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Definitions of a static SU(2) color triplet potential
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We discuss possibilities and problems to non-perturbatively define and compute a static color

triplet potential in SU(2) gauge theory. Numerical latticeresults are presented and compared to

analytical perturbative results.
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Calculating the static potential in SU(2) gauge theory: basic principle
The calculation of the singlet static potential is usually based on trial states

|Φsing〉 ≡ Q̄(−r/2)U(−r/2;+r/2)Q(+r/2)|Ω〉, while for the triplet static potential typically
|Φtrip,a〉 ≡ Q̄(−r/2)U(−r/2;s)σaU(s;+r/2)Q(+r/2)|Ω〉 is suggested or used (cf. e.g. [1]). Here
±r/2 ≡ (0,0,±r/2), Q and Q̄ are static quark/antiquark operators,U are spatial parallel trans-
porters (on a lattice products of links) andσa denote Pauli matrices acting in color space. From the
asymptotic behavior of the corresponding temporal correlation function the static potentialVX

0 (r),
X ∈ {singlet, triplet} can be extracted.

Lattice computations without gauge fixing
On the lattice the singlet correlation function is proportional to Wilson loops,

〈Φsing(t2)|Φsing(t1)〉 ∝ W(r,∆t), ∆t = t2 − t1, from which the singlet potential can be determined
(cf. the figure on page 1, blue dots). Since the triplet correlation function is not gauge invariant,
one obtains〈Φtrip,a(t2)|Φtrip,a(t1)〉 = 0 and cannot determine a triplet potential.

Lattice computations in temporal gauge
Temporal gaugeAg

0 = 0 in the continuum corresponds to temporal linksUg
0 (t,x) = 1 on a

lattice. These links gauge transform according toU0(t,x) →Ug
0 (t,x) = g(t,x)U0(t,x)g†(t + a,x),

whereg(t,x) ∈ SU(2). On a lattice with finite periodic temporal extension it is not possible to
realize temporal gauge everywhere. There will be a slice of links, whereU0 6= 0 (in the following
wlog.Ug

0 (t = 0,x) 6= 1, whileUg
0(t = 1. . .T−1,x) = 1; T is the periodic temporal extension of the

lattice). A possible choice for the corresponding gauge transformationg(t,x) is
g(t = 2a,x) = U0(t = a,x),
g(t = 3a,x) = g(t = 2a,x)U0(t = 2a,x) = U0(t = a,x)U0(t = 2a,x),
g(t = 4a,x) = g(t = 3a,x)U0(t = 3a,x) = U0(t = a,x)U0(t = 2a,x)U0(t = 3a,x), . . .

Non-perturbative computations (lattice), singlet potential:

The trial states|Φsing〉 are gauge invariant. Therefore, the result is identical to the result without
gauge fixing (cf. the figure on page 1, blue dots).

Gauge transforming the temporal links toUg
0 (t,x) = 1 and computing

〈Φsing(t2)|Φsing(t1)〉 =
〈

Tr
(

Ug(t1,−r/2;t1,+r/2)Ug(t2,+r/2;t2,−r/2)
)〉

(1)

(here we assume 1≤ t1 < t2 < T, “case (A)”) is equivalent to consider the manifestly gaugeinvari-
ant observable

〈Φsing(t2)|Φsing(t1)〉 =
〈

Tr
(

U(t1,−r/2;t1,+r/2)g†(t1,+r/2)g(t2,+r/2)
︸ ︷︷ ︸

U(t1,+r/2;t2,+r/2)

U(t2,+r/2;t2,−r/2)g†(t2,−r/2)g(t1,−r/2)
︸ ︷︷ ︸

U(t2,−r/2;t1,−r/2)

)〉

= W(r,∆t) (2)

(cf. the figure on page 1). Similar considerations yield the same result for “case (B)”, 0= t1 < t2 < T
or 1≤ t2 < t1 < T. This technique of transforming a non-gauge invariant observable into an equiv-
alent manifestly gauge invariant observable will be helpful for interpreting the triplet potential.
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A helpful theoretical tool to understand, which states are contained in a correlation function, is
the transfer matrix formalism (cf. e.g. [2, 3]). Without gauge fixing the transfer matrix iŝT = e−Ha,
T̂|ψ(n)〉 = λ (n)|ψ(n)〉, λ (n) = e−E(n)a (lattice discretization errors neglected), whereE(n) are the
energies of gauge invariant states (e.g. the vacuum, glueballs). Similarly the transfer matrix in
temporal gauge iŝT0 = e−H0a, T̂0|ψ

(n)
0 〉 = λ (n)

0 |ψ(n)
0 〉. In temporal gauge remaining gauge degrees

of freedom are time-independent gauge transformationsg(x). One can show[T̂0,g(x)] = 0, i.e.
eigenstates of̂T0 can be classified according to SU(2) color quantum numbers( j(x),m(x)) at each

x. λ (n)
0 = e−E(n)

0 a, whereE(n)
0 are the energies of the gauge invariant states already mentioned as

well as of additional non-gauge invariant states withj(x) 6= 0. Such states can be interpreted as
states containing static color charges (= static quarks)1. One can derive

〈Φsing(t2)|Φsing(t1)〉 = ∑
k

e−V
sing
k (r)∆t ∑

m
e−Em(T−∆t) ∑

α ,β

∣
∣
∣〈k,αβ |Ûαβ (−r/2;+r/2)|m〉

∣
∣
∣

2
, (3)

whereα ≡ m(−r/2) = ±1/2 andβ ≡ m(+r/2) = ±1/2 are color indices at±r/2. As expected
this correlation function is suited to extract the common singlet potentialVsing

0 (r).

Non-perturbative computations (lattice), triplet potential:
Again one has to distinguish the two cases (A) and (B), which this time yield different re-

sults. When including the gauge fixing in the observable, onefinds that(s, t1) and (s, t2), the
spacetime positions of the “triplet generators”σa, are connected by an adjoint static propagator:
Tr(σaU(t1,s; t2,s)σbU(t2,s; t1,s)). Within the transfer matrix formalism one can derive for case
(A)

〈Φtrip,a(t2)|Φtrip,a(t1)〉 =

∑
α ,β

∣
∣
∣〈k,αβ ,m(s) = a|Ûαβ ,a(−r/2;s;+r/2)|m〉

∣
∣
∣

2
(4)

and for case (B)

〈Φtrip,a(t2)|Φtrip,a(t1)〉 = ∑
k

e−V
sing
k (r)∆t ∑

m
e−E

Qadj
m (T−∆t)

∑
α ,β

∣
∣
∣〈k,αβ |Ûαβ ,a(−r/2;s;+r/2)|m,m(s) = a〉

∣
∣
∣

2
. (5)

The conclusion is that one can either extract a three-quark potential (one quark at+r/2, one an-
tiquark at−r/2, one adjoint quark ats) (case (A)) or the ordinary singlet potential (case (B)).

Perturbative calculations in Lorenz gauge
Most perturbative calculations of the static potential arecarried out in Lorenz gauge∂µAµ = 0.

The leading order result for trial states|Φsing〉 is Vsing
0 (r) = −3g2/16πr, i.e. an attractive singlet

1We use the following notation of energy eigenvaluesE(n)
0 : (1) gauge invariant states, i.e. no static quarks:En

( j(x) = 0 for all x); (2) a static quark/antiquark at−r/2 and at+r/2: Vsing
n (r) ( j(−r/2) = j(+r/2) = 1/2); (3) an

adjoint static quark ats: E
Qadj
n ( j(s) = 1); (4) a static quark/antiquark at−r/2 and at+r/2, an adjoint static quark ats:

VQQ̄Qadj
n (r) ( j(−r/2) = j(+r/2) = 1/2, j(s) = 1).
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potential. This result can be compared to the non-perturbative lattice result (in any gauge), since
the trial state is gauge invariant. To perform a precise matching of lattice and perturbative static
potentials, higher orders (NNLO or NNNLO) are required (cf.e.g. [4, 5] for recent work on this
topic), but nevertheless qualitative agreement is found (cf. the figure on page 1, blue dots and blue
line). The leading order result for trial states|Φtrip,a〉 isV trip

0 (r) = +g2/16πr, i.e. a repulsive triplet
potential. Note, however, that in Lorenz gauge a transfer matrix does not exist, which renders a
physical interpretation difficult. One can also calculate the gauge invariant triplet diagram obtained
by using temporal gauge (cf. the figure on page 1, “triplet, case (A)”). Then one obtains

VQQ̄Qadj

0 (r) = −9g2/16πr (for s = 0), i.e. an attractive three-quark potential. Again qualitative
agreement with the lattice result is found (cf. the figure on page 1, red dots and red line).

Conclusions
The singlet potential corresponds to a gauge invariant trial state

Q̄(−r/2)U(−r/2;+r/2)Q(+r/2)|Ω〉. It is the same in any gauge and its interpretation as a static
quark antiquark potential is clear.

The triplet potential corresponding to trial states
Q̄(−r/2)U(−r/2;s)σaU(s;+r/2)Q(+r/2)|Ω〉 is different, when using different gauges: (1) with-
out gauge fixing it cannot be calculated/computed; (2) in temporal gauge it corresponds to a three-
quark potential and not to a potential between a quark and an antiquark in a color triplet state, i.e.
the name “triplet potential” is misleading; (3) in Lorenz gauge a perturbative calculation yields a
repulsive potential; since a transfer matrix does not exist, the physical interpretation is unclear.
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