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1. Introduction

Neutron electric dipole moment (EDM) is important observable for the search of not only

QCD θ -term in the Standard Model (SM) but also CP-violation beyond the SM (BSM). Neutron

(and also proton) EDM has not been detected so far, and presently there is very tiny upper bound

of neutron EDM dN < 2.9× 10−26e·fm [1]. The P and CP-violating contribution via phase of

CKM mass matrix is start from three-loop order in perturbation theory, and according to ref. [2, 3]

CKM contribution has been estimated as dCKM
N ≃ 10−30–10−32 e·cm. which is 4-digit below the

current experimental upper bound. While in the strong interaction there is CP-violating θ -term

in QCD Lagrangian, tiny upper bound of EDM indicates that θ -term may be strongly suppressed

from unknown mechanism (strong CP problem). The simple solution is that one of the light quark

mass (mu,d) vanishes due to cancellation between quantum correction of QCD and QED. However

from lattice QCD calculation including QED correction into (valence) quark field we have known

that mu = 2.24(35) and md = 4.65(35) (MS at µ = 2 GeV) [4], and thus up-quark mass is finite

over 7σ . It turns out that the zero quark mass solution of strong CP problem has been almost

excluded. Although there have been several candidates of solution in low-energy region (axion

model and one-loop calculation of θ ), the parameter region allowed from observation of cosmology

and experiment has been narrow.

On the other hand for the BSMs, e.g. supersymmetry (SUSY) models, EDM of nucleon,

atom and lepton are used to take a constraint on the parameter space of the new particle couplings

and mass [5, 6, 7, 8, 9] (also review of [11, 12] and reference therein). These are effectively ex-

pressed as the five-(or six-) dimension CP-violating bilinear operator with field strength of photon

(quark EDM), gluon (chromo EDM) or purely gluon field (Weinberg operator), and there are sev-

eral arguments of contribution to EDMs using some effective models [6, 9, 10]. Recently many

experimental plans of neutron and proton EDM, dueteron EDM, atom EDM and lepton EDM are

proposed [13, 15, 14, 16] to increase the presion. These experiments aim to take a strong bound

toward 10−29 e·cm sensitivity for neutron or proton EDM, and thus from theoretical side it will be

neccessary to evaluate the precise contribution of hadronic effect for robustness on parameter space

of BSMs. Lattice QCD plays an essential role.

So far there have been several attempts of the estimation of nucleon EDM from lattice QCD. In

ref.[18, 19] they addressed that the strategy by inserting the external electric field on the lattice. In

[20, 22] authors have elaborated two strategies of lattice calculation of neutron and proton EDM,

and then [21, 23] present the numerical results of nucleon EDM in N f = 2 QCD. Furthermore

there are other attempts of lattice calculation of nucleon EDM with imaginary θ ensembles [24]

or including higher dimensional CP-violating operator [25]. In this proceedings we show these

strategies and some numerical results.

2. External electric field method

Regarding that nucleon EDM is defined as the energy-shift via interaction between nucleon-

spin direction and electric field, the Hamiltonian CP-violating in θ vacuum is described as

δHCP = dNθ~S ·~E +O(θE3,Eθ 3), (2.1)
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and thus the energy shift depending on the spin component is given in

E
θ

N+−E
θ

N− = dNθEz, (2.2)

with nucleon energy E
θ

N± of spin ±1/2 in setting to ~E = (0,0,Ez) for external electric field.

Considering the Minkowski definition of z-direction external electric field, the transformation

of link variable in quark propagator of flavor q = u,d is

Ut(x)→ eeqEztUt(x)≡U
q
t (E,x), U

†
t (x)→ e−eqEztU

†
t (x)≡ (Uq

t )
†(E,x), (2.3)

where we introduce quark charge eq for eu = 2/3 and ed = −1/3 (in the case of using Euclidean

electric field it is defined as pure imaginary value in the exponent). In ref.[22, 23] we employed

the external electric field with valence quark. Under the assumption of SU(3) isospin symmetry, in

which the summation of sea quark charge vanishes as eu + ed + es = 0, we can ignore the isospin

breaking of sea quarks up to the first order of expansion of electric field. Note that, since the

Minkowski electric field has an introduction of violation of temporal periodicity i.e. U
q
t (E,x+

êtLt) 6=U
q
t (E,x), in which there is large gap in the temporal boundary proportional to eeqEzLt , there

exists enhanced contamination coming from temporal boundary.

In order to extract EDM from 2-point function of nucleon 〈NsN̄s〉θ (E) with each spin-component

s under electric field E = (0,0,E) and θ -term, it is useful to make the ratio of different spin-

component as,

R3(E, t;θ) =
〈N1N̄1〉θ (E)

〈N2N̄2〉θ (E)
, (2.4)

Rcorr(E, t;θ) =
R3(E, t;θ)

R3(−E, t;θ)

R3(−E, t;0)

R3(E, t;0)
≃

1+θAN(E
2)E

1−θAN(E2)E
exp

[

−2dNEθ t], (2.5)

in which the last equation is exact if we take the limit of large time separation. θ -term is adopted

by the reweighting form of eiθQ with topological charge Q. As a consequence EDM appears in the

exponent proportional to electric field and θ . Here the E and θ are input parameters.

Figure 1 shows that R3 as a function of time-slice of sink nucleon operator has the correct

linear response to sign of electric field as expected in Eq.(2.5), and in the effective mass plot

plateau region of Rcorr is considered as signal of EDM obtained by external electric field method.

3. Parity and CP-odd form factor

Considering the matrix element with the electromagnetic current between the nucleon state

under θ -vacuum, such matrix element can be expanded into the P and CP-even form factor F1,2

corresponding to electromagnetic moment, P and CP-odd form factor F3 corresponding to EDM

and P-odd form factor FA called as anapole form factor as

〈N(~p1,s)|J
EM
µ |N(~p0,s)〉θ = ūθ

N(p1,s)
[

F1(p2)γµ +F2(p2)σµν
pν

2mN

+ Fθ
3 (p2)γ5σµν

pν

2mN

+FA(p2)
(

ip2γµγ5 −2mN pµγ5

)

]

uθ
N(~p0,s),(3.1)
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Figure 1: (Left) Time-dependence of Rcorr with positive (upper-triangle) and negative (down-triangle) elec-

tric field. (Right) The effective mass plot of the Rcorr The solid line denotes central value and dashed-line

denotes the error band. I refer to ref.[23]. This is in N f = 2 clover fermion gauge configurations in CP-PACS

collaboration [26]

where the Dirac spinor uθ
N appearing in the above suffers the effect of θ -term. Here the transfer

momentum is defined as p = p1 − p0. The on-shell Dirac spinor structure under θ vacuum is

expressed as

∑
s

uN(~p,s)ūN(~p,s) =
ip · γ +mNeiγ5αN(θ)

2EN

, (3.2)

from the argument in ref.[22] where αN(θ) is defined as the CP-odd phase whose leading term

is αN(θ) = αNθ +O(θ 2). In lattice QCD the form factor in Eq.(3.1) can be extracted from the

three-point function formed as (nucleon)-(operator)-(nucleon); 〈T{ηNJµ η̄N}〉θ . Expanding up to

the order of θ , we have

〈T{ηNJµ η̄N}〉θ (t,τ |~p) =CJµ (t,τ |~p)+ iθC
Q
Jµ
(t,τ |~p)+O(θ 2), (3.3)

in which the second term includes EDM form factor F3. As shown in ref.[22], the ratio of second

term C
Q
Jµ
(~p, t) and two-point function with smeared CN

S (t,~p) and point CN
P (t,~p) source,

RQ
µ (t,τ |p) = K

C
Q
Jµ
(t,τ |~p)

CN
S (t,~p)

[

CN
S (t,~p)C

N
S (τ ,~p)C

N
L (t − τ ,0)

CN
S (t,0)C

N
S (τ ,0)C

N
L (t − τ ,~p)

]1/2

, (3.4)

with K =
√

2(EN +mN)/EN after taking the large time separation of t − τ and τ is written as its

asymptotic form,

Rθ 1

Jµ
(t1, t, t0|p1, p0) ≃

αN

2
γ5

[

F1γµ +F2σµν
pν

2mN

] ip0 · γ +mN

2EN

+
1+ γ4

2

[

F1γµ +F2σµν
pν

2mN

]αNmN

2EN

γ5

+
1+ γ4

2

[

F3γ5σµν
pν

2mN

+FA(ip
2γµγ5 −2mN pµγ5)

] ip0 · γ +mN

2EN

. (3.5)

From the above formula we know that the EDM form factor F3 can be obtained by subtraction

of CP-odd phase factor αN times combination of CP-even form factor F1,2 (the first and second
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Figure 2: Three figures show the neutron EDM form factor at different time-slice of sink nucleon operator at

Wilson mass parameter K = 0.1367(left), 0.1374(middle), 0.1382(right) with three lowest transfer momenta

in N f = 2 clover fermion configurations [26]. These data correspond to 0.3–0.85 GeV2 for pion mass

squared. The different symbols denote the comparison of results with different sets of current direction (blue

circle: Jt and green triangle: Jz) and spin-projection matrix to check the consistency of the signal. The solid

line shows the fitting result of blue circle symbols.

terms) which are evaluated from expansion of Dirac spinor uθ
N of Eq.(3.2) and the leading order of

three-point function CJµ (t,τ |~p) in Eq.(3.3).

Figure 2 shows the extracted EDM form factor following the formula in Eq.(3.5) (and also

[22, 21] in details) from three-point function in θ term (here we also ignore the disconnected

diagram in three-point function). These are data in which the source location of nucleon and

operator location are fixed in t = 1 and t = 8 respectively. There appears the signal of neutron

EDM between 11 and 16 for sink-time separation. Fitting the data in Figure 2, we obtain the

transfer momentum dependence of neutron EDM form factor as shown in Figure 3. Since the

neutron EDM is defined in the zero transfer momentum limit,

dN = lim
p2→0

F3(p2)/2mN , (3.6)

we obtain this after taking the extrapolation to p2 = 0 with linear fit function (Figure 3).

4. Imaginary θ

Recently in ref.[27] they suggest that the new idea to avoid large statistical noise coming

from reweighting with topological charge in θ -term. Basically using analytic continuation into

imaginary θ definition for θ -term, the expectation value in QCD action SQCD plus imaginary θ -

term action θ IQ is represented as

〈O〉θ I = Z−1
θ I

∫

dUO[U ]eSQCD[U ]+θ IQ, Zθ I =
∫

dUeSQCD[U ]+θ IQ, (4.1)

and thus in the Monte-Carlo calculation EDM is given from real action SQCD[U ] + θ IQ, which

means there is no statistical noise due to sign problem, although it is necessary to carry out addi-

tional computation in the gauge ensembles including imaginary θ action.

5
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Figure 3: Neutron EDM form factor at three different transfer momentum squared obtained by fitting the

data shown in Figure 2. The solid line shows the linear function fitting three transfer momenta p2. The

extrapolated data at p2 = 0 is identified with the value of neutron EDM.

In ref.[24] they have applied this idea into measurement of neutron EDM form factor in rel-

atively small lattice size using N f = 2 clover fermion. While they report the precise results of

neutron and proton EDM about 10–20% statistical accuracy, it may suffer huge systematic uncer-

tainties due to breaking the chiral symmetry of valence clover fermion field connecting the anomaly

term θ I q̄γ5q, which is related to lattice artifacts (see discussion in [19]).

5. Summary and future plans

Figure 4 plots the summary of lattice calculation with several lattice actions and methods for

neutron and proton EDM in lattice QCD. We see that the two methods as shown in section 2 and 3

provide the consistent results for EDM within 1σ error, whereas there is still large statistical error.

Comparing between neutron and proton EDM in Figure 4, its flipped sign and similar magnitude of

absolute value is in agreement with expectation from the argument of effective chiral perturbation

theory [28, 29, 30] in which nucleon EDM is proportional to magnetic moment (and pion mass

squared); magnetic moment of neutron (proton) is negative (positive) sign and its ratio is order one.

Otherwise the neutron and proton EDM in Figure 4 seem to not depend on the pion mass squared

in contrast with prediction of CP-symmetry in massless limit of QCD action. This may be due

to remaining systematic error e.g. relatively heavy quark mass, finite volume effect [31, 32] and

lattice artifacts.

Recently we carry out the lattice calculation in realistic lattice size (2.7 fm3) with N f = 2+1

domain-wall fermion (DWF) configurations [33] at 300–400 MeV pion mass. This lattice calcu-

lation has much advantage to control the lattice artifacts of chiral symmetry breaking and enable

us to improve the chiral behavior, whereas this computation is expensive. The main task to obtain

more precise value of nucleon EDM in this ensemble is that we need to significantly accumulate

statistics in Monte-Carlo simulation with the more efficient way, and hence we recently develop the

numerical algorithm (AMA algorithm [34]) which is able to reduce the statistical error of correlator

6
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Figure 4: The summary plot of neutron EDM (left) and proton EDM (right) at several pion mass squared.

The green-square symbols are results in external electric field method in N f = 2 clover fermion configura-

tions quoted in [23], and blue-circle symbols are results obtained by EDM form factor after extrapolation

toward physical kinematics in the same configurations as green-square one. The red bar denotes the error

band estimated in [21] in N f = 2 domain-wall fermion configurations from EDM form factor. The diamond

is a result from EDM form factor in imaginary θ ensemble of N f = 2 clover fermion configurations quoted

in [27]. These errors are only statistical one. As noticed in section 4, the data of diamond may hide a large

systematic uncertainty of chiral symmetry breaking of valence clover fermion field. We show an estimate in

current algebra [28] (triangle) in the physical point for the reference (also see [30] in which they discussed

about validity of this estimate).

evaluated in Monte-Carlo simulation by factor 5–10. This is much useful to persue the precise study

for the observables evaluated in Monte-Carlo simulation, especially for nucleon EDM calculation.

This work was supported by the Japanese Ministry of Education Grant-in-Aid, Nos. 22540301

(TI), 23105714 (ES), 23105715 (TI) and U.S. DOE grants DE-AC02-98CH10886 (TI) and DE-

FG02-92ER40716 (TB). We also thank BNL, the RIKEN BNL Research Center, the RICC at

RIKEN and USQCD for providing resources necessary for completion of this work.

References

[1] C. A. Baker, D. D. Doyle, P. Geltenbort, K. Green, M. G. D. van der Grinten, P. G. Harris, P. Iaydjiev

and S. N. Ivanov et al., Phys. Rev. Lett. 97, 131801 (2006) [hep-ex/0602020].

[2] I. B. Khriplovich and A. R. Zhitnitsky, Phys. Lett. B 109, 490 (1982).

[3] A. Czarnecki and B. Krause, Phys. Rev. Lett. 78, 4339 (1997).

[4] T. Blum, R. Zhou, T. Doi, M. Hayakawa, T. Izubuchi, S. Uno and N. Yamada, Phys. Rev. D 82,

094508 (2010) [arXiv:1006.1311 [hep-lat]].

[5] S. Abel, S. Khalil and O. Lebedev, Nucl. Phys. B 606, 151 (2001) [hep-ph/0103320].

[6] J. Hisano and Y. Shimizu, Phys. Rev. D 70, 093001 (2004) [hep-ph/0406091].

[7] J. R. Ellis, J. S. Lee and A. Pilaftsis, JHEP 0810, 049 (2008) [arXiv:0808.1819 [hep-ph]].

[8] Y. Li, S. Profumo and M. Ramsey-Musolf, JHEP 1008, 062 (2010) [arXiv:1006.1440 [hep-ph]].

7



P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
 
X
)
3
4
8

Electric Dipole Moment of the Neutron Eigo Shintani

[9] J. Ellis, J. S. Lee and A. Pilaftsis, JHEP 1102, 045 (2011) [arXiv:1101.3529 [hep-ph]].

[10] J. Hisano, J. Y. Lee, N. Nagata and Y. Shimizu, Phys. Rev. D 85, 114044 (2012) [arXiv:1204.2653

[hep-ph]].

[11] T. Ibrahim and P. Nath, Rev. Mod. Phys. 80, 577 (2008) [arXiv:0705.2008 [hep-ph]].

[12] T. Fukuyama, Int. J. Mod. Phys. A 27, 1230015 (2012).

[13] Dave Wark, J. Phys. Conf. Ser. 171, 012002 (2009).

[14] Yannis K Semertzidis, J. Phys. Conf. Ser. 335, 012012 (2011).

[15] Hiromi Iinuma for J-PARC New g-2/EDM experiment collaboration, J. Phys. Conf. Ser. 295, 012032

(2011).

[16] O. Bourrion, G. Pignol, D. Rebreyend and C. Vescovi, Nucl. Instrum. Meth. A 701, 278 (2013)

[arXiv:1207.0618 [physics.ins-det]].

[17] M. Pospelov and A. Ritz, Annals Phys. 318, 119 (2005).

[18] S. Aoki and A. Gocksch, Phys. Rev. Lett. 63, 1125 (1989) [Erratum-ibid. 65, 1172 (1990)].

[19] S. Aoki, A. Gocksch, A. V. Manohar and S. R. Sharpe, Phys. Rev. Lett. 65, 1092 (1990).

[20] E. Shintani, et al., Phys. Rev. D 72, 014504 (2005).

[21] F. Berruto, T. Blum, K. Orginos and A. Soni, Phys. Rev. D 73, 054509 (2006).

[22] E. Shintani, et al., Phys. Rev. D 75, 034507 (2007).

[23] E. Shintani, S. Aoki and Y. Kuramashi, Phys. Rev. D 78, 014503 (2008).

[24] R. Horsley, T. Izubuchi, Y. Nakamura, D. Pleiter, P. E. L. Rakow, G. Schierholz and J. Zanotti,

arXiv:0808.1428 [hep-lat].

[25] T. Bhattacharya, V. Cirigliano and R. Gupta, PoS LATTICE 2012, 179 (2012) [arXiv:1212.4918

[hep-lat]].

[26] A. Ali Khan et al. [CP-PACS Collaboration], Phys. Rev. D 65, 054505 (2002) [Erratum-ibid. D 67,

059901 (2003)] [hep-lat/0105015].

[27] T. Izubuchi, S. Aoki, K. Hashimoto, Y. Nakamura, T. Sekido and G. Schierholz, PoS LAT 2007, 106

(2007) [arXiv:0802.1470 [hep-lat]].

[28] R. J. Crewther, P. Di Vecchia, G. Veneziano and E. Witten, Phys. Lett. B 88, 123 (1979)

[Erratum-ibid. B 91, 487 (1980)].

[29] K. Kawarabayashi and N. Ohta, Nucl. Phys. B 175, 477 (1980).

[30] S. Aoki and T. Hatsuda, Phys. Rev. D 45, 2427 (1992).

[31] D. O’Connell and M. J. Savage, Phys. Lett. B 633, 319 (2006) [hep-lat/0508009].

[32] F. -K. Guo and U. -G. Meissner, JHEP 1212, 097 (2012) [arXiv:1210.5887 [hep-ph]].

[33] Y. Aoki et al. [RBC and UKQCD Collaborations], Phys. Rev. D 83, 074508 (2011).

[34] T. Blum, T. Izubuchi and E. Shintani, arXiv:1208.4349 [hep-lat]; T. Blum, T. Izubuchi and

E. Shintani, PoS LATTICE 2012, 262 (2012) [arXiv:1212.5542 [hep-lat]].

8


