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1. Introduction

This talk is dedicated to my friend and collaborator Ximo Prades who died since the previous
Chiral Dynamics in Berne in 2009. For those of you who like to know more I recommend looking
up the slides from my talk at the symposium in Granada in his memory [1]. We have been very
frequent collaborators for a long time.

I will not attempt to give an overview of Chiral PerturbationTheory (ChPT) for mesons in this
talk. Even with the restrictions to mesons the subject is very large. I have given several review talks
earlier [2, 3] as well as written a review article of mesonic ChPT at two-loop order [4]. References
to other reviews and lectures can be found on my ChPT webpage [5], the remainder there has
admittedly a strong bias towards my own work.

I will give a short introduction to ChPT where I emphasize themajor ideas underlying the
method. Afterwards I will give an overview of the work that has been happening in Lund in this
area in the last few years. In addition there are many more talks at this conference related to
mesonic ChPT. As far as the plenary talks are concerned theseare the experimental tests from
NA48 [6] and KLOE [7], the connection with dispersion relations [8, 9] and the connection with
lattice QCD [10 – 12]. Most of the talks in the working group onGoldstone Bosons also fall under
the topic of this talk.

The remainder is first a short introduction to ChPT, then an overview of the latest fit of the
low-energy-constants, a few remarks about hard-pion-ChPTas well as some comments about ap-
plications of ChPT beyond QCD and some leading logarithm calculations to high orders. The
treatment is extremely cursory for all cases.

2. Chiral Perturbation Theory

ChPT in its modern form was introduced by Weinberg [13], and Gasser and Leutwyler [14, 15].
The best way to characterize ChPT is:

Exploring the consequences of the chiral symmetry of QCD
and its spontaneous breaking

using effective field theory techniques

A good reference that shows in detail all the underlying assumptions is [16].

For an effective field theory, one needs to indicate three things: the relevant degrees of free-
dom, a power-counting principle to have predictivity and the associated range of validity. For ChPT
these are

Degrees of freedom: The Goldstone Bosons from the spontaneous breaking of the chiral symme-
try present in QCD in the massless limit.

Power-counting: Dimensional counting in momenta and masses where meson masses and mo-
menta are counted the same in the standard counting.

Range of validity: The breakdown scale is when effects that are not included become important.
For mesonic ChPT these are clearly the meson resonances in the relevant channels.Mρ is
thus clearly the end of the range.
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Figure 1: We need to pick
a vacuum expectation value
indicated by the arrow. The
massless mode corresponds
to an excitation along the bot-
tom of the valley.

rules: one loop example:

p2

1/p2

∫

d4p p4

(p2)2(1/p2)2 p4 = p4

(p2)(1/p2) p4 = p4

Figure 2: An example of the power-counting, on the left the rules for
the lowest order vertex, propagator and loop integration. On the right
showing how it leads to the two one-loop diagrams beingp4 while the
tree level lowest-order vertex isp2.

Let me show these now in a little more detail. Quantum Chromodynamics (QCD) fornF equal mass
quarks has an obvious global symmetry under the continuous interchange of the quarksSU(nF).
Looking at the purely strong Lagrangian (density)

LQCD = ∑
q=u,d,s

[iq̄LD/qL + iq̄RD/qR−mq(q̄RqL + q̄LqR)] , (2.1)

we see that in the limit ofmq = 0 there is actually the largerSU(nF)×SU(nF)R global symmetry.
Another way to see is that in the massless case left- and right-handed are no longer related by
Lorentz-transformations since we cannot go the rest-frameof a massless particle.

The global chiral symmetrySU(3)L ×SU(3)R in QCD is spontaneously broken to the vector
subgroupSU(3)V by the vacuum expectation value〈q̄q〉= 〈q̄LqR+ q̄RqL〉 6= 0. Since in this process
8 generators are broken we get 8 Goldstone Bosons and their interactions vanish at zero momentum.
This is shown pictorially for one broken generator in Fig. 1.The fact that the interaction vanishes at
zero momentum allows us to introduce a proper power-counting along the lines discussed in [13].
This is shown for the example ofππ-scattering at one loop in Fig. 2.

The basic principle just described has been used in very manycircumstances. One needs to
decide which chiral perturbation theory is appropriate forthe problem at hand. Some examples are

• Which chiral symmetry:SU(Nf )L ×SU(Nf )R, for Nf = 2,3, . . . and extensions to (partially)
quenched

• Or beyond QCD

• Space-time symmetry: Continuum or broken on the lattice: Wilson, staggered, mixed action

• Volume: Infinite, finite in space, finite T

• Which interactions to include beyond the strong one

• Which particles included as non Goldstone Bosons

• My general belief: if it involves soft pions (or softK,η) some version of ChPT exists.
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2 flavour 3 flavour 3+3 PQChPT

p2 F,B 2 F0,B0 2 F0,B0 2
p4 l r

i ,h
r
i 7+3 Lr

i ,H
r
i 10+2 L̂r

i ,Ĥ
r
i 11+2

p6 cr
i 52+4 Cr

i 90+4 Kr
i 112+3

Table 1: The number of terms at LO [19], NLO [14, 15]and NNLO [17] for standard mesonic ChPT.

An important technical step is the inclusion of external fields or sources. This allows to make
the chiral symmetry local1 [14, 15]. The manifold at the bottom of the potential in a symmetry
breakdownSU(nF)L ×SU(nF)×SU(nF)V is also anSU(nF) manifold. We thus parametrize this
by annF ×nF matrix which fornF = 3 is

U(φ) = exp(i
√

2Φ/F0), with Φ(x) =

















π0
√

2
+

η8√
6

π+ K+

π− − π0
√

2
+

η8√
6

K0

K− K̄0 −2η8√
6

















. (2.2)

The lowest-order (LO) Lagrangian is

L2 =
F2

0

4
{〈DµU†DµU〉+ 〈χ†U + χU†〉} , (2.3)

with the covariant derivativeDµU = ∂µU − ir µU + iUl µ , and the left and right external cur-
rents/fields/sources:r(l)µ = vµ +(−)aµ . The scalar and pseudo-scalar external densities are in-
clude viaχ = 2B0(s+ ip). The latter allow the inclusion of quark masses via the scalardensity:
s=M + · · · . The notation implies a flavour trace〈A〉= TrF (A). The next-to-leading-order (NLO)
Lagrangian was worked out by Gasser and Leutwyler [14, 15] and has 10+2 terms. The next-to-
next-to-leading-order (NNLO) Lagrangian is also known [17] as well as its infinities [18]. The
number of terms is summarized in Tab. 1. All the cases listed above have extra terms in the La-
grangian with the exception of finite volume and temperatureand in most cases the Lagrangian
is known to NLO. The constants in the Lagrangian are often referred to as low-energy-constants
(LECs).

So, what does ChPT really predict given the large number of free constants. It relates processes
with different numbers of pseudo-scalars and includes isospin and the eightfold way (SU(3)V ). The
chiral logarithms can be seen in the two-flavour ChPT NLO expression for the pion mass[14]

m2
π = 2Bm̂+

(

2Bm̂
F

)2[ 1
32π2 log

(2Bm̂)

µ2 +2l r
3(µ)

]

+ · · · (2.4)

with M2 = 2Bm̂ and remember thatB 6= B0, F 6= F0, the constants in two and three flavour ChPT
are not necessarily the same. The chiral logarithm is the log(2Bm̂) term. The infinities are treated
by the relation between the bare and renormalized couplingsand the renormalized couplings do
depend on the renormalization scaleµ and the scheme used.

1It is not a gauge symmetry since no kinetic terms for the external fields are included.
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In two-flavour ChPT [14] one uses conventionally the quantities l̄ i = 32π2

γi
l r
i (µ)− log M2

π
µ2 .

which are independent of the scaleµ . For 3 and more flavours, some of theγi are zero and one uses
the renormalized constantsLr

i (µ) directly. The result is in principle independent ofµ but when
estimating some of the constants some choices might be better than others. The most standard
value isµ = mρ = 0.77 GeV since if we chooseµ ≈ mπ , mK the chiral logarithms vanish and if we
pick a larger scale of about 1 GeV thenLr

5(µ)≈ 0 and arguments using a large number of colours,
Nc → ∞ are strongly violated.

A question which often comes up is in which quantities to expand, in particular whether to use
lowest-order or physical quantities. I would like to stresshere that the expansion is in momenta and
masses but that it isnot unique. There simply is no best way to do the expansion since relations
between the masses, e.g. the Gell-Mann–Okubo relation, exist. But even more, often there are
relations between the kinematical quantities and masses. An example isπK scattering withs+
t + u = m2

π +m2
K , or one can even use the scattering angle as a kinematical quantity. A related

note is that there can be remainingµ-dependence in a calculation where theµ-dependence is then
higher order. A naive example was discussed in the talk and can be found in [20] showing that the
apparent convergence of the chiral series can differ very much depending on what quantities one
expands in. In general, I prefer using the physical masses since thresholds are correct and the chiral
logarithms do come from physical particles propagating. However, sometimes there are simply too
many choices of physical masses possible, especially in partially quenched and staggered ChPT,
and for the sake of simplicity it might be easier to keep lowest-order masses everywhere.

3. Determining low-energy-constants in the continuum

Lattice QCD has now reached the stage where they can start determining the ChPT LECs. A
review is the FLAG collaboration [21] and talks at this conference that had results on LECS are
[10, 22 – 24].

For the two-flavour constants the status has not really changed much since the previous chiral
dynamics. The constants̄l1 to l̄4 are determined from ChPT at orderp6 and the Roy equation
analysis inππ andFS [25]. A related talk is [26].l̄5 and l̄6 come fromFV andπ → ℓνγ [27, 28]
and fromΠV −ΠA [29]. Some related work using similar sum rules is [30]. In conclusion:

l̄1 =−0.4±0.6, l̄2 = 4.3±0.1, l̄3 = 2.9±2.4,

l̄4 = 4.4±0.2, l̄5 = 12.24±0.21, l̄6− l̄5 = 3.0±0.3,

l̄6 = 16.0±0.5±0.7.

and l7 ∼ 5 ·10−3 from π0-η mixing [14]. In the two-flavour case the contribution from the order
p6 LECs was small so the uncertainty on estimating those is not very important.

The uncertainty on estimates of the orderp6 LECs, theCr
i , in the three flavour case is much

more important becausem2
K ,m

2
η ≫m2

π . The largerCr
i dependent contributions make their estimates

much more relevant. Typically, if the term multiplying a particularCr
i leads to a kinematical depen-

dence it can be measured and the estimates tested. But if it leads only to a higher order quark-mass
dependence they lead to experiment in a 100% correlated way with the orderp4 LECs, theLr

i .
Here we really need the lattice, typically the latter type ofCr

i need scalars to estimate their values
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Figure 3: The quality of the relations found in [31]. Shown are the NLO and NNLO predictions for
combinations of observables with vanishes NNLO LEC contributions as well as the experimental/dispersive
results for the same combinations.

from resonance exchance and are thus intrinsically less well estimated. In addition, often the large
Nc suppressed terms in the orderp6 lagrangian contribute with large coefficients as well and all
estimates so far of the LECs rely on largeNc to a large extent. One big question is thus whether we
are really testing ChPT or simply doing a phenomenological fit. In order to answer this question
a systematic search for relations that are independent of theCr

i was done [31]. We found there 35
relations between 76 observables and of these 13 had sufficient data to study their success. There
were 7 relations inππ scattering which worked about the same for two and three flavour ChPT.
The two relations involvinga−3 did not work well in either case. Of the 5 extra relations involving
ππ andπK scattering three worked well, one of the bad ones involveda−3 and the last one had very
large NNLO corrections. The final relation involvesKℓ4 and did not work well probably because
ChPT fails to describe the quadratic slope in theF form-factor [32, 33]. The quality of the relations
is shown in Fig. 3. The conclusion is that three flavour ChPT “sort of” works taking into account
that the relations involve very large correlations and thatthus the experimental or dispersive input
errors might be underestimated.

The previous major fit to determine theLr
i using NNLO formulas dates back to 2001 [34].

Given that many more calculations in three flavour ChPT at NNLO have been performed since
and that the experimental input used then has also changed, an update has become necessary. This
was done in [35] and the main results are summarized in Tab. 2.The old programs in the isospin
conserving versions were rewritten in C++ for this purpose.The first column uses the old input
values and reproduces the old fit [34] which was done isospin violation included. The next columns

6



P
o
S
(
C
D
1
2
)
0
0
2

Chiral Perturbation Theory and Mesons Johan Bijnens

fit 10 iso NA48/2 FK/Fπ All ⋆ All

old data ππ, πK, 〈r2
S〉 ms/m̂

103Lr
1 0.39±0.12 0.88 0.87 0.89 0.88±0.09

103Lr
2 0.73±0.12 0.79 0.80 0.63 0.61±0.20

103Lr
3 −2.34±0.37 −3.11 −3.09 −3.06 −3.04±0.43

103Lr
4 ≡ 0 ≡ 0 ≡ 0 0.60 0.75±0.75

103Lr
5 0.97±0.11 0.91 0.73 0.58 0.58±0.13

103Lr
6 ≡ 0 ≡ 0 ≡ 0 0.08 0.29±0.85

103Lr
7 −0.30±0.15 −0.30 −0.26 −0.22 −0.11±0.15

103Lr
8 0.60±0.20 0.59 0.49 0.40 0.18±0.18

χ2 0.26 0.01 0.01 1.20 1.28
dof 1 1 1 4 4

Table 2: The main new fit of theLr
i of [35]. The various columns show the changes w.r.t. the old fit of [34].

give the results from including the NA48/2 data on the form factors [36], the new value ofFK/Fπ ,
the inclusion ofππ, πK scattering and the scalar radius and finally the new value ofms/m̂. The
LEC that changed most at each step is put in a box. In the final result one note significant values
for theNc-suppressed constantsLr

4,L
r
6, albeit with large errors and the fact the the largeNc-relation

2Lr
1 = Lr

2 no longer holds well.

A large number of variations on the fit were tried in [35] by letting µ free and varying the input
used for theCr

i . All of these gave similar values for theLr
i . However, a problem occurred when

including the relation between the 2 and 3-flavour LECs of [37]. In order for getting this relation
to work well we needed nonzero values for at least someNc-suppressedCr

i . In [35] a large effort
was done to find reasonable lookingCr

i that allowed to get good fits to all of the inputs. Many were
found but there is no good ground to prefer any of these. More work especially in trying to include
lattice results is definitely needed. For now, fit All of Tab. 2and [35] should be regarded as the
standard values for theLr

i .

4. Hard pion ChPT

The usual formulation of the powercounting in mesonic ChPT [13] assumes that all the mo-
menta in all diagrams are soft and this allows the powercounting to work as simple dimensional
counting. In baryon and heavy meson ChPT one takes a step further. There is a line with a heavy
mass running through all diagrams but in a way all spatial momenta can still be considered small.
In vector meson ChPT it has been argued that it is possible to also include diagrams where lines
take a hard momentum, but not a hard mass [38]. This type of arguments was used by Flynn and
Sachrajda [39] to obtain results forKℓ3 in the heavy Kaon limit also away from the end-point.
These arguments, as described below were generalized and applied to a larger number of processes
in [40 – 43]. Some doubt on the simple arguments has been presented in [44, 45].

The underlying idea behind hard pion ChPT is that nonanalyticities in the the light masses,
e.g. pion, come from soft lines in the diagrams. The couplings of soft particles and in particular
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soft pions are constrained by current algebra via

lim
q→0

〈πk(q)α |O|β 〉=− i
Fπ

〈α |
[

Qk
5,O
]

|β 〉 , (4.1)

and nothing prevents hard pions to be present in the states|α〉 or |β 〉. One thus expects that by
heavily using current algebra it should be possible to obtain chiral logarithms for almost any pro-
cess. one can always expand in soft momenta over hard momenta/large masses in a way which
is analogous to the treatment of infrared divergences in QED. The general argument was already
described in my previous chiral dynamics talk [3] and can be found in [40 – 42] as well. It roughly
goes as follows: Take any diagram with a particular externaland internal momentum configura-
tion. Identify the soft lines and cut them. The resulting part is analytic in the soft stuff and should
thus be describable by an effective Lagrangian with coupling constants dependent on the external
given momenta (Weinberg’s folklore theorem [13]) Lagrangian in hadron fields with all orders of
derivatives. This effective Lagrangian should be thought of as a Lagrangian in hadron fields but
all possible orders of the momenta included: possibly an infinite number of terms If symmetries
are present, the Lagrangian should respect them. The problem is that the simple power-counting
is gone In some cases we can argue that up to a certain order in the expansion in light masses, not
momenta, matrix elements of higher order operators are reducible to those of lowest order, first
done in [39] forKℓ3 and later generalized. The Lagrangian should be complete inthe neighbour-
hood of the original process and loop diagrams with this effective Lagrangian should reproduce the
non-analyticities in the light masses. The latter is the crucial part of the argument.

A check at two-loop order has been performed for the pion vector and scalar form-factor in
[41, 42] and was found to work well. Applications to theB,D → π,K,η vector form-factors can
be found in [42] and to some charmonium decays in [43]. In Fig.4 I show how the inclusion of the
chiral logarithms improves the relation between theD → π andD → K form-factors [42] using the
CLEO data [46].

Recently [44, 45], the test done at two loops was extended to higher orders. What was found
there was that the hard pion ChPT prediction held to all orders for the elastic intermediate state
but failed in a three loop calculation of the inelastic four-particle-cut part. For details I refer to
[44, 45]. The arguments for the general method are the same asfor IR divergences, SCET,. . . , so I
do believe these to be valid. Something like hard pion ChPT should exist. The arguments for the
proportionality to the lowest order are much weaker and assume that each soft propagator has a
free momentum. The calculation of [45] was done using dispersive methods and a full calculation
at 3 loops will be very difficult but would allow a better studyof why the arguments failed. The
ultimate would of course be to find a proper power-counting under the given assumptions.

5. Beyond QCD

The methods of effective field theory and in particular ChPT can also be used for extensions. A
simple extension is to take QCD withN light flavours but one can also envisage usingN fermions in
different representations of the gauge group. The representations can be complex, real or pseudo-
real so we have in general three generic cases to study for thespontaneous breaking of the global
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Figure 4: The left plot shows the form-factorf+ in D→ πeν andD→Keν decays from CLEO [46]. In the
right hand side theD→Keν has been corrected with the chiral logarithms viaf+D→π = f+D→KFD→π/FD→K

[42].

symmetries [47, 48]

SU(N)×SU(N)→ SU(N), SU(2N)→ SO(2N), SU(2N)→ Sp(2N) . (5.1)

The cases correspond to a complex, real and pseudo-real representation for theN fermions. The
global symmetry group in the latter two cases isSU(2N) since both fermion and antifermion are in
the same representation of the gauge group. Many one-loop results existed especially for the first
case, the equal mass case has been pushed to two-loop order in[49 – 51]. The main observation
[49] is that the whole machinery developed for ChPT can be brought over with a few simple mod-
ifications to the three cases given above. This allowed us to perform the calculations for the mass
and decay constants [49], meson-meson scattering [50] and the electroweak precision parameters
[51]. The main idea was that lattice calculation can use our formulas to extrapolate to the massless
case, see e.g. [52].

The main trick involved is that in all cases mesons can be described by a unitary matrixU =

exp(iφaXa/(
√

2F)) with theXa a different set of generators for the three cases. All flavoursums
in the equal mass case can be done using the relations

〈XaAXaB〉= 〈A〉〈B〉− 1
NF

〈AB〉 , 〈XaA〉〈XaB〉= 〈AB〉− 1
NF

〈A〉〈B〉 .

〈XaAXaB〉= 〈A〉〈B〉
2

+
1
2
〈AJSBTJS〉−

〈AB〉
2NF

, 〈XaA〉〈XaB〉= 1
2
〈AB〉+ 1

2
〈AJSBTJS〉−

〈A〉〈B〉
2NF

.

〈XaAXaB〉= 〈A〉〈B〉
2

+
1
2
〈AJABTJA〉−

〈AB〉
2NF

, 〈XaA〉〈XaB〉= 1
2
〈AB〉− 1

2
〈AJABTJA〉−

〈A〉〈B〉
2NF

.

(5.2)

The lines are for the complex, real and pseudo-real case andJS=

(

0 I
I 0

)

, JA =

(

0 −I
I 0

)

.
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QCD Adjoint 2-colour

aV n− 1
n n+ 1

2 − 1
2n n− 1

2 − 1
2n

bV 16nLr
6+8Lr

8+4H r
2 32nLr

6+8Lr
8+4H r

2 32nLr
6+8Lr

8+4H r
2

cV
3
2

(

−1+ 1
n2

)

3
8

(

−1+ 1
n2 − 2

n +2n
)

3
8

(

−1+ 1
n2 +

2
n −2n

)

dV −24
(

n2−1
) (

LA+
LB
n

)

−12
(

2n2+n−1
)(

2LA+
LB
n

)

−12
(

2n2−n−1
)(

2LA+
LB
n

)

eV 1− 1
n2

1
4

(

1− 1
n2 +

2
n −2n

)

1
4

(

1− 1
n2 − 2

n +2n
)

fV 48
(

Kr
25+nKr

26+n2Kr
27

)

r r
VA r r

VT

gV 8
(

n2−1
) (

LA+
1
nLB
)

4
(

2n2+n−1
)(

2LA+
1
nLB
)

4
(

2n2−n−1
)(

2LA+
1
nLB
)

Table 3: The coefficients appearing the corrections to the vacuum-expectation-value for the three generic
cases withn flavours. Table from [49]. We have defined the abbreviationsLA = Lr

4−2Lr
6 andLB = Lr

5−2Lr
8.

As an example I quote the results for the vacuum expectation value〈q̄q〉 for all three cases.

〈qq〉= 〈qq〉LO + 〈qq〉NLO + 〈qq〉NNLO .

〈qq〉LO ≡ ∑
i=1,NF

〈qRiqLi +qLiqRi〉LO =−NFB0F2

〈qq〉NLO = 〈qq〉LO

(

aV
A(M2)

F2 +bV
M2

F2

)

,

〈qq〉NNLO = 〈qq〉LO

(

cV
A(M2)2

F4 +
M2A(M2)

F4

(

dV +
eV

16π2

)

+
M4

F4

(

fV +
gV

16π2

)

)

. (5.3)

I used hereM2 = 2B0m̂andA(M2) =− M2

16π2 log M2

µ2 . The coefficients appearing are given in Tab. 3.
Note the similarity between the different results and the existence of a number of largen relations
between the various cases [49].

6. Leading logarithms

The last part on which I want to report is some recent progressin calculating leading logarithms
in effective field theories. Some of this is also mentioned inthe talk by Kampf [53]. The underlying
argument goes something like: Take a quantity with a single scale:F(M). The dependence on the
scale in field theory is typically logarithmic, so withL = log(µ/M)we get

F = F0+F1
1 L+F1

0 +F2
2 L2+F2

1 L+F2
0 +F3

3 L3+ · · · (6.1)

The leading logarithms are the terms withFm
m Lm. TheFm

m can be more easily calculated than the
full result. This follows from the fact that for any physicalquantityµ (dF/dµ)≡ 0 and ultraviolet
divergences in Quantum Field Theory are always local. In renormalizable theories this is embedded
in the renormalization group but for effective field theories such as QCD there is no simple recursive
argument. Weinberg already argued that one can get away withonly one-loop calculations to obtain
the leading logarithms [13]. This was proven in [54] and in a somewhat simpler way in [55].
The underlying reason is that the cancellation of nonlocal divergences gives a set of consistency
relations between contributions of different loop order asexplained in [56]. In the massless case
[57 – 59] this leads to an almost analytic expression to very high orders since the diagrams remain
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fairly simple to all orders. In the massive case diagrams with any number of external legs show
up but the whole process can be automatized since in [55] it was realized that the Lagrangians at
higher order do not need to be minimal. Obtaining the minimalLagrangian at each order would
have been essentially impossible. In the massive case all published results relate to theO(N)model,
masses in [55], decay constants and vacuum expectation values as well as form-factors and meson-
meson scattering in [60] and the anomalous sector [61]. Extension toSU(N)×SU(N) has been
done in the massless case [59] and is in progress for the massive case. I refer to the original papers
for more results but a few highlights are that the largeN (number of flavours) limit is not a good
approximation for any of the quantities calculated. The series seem to converge in the expected
regions. None of the leading logarithms calculated seems tobe unusually large. Unfortunately the
hope that we might recognize the general result for arbitrary N proved in vain.
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