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1. Introduction

When Nora Brambilla asked me to deliver a public lecture on QCD, I suggested to split the
lecture in two parts. In the first part, I briefly recall the status of particle physics in the sixties
of the last century before describing the phenomenon of scaling in deep inelastic lepton nucleon
scattering that led to the discovery of asymptotic freedom in 1973. In the second part, Thomas
Mannel will discuss some of the many facets of QCD.

Why should one want to look back 50 years to understand the emergence of Quantum Chro-
modynamics, the nonabelian gauge theory of the strong interactions? Some of the motivations
are:

• Particle physics in the early sixties looked very much different from now. In particular, there
was no sign of anything like today’s Standard Model.

• The strong interactions (the strong nuclear force as it was then usually called) were especially
enigmatic, seemingly a hopeless case for quantum field theory. This was a serious deficiency
because quantum field theory is the natural union of quantum theory and special relativity,
two essential ingredients of particle physics.

• Within less than 15 years, quantum field theory arose like the famous phoenix from the ashes
to provide the common framework for electromagnetic, weak and strong interactions.

• As a final motivation for my younger colleagues: whenever you feel depressed over the lack
of “New Physics” at the LHC, sit back and recall the fascinating developments that led to the
Standard Model in its present form.

As the audience was expected to consist not only of particle physicists, I have made an effort
to keep the formalism to an absolute minimum.

2. Particle physics in the sixties

Already in those dark ages, it was known that all phenomena of the physical world can be
traced back to only four fundamental forces:

gravitation strong nuclear force

electromagnetism weak nuclear force

long range short range

Of the three interactions relevant at nuclear scales, electromagnetism was understood best.
It was described by a bona fide quantum field theory called quantum electrodynamics (QED).
Quantum corrections were calculable to any desired order in the fine-structure constant (at least in
principle) and the theoretical predictions agreed with experiment. However, the actual treatment of
the perturbative expansion (renormalization) was not generally accepted. Some of our forefathers
(among them Dirac and Wigner) criticized the methodology as a mere recipe to “sweep the infinities
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under the rug”. Even Feynman, one of the most influential particle physicists of the time, conceded
[1] : “I do not subscribe to the philosophy of renormalization”.

The weak interactions were described by the V −A Fermi theory that accounted for the main
features of weak decays. However, quantum corrections could not be calculated because the Fermi
theory is the prototype of a nonrenormalizable quantum field theory. Towards the end of the decade,
the renormalizable gauge field theory of electroweak interactions emerged [2].

Finally, as already emphasized, the strong interactions seemed to be a hopeless case for quan-
tum field theory, for at least two reasons. For one, as more and more strongly interacting particles
and resonances (hadrons) were found experimentally, it became less and less clear which should
be the fundamental degrees of freedom to be described by quantum fields: nucleons (proton and
neutron), pions, kaons, . . . ? In addition, the strength of the interaction (the denomination “strong
interactions” is after all not an accident) seemed prohibitive for a perturbative treatment, the only
systematic method for treating quantum field theories known at the time. The general feeling
among particle physicists in the early sixties was expressed by Landau [3]:

It is well known that theoretical physics is at present almost helpless in dealing with the
problem of strong interactions. We are driven to the conclusion that the Hamiltonian method
for strong interactions is dead and must be buried, although of course with deserved honour.

In the same spirit, Goldberger [4] formulated the general assessment of the relevance of quan-
tum field theory:

My own feeling is that we have learned a great deal from field theory . . . that I am quite
happy to discard it as an old, but rather friendly, mistress who I would be willing to recog-
nize on the street if I should encounter her again.

As quantum field theory appeared to be inapplicable for the strong interactions, other ap-
proaches were investigated, mainly along the following two lines.

i. Bootstrap
The bootstrap or nuclear democracy declared all hadrons to be equal. Instead of quantum
field theories, only experimentally accessible observables should be investigated, using gen-
eral properties of the S-matrix such as unitarity and analyticity [5]. By definition, the method
was politically correct but not predictive: the full power of quantum field theory was lacking.

ii. Symmetries
From regularities in hadronic spectra and from relations between different hadronic pro-
cesses, (approximate) symmetries were postulated and their consequences investigated. In
addition to the well-established isospin symmetry, the group SU(3) was introduced by Gell-
Mann and Ne’eman [6] to classify the observed hadrons and to predict the existence of states
yet to be detected.

The symmetry approach gave insight into the world of hadrons, but an important question
remained: how does one actually calculate hadronic processes, if quantum field theory was unre-
liable? The most influential approach during much of the sixties was put forward by Gell-Mann
who suggested to use field theoretic toy models with the proper symmetries to abstract algebraic
relations that could then be exploited independently of the underlying (and probably unreliable)
field theories. The method became to be known as the “French cuisine approach” [7]:
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Vacuum polarization and charge screening
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In a collision of impact energy E the effective charge is the

charge contained in the sphere of radius r � ��E, which

due to vacuum polarization is larger than the classical

charge seen in a large shere (r ��)

�

charge screening

(charge renormalization).

Figure 1: Electron electron scattering and vacuum polarization.

We construct a mathematical theory of the strongly interacting particles, which may or may
not have anything to do with reality, find suitable algebraic relations that hold in the model,
postulate their validity, and then throw away the model. We may compare this process to a
method sometimes employed in French cuisine: a piece of pheasant meat is cooked between
two slices of veal, which are then discarded.

3. Scaling and asymptotic freedom

In the late sixties, a decisive step forward in our understanding of the strong interactions came
from experiment. The MIT-SLAC collaboration [8] investigated the so-called deep inelastic scat-
tering of electrons on protons e−+ p→ e−+ X where the hadronic debris X was measured as a
whole (inclusive measurement). The results were unambiguous and unexpected:

• Whereas at low energies the cross-section for electron proton scattering exhibits a lot of
structure, it becomes increasingly structureless at high energies (and large momentum trans-
fer): in simple terms, the phenomenon of “scaling” suggested that nucleons consisted of
non-interacting part(on)s at high energies.

• Obvious candidates for the partons were the quarks that had previously been postulated as
hadron constituents [9].

• However, this gave rise to a seeming paradox: how could the quarks be quasi-free at high
energies and yet be permanently bound in hadrons, as free quarks have never been observed
in isolation?

Expressing the puzzle in different words, the strength of the strong interactions seemed to be
energy-dependent. Rather than a puzzle, this was actually a well-known effect in QED, with an
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important difference however: in contrast to the strong interactions, the strength of the electro-
magnetic interaction increases with energy. This phenomenon of “charge screening” is of quantum
field theoretical origin: the space around an electron (or any charged particle) is populated by vir-
tual electron-positron pairs that modify the effective charge of the electron felt by a another electron
as shown in Fig.1. As the two electrons get closer to each other, the effective charge increases at
short distances. In quantum theory short distances are tantamount to high energies and therefore
the behaviour of the effective charge is opposite to what is suggested by scaling for the strong
interactions.

In quantum field theory, the behaviour of the effective charge is governed by the β -function,

β (qeff)∼−r
dqeff(r)

dr
> 0

where r is the distance from the bare charge. In contrast to QED, the β -function for the strong cou-
pling constant (the analogue of the charge in QED) must therefore be negative to explain scaling.
If the negative sign prevails to highest energies, the coupling strength vanishes asymptotically and
the theory is called asymptotically free.

Once a plausible explanation of scaling was identified, the task remained to find an asymptot-
ically free quantum field theory for the strong interactions. This turned out to be highly nontrivial:
most of the (renormalizable) theories exhibited screening just like QED. The majority view in early
1973 was expressed by Zee [10]:

We conjecture that there are no asymptotically free quantum field theories in four dimensions.

While Coleman and Gross [11] were working on a general proof of this conjecture, their grad-
uate students Politzer and Wilczek attempted to close a “loophole”: the β -function for nonabelian
gauge theories (Yang-Mills theories) was still unknown or at least unpublished1. In two successive
papers in the Physical Review Letters in the spring of 1973 [13], the asymptotic freedom of Yang-
Mills theories was demonstrated. For most workers in the field, this was the explanation of scaling.
David Gross himself put it this way [14]:

Like an atheist who has just received a message from a burning bush, I became an immediate
true believer.

What is then the determining factor why nonabelian gauge field theories are asymptotically
free in contrast to the abelian QED? In short, photons are electrically neutral, whereas the quanta
of the strong interactions (to be called gluons) carry “colour” charge. Moreover, this can only work
if, unlike the single photon, there is more than one type of gluons.

4. Quantum Chromodynamics

Although for most particle physicists the discovery of asymptotic freedom marks the birth of
Quantum Chromodynamics, all ingredients of the theory were already “known” in 1972.

• The additional degree of freedom called colour was well established: quarks come in three
colours [15].

1See Ref. [12] for an account of the earlier history of the subject.
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• Unknown to many, the existence of eight gluons was already proposed in 1972. By whom?

In the early seventies, Fritzsch and Gell-Mann were investigating (in the spirit of the French
cuisine approach) a toy model with coloured quarks, but with a single gluon only. That such a
model with a single gluon (necessarily not asymptotically free!) was considered for an investigation
of scaling, gives evidence to the low prestige of perturbative quantum field theory for the strong
interactions. In their contribution to the 1972 High Energy Physics Conference in Chicago, one
can find an interesting passage [16]:

Now the interesting question has been raised lately whether we should regard the gluons as
well as the quarks as being non-singlets with respect to color [5].
. . .
Ref. [5]: J. Wess (private communication to B. Zumino)

For the non-experts: even if you don’t know anything about group theory (the colour group SU(3)
in this case), you will accept that

3×3 = 1 + 8 .

This equation tells us that if gluons are to couple to quarks at all, which they must in order to
mediate the strong interactions, there are only two possibilities: either one or eight gluons. In 2005
I had the opportunity to ask Julius Wess about his suggestion. For him it seemed obvious, if the
confinement of quarks had anything to do with the group structure of SU(3), confinement of the
gluons could only be understood if they strongly interact among themselves (in technical terms:
they should carry colour like the quarks). I also asked him why he did not pursue this hypothesis
at the time, but this is another story.

The issue of the number of gluons was finally and definitely settled in favour of the octet
picture in the fall of 1973 [17].

The name Quantum Chromodynamics is generally attributed to Gell-Mann. It is less known
where the name first appeared in printed form. The earliest appearance I could find is in a paper of
Fritzsch, Gell-Mann and Minkowski [18] where they write in a footnote:

A good name for this theory is Quantum Chromodynamics.

When particle theorists discuss about a quantum field theory, they do so mainly in terms of
the associated Lagrangian (rather than the field equations). Without explaining any details, I close
this first part of the lecture by exposing the Lagrangians for QED and QCD to show the similarities
between these gauge field theories. Restricting the electromagnetic interaction to electrons and
photons, the Lagrangian of QED takes the form

LQED = ψ (iD/−m)ψ− 1
4

FµνFµν

where ψ stands for the electron field, m is its mass and the electromagnetic field strength tensor
Fµν already appears in the classical Maxwell equations. The covariant derivative D/ contains the
photon field. For a single type (flavour) of quarks, the QCD Lagrangian looks very similar:

LQCD =
3

∑
i, j=1

qi (iD/−mq)i j q j−
1
4

8

∑
α=1

Gα
µνGα,µν .
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9. Quantum chromodynamics 31

Notwithstanding these open issues, a rather stable and well defined world average
value emerges from the compilation of current determinations of αs:

αs(M2
Z) = 0.1184± 0.0007 .

The results also provide a clear signature and proof of the energy dependence of αs, in
full agreement with the QCD prediction of Asymptotic Freedom. This is demonstrated in
Fig. 9.4, where results of αs(Q2) obtained at discrete energy scales Q, now also including
those based just on NLO QCD, are summarized and plotted.

Figure 9.4: Summary of measurements of αs as a function of the respective energy
scale Q. The respective degree of QCD perturbation theory used in the extraction
of αs is indicated in brackets (NLO: next-to-leading order; NNLO: next-to-next-to
leading order; res. NNLO: NNLO matched with resummed next-to-leading logs;
N3LO: next-to-NNLO).

July 9, 2012 19:53

Figure 2: Energy dependence of the “strong fine-structure constant” αs(Q) from various sources [19]. Also
shown is the impressive agreement with the QCD prediction.

The quark fields qi carry a colour index (i = 1,2,3) and there are eight gluon field strength tensors
Gα

µν . All the difference between QED and QCD resides in Gα
µν that, compared to Fµν , depends in

a more complicated way on the gluon field. In fact, this makes a lot of difference (nonabelian vs.
abelian gauge theory): QCD is a much richer quantum field theory than QED. In particular, this
difference is responsible for asymptotic freedom. The present status of the energy dependence of
the interaction strength is displayed in Fig. 2.

Some of the many facets of this fascinating theory will now be presented by Thomas Mannel.
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