s rule [17] to obtain an approximate
expression of η at any temperature. Assuming that the two above-mentioned collisions are not
correlated, one can interpolate between the values of the shear viscosity coefficient in the ballistic
and in the hydrodynamic regimes. For this purpose one can define an effective relaxation time

τ
−1
eff = τ

−1
b + τ

−1
ph , (3.2)

incorporating the effects of interparticle collisions and of the collisions with the boundary. Since
the shear viscosity coefficient is proportional to the collision time, we define the total effective
shear viscosity as

ηeff =
(

η
−1
3ph +η

−1
ball

)−1
, (3.3)

where ηball is the three-dimensional analogous of Eq.(2.4) and η3ph is the 3ph shear viscosity [1, 2].
In principle, the contribution of the 4ph collisions should be considered as well, but so far it has
not been determined with the full expression of the dispersion law given in Eq.(3.1) and therefore
it cannot be consistently added to Eq.(3.3).

In Fig.5 we report several contributions to the shear viscosity coefficient to entropy ratio. The
interaction of the phonons with the boundary seems to play an important role for temperatures
T . 0.1TF . Unfortunately few experimental data are available for such low temperature and it is
hard to say whether the effective shear viscosity is able to describe the behavior of the system.

In the reported analysis a number of simplifying assumptions where used: 1) The shear vis-
cosity is dominated by the center of the trap; the density in this region is bigger and roughly con-
stant, which assures that performing a trap average might not modify drastically the results. 2) The
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Figure 5: Various contributions to η/s (in units of h̄/kB) as a function of T/TF . The contribution of the
interaction of the phonons with the boundary corresponds to the dashed black line. The contribution of
the 3ph process corresponding to the dotted red line is obtained considering δ̃ ' 0.03. The solid blue
line corresponds to ηeff. The vertical dashed green line approximately corresponds to the phase transition
temperature [10]. The horizontal black dashed line corresponds to the universal bound derived in [18]. The
experimental values and error bars were taken from [19]. Adapted from [2].

fermionic contribution to η was neglected, both in the superfluid core and in the outer normal layer;
this should be a valid approximation at sufficiently low T , where superfluid fermions are known
to be exponentially suppressed, while the outer fermionic layer of the cloud might be too dilute to
provide enough damping. 3) The superfluid-normal fluid interface was modeled as a simple bound-
ary, where phonons are specular-reflected or diffused according with the Maxwell-type condition;
this approximation should be fine because the Maxwell model is appropriate for the description
of an interface with no particle transfer and superfluid phonons are confined in the superfluid trap
core. However, the microscopic description of the phonon interaction with unpaired fermions in an
optical trap has never been discussed and would certainly help to improve the (admittedly rough)
Maxwell model.

What is interesting here, is that a couple of testable predictions can be made from this study.
First, we notice that if experiments are conducted reducing/increasing the size of the trap, but
keeping TF constant, then η/s at low temperatures should decrease/increase. In other words, the
value of η/s should correlate with the size of the gas cloud. Second, we predict that η/s should
decrease with decreasing temperature. If we naively extrapolate our results to lower temperature,
we predict that there should be a violation of the string theory proposed bound of η/s. Note,
however, that this violation happens because phonons are ballistic, while the string theory bound
concerns the hydrodynamic regime.

Both the above-mentioned predictions are independent of the detailed form of the phonon
dispersion law, in particular, they are independent of the sign of the γ term in Eq (3.1) (which
apparently is still a matter of debate).
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4. Conclusions

The transport properties of a fluid in restricted geometries depend on the type of scattering that
takes place at the boundary and on the geometrical properties of the boundary. We have evaluated
the shear viscosity coefficient for a two-dimensional ballistic phonon gas restricted by a circular
boundary. If the boundary is put in rotation and if the phonons are diffused by the boundary, then
a shear stress is exerted by the phonons on the boundary in a transient period. When phonons
equilibrate with the boundary no shear stress is exerted on the boundary. These results have been
applied to the case of phonons in an optical trap, where phonons live in the superfluid core and
interact with the normal fluid of the corona. Treating the interface as a wall one has that if the shear
viscosity is dominated by phonons, then η/s should be proportional to the size of the system and
to the temperature.
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