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Following numerical stochastic perturbation theory, weehperformed Langevin simulation of
Wilson loops [1]. This allows us insight into perturbatidreory for Wilson loops to very high
order. Thus, we are able to exclude a factorial rise of thdficnts of the expansion ig?.

We propose a model parametrization in terms of the hypergé&ofunction,F; to facilitate the
summation (within some radius of convergence). We disdusgbssibilities to speed up the
convergence of the series within boosted perturbatiomryh&ogether with results from standard
Monte Carlo simulation, the detailed knowledge of perttidvatheory enables us to assess the
nonperturbative part of Wilson loops and to estimate themgkondensate.
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What is the nonperturbative part of an observable, if it hgsedurbative expansion like
OpT ~ 31 cng® ? One possible answer @&p = Opuc — Opt. When the convergence is - mostly -
asymptotic, the question remains to be answered: At whidkerashould one truncate a perturba-
tive series ing? ? Narison and Zakharov [2] have discussed the impact of ahgpd®tween short
and long perturbative series on the determination of thergkondensate(s). How can one get a
global view of the behavior of a perturbative series, sayWison loops ? Numerical Stochastic
Perturbation Theory (NSPT) [3, 4] allows to address thismm.

First studies using NSPT up to 8-th order [5] and up to 10-tkeof6] have been analyzed
following the renormalon paradigm assuming that the expansoefficients can be modelled by
a renormalon ansatzy, ~ C1(C2)"I'(n+C3). A reanalysis of the 10-th order results [7] gave
arguments against the renormalon scenario, finally alsmsiga hon-vanishing 2-nd order gluon
condensate. Now, our paper [1] describes the perturbagtevior of Wilson loops up to 20-th
order, confirming the results of [7] and allowing a model fomsning the series, however with a
finite radius of convergence.

NSPT [3, 4] is based on Langevin simulation, in the case atl ianthe Wilson action. It
realizes a stochastic evolution of the links of the lattioecked by stochastic gauge fixing) :

%UXJJ(T;”) =i {OxpuSw[U] = Nxpu (1) } Uxu(T;0) 1)

with the forceRy ,[U, n] = € Ox ySw|U ]+ /€ nx u corresponding to the actid®y. One has to take
the limit of vanishing time step in all observables obtained by Langevin averaging. Conside
links and the force expanded in ordersgyfsay,Uy , = 1+ zm>0U>E$) g™. Then a hierarchy of
Langevin updates results, where the white nojsenters through the lowest ordef? :

U (n+1) = u®(n)—FI(n)
U@ (n+1) = U )~ F(n) + 2 (FO(m)2 —FOmu®(n) etc. 2)

From the expansion of links one gets the expansion of Wilsops of rectangular shapéx M [1]

W [U] = whe =3 [T uiem] ©
n=0,1/2,1,3/2,... (X,1)E(NxM) "my ;>0

The Domb-Sykes plot [8] characterizes the largieehavior of a seriegncngzn, showing the
ratio of subsequent coefficients = c,/c,_1 as a function of In. A straight line signals a power-
like singularity (1— ugz)y with the radius of convergence/d: rp, =u(1—(1+y)/n). A small
curvature can be accounted for by the modificatioh+ y)/n — (1+y)/(n+s). Horsley et al. [7]
(based on 10 orders of NSPT [6]) had fitted the plaquette with0.961(9), y = 0.99(7) and
s=0.44(10) (see Fig. 1 left).

Now, based on 20 orders accessible by NSPT [1], we found tfe §mall loopsWym :

= Cn :u<1—1+y>+ P
Ch-1 n n(”—i—S)

This result can be recursively used for ng, starting from any numerically foung,. All this can
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Figure1: Left: Domb-Sykes plot for the plaguette, compared with theiction of 2001 [7], based on data
for n < 10. Right: Comparison of the coefficients of the naive (red) the boosted series (blue) ik ;.

be summarized by a “Hypergeometrical Model” Y1, Wo1, Wo, andWa; [1]
No
wm?m =1+ S (Ch—dnAqu") @2+ Oy, [ZFl (0-1-Lo+T1-1s+1ud) - 1}
n=1

with a common inverse convergence radius 0.9694 (3. ~ 5.82). Here areg = (s+3—Y)/2
andt = /(y+s+1)2— 4p/u/2 entering the arguments.

Boosted perturbation theory can speed up the converggﬁeegz/Wn(g, n*) is the boosted
coupling defined in terms of the truncated perturbative ysbdig\W;;(g,n*) = 1+ zﬂ;lwl(? g
The sumii;(g,n*) is called “naive series” truncatedmit ThenWywm p(go, n*) =1+ zﬂ;lw,\(l'&bggn
is called “boosted series” truncatedrét The latter converges much more rapidly, although the
boosted couplingy, is larger tharg. The coeﬁicienté‘.lvl\(I',BLb of the boosted series are calculated by
equatingMyw (g, ") = Whin(gb. ).

A precise separation of the non-perturbative part of Wilkmps requires a very high order
of PT. We have employed boosting using the hypergeometrigeirto smooth the input obtained
from NSPT and to get coefficients beyontl= 20. The boosted coupling is computed equating
(smoothed) series up t6 = 40. Fig. 1 (right) shows the corresponding coefficient3/fpr for the
bare and boosted coupling.

For the special case of the plaquette the relation to thengtoadensaté(a /) GG) is

2 [ —boo®\ /a
a4§3 ( B(ogg; ) <7_TGG> =WAa1b(Go,N") —Warmc = Dwy,

up to eventualy(a?) or ¢ (a8) contributions (see Figure 2 left). We obtain for the quaglicon
condensate

<%GG> — 0.0283) GeV*

to be compared with the SVZ value o012 Ge\*. Our number agrees within errors with the esti-
mate 0024(8) GeV* based on a study of heavy quarkonia mass splittings [9]. ibinformation
the original paper [1] should be consulted.
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Figure2: Left: Ay, (parametrized alw,, = c; a2+ c4a?) as function ob*. There is not much room for an
A2 condensate. Right: The coefficiemtgn*) for different Wilson loops as functions of/&*. The plateau
reached fon* > 30 agrees well with the limit from the hypergeometric modgh( = 0).
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