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1. Introduction

This talk is dedicated to my friend and collaborator Ximod&mwho died since the previous
Chiral Dynamics in Berne in 2009. For those of you who like now more | recommend looking
up the slides from my talk at the symposium in Granada in hismorg [1]. We have been very
frequent collaborators for a long time.

| will not attempt to give an overview of Chiral Perturbatidheory (ChPT) for mesons in this
talk. Even with the restrictions to mesons the subject ig lage. | have given several review talks
earlier [2, 3] as well as written a review article of mesonttRT at two-loop order [4]. References
to other reviews and lectures can be found on my ChPT webddgé¢hp remainder there has
admittedly a strong bias towards my own work.

I will give a short introduction to ChPT where | emphasize thajor ideas underlying the
method. Afterwards | will give an overview of the work thatshlaeen happening in Lund in this
area in the last few years. In addition there are many mokes tat this conference related to
mesonic ChPT. As far as the plenary talks are concerned #resthe experimental tests from
NA48 [6] and KLOE [7], the connection with dispersion retats [8, 9] and the connection with
lattice QCD [10-12]. Most of the talks in the working group @oldstone Bosons also fall under
the topic of this talk.

The remainder is first a short introduction to ChPT, then aanoew of the latest fit of the
low-energy-constants, a few remarks about hard-pion-CédWell as some comments about ap-
plications of ChPT beyond QCD and some leading logarithnautations to high orders. The
treatment is extremely cursory for all cases.

2. Chiral Perturbation Theory

ChPT in its modern form was introduced by Weinberg [13], aad$&r and Leutwyler [14, 15].
The best way to characterize ChPT is:

Exploring the consequences of the chiral symmetry of QGD
and its spontaneous breaking
using effective field theory techniques

A good reference that shows in detail all the underlying aggions is [16].

For an effective field theory, one needs to indicate thresgthi the relevant degrees of free-
dom, a power-counting principle to have predictivity anel éissociated range of validity. For ChPT
these are

Degrees of freedom: The Goldstone Bosons from the spontaneous breaking of thed simme-
try present in QCD in the massless limit.

Power-counting: Dimensional counting in momenta and masses where mesoresnasd mo-
menta are counted the same in the standard counting.

Range of validity: The breakdown scale is when effects that are not includednbeémportant.
For mesonic ChPT these are clearly the meson resonances ralévant channelsM, is
thus clearly the end of the range.
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rules: one loop example:
P (P?)?(1/p?)?p* = p*
Figure 1: We need to pick _ 1/
a vacuum expectation value (p?) (1/p?) p* = p*
indicated by the arrow. The  [d*p N

massless mode corresponds

to an excitation along the bot- Figure2: An example of the power-counting, on the left the rules for

tom of the valley. the lowest order vertex, propagator and loop integration.ti@ right
showing how it leads to the two one-loop diagrams befigvhile the
tree level lowest-order vertex .

Let me show these now in a little more detail. Quantum Chromathics (QCD) fong equal mass
quarks has an obvious global symmetry under the continugeschange of the quarl&U(ng).
Looking at the purely strong Lagrangian (density)

Zocp = zd lig Do +igrDOR — Mg (ORAL + OLOR)] , (2.1)
g=u,d,s
we see that in the limit afng = O there is actually the larg&U(nr ) x SU(ng )r global symmetry.
Another way to see is that in the massless case left- and-hiyided are no longer related by
Lorentz-transformations since we cannot go the rest-frah@emassless particle.

The global chiral symmetrgU(3). x SU(3)r in QCD is spontaneously broken to the vector
subgrouSU(3)y by the vacuum expectation valégd) = (q.gr+qrdL) # 0. Since in this process
8 generators are broken we get 8 Goldstone Bosons and ttezadtions vanish at zero momentum.
This is shown pictorially for one broken generator in FigThe fact that the interaction vanishes at
zero momentum allows us to introduce a proper power-cograiong the lines discussed in [13].
This is shown for the example afrr-scattering at one loop in Fig. 2.

The basic principle just described has been used in very miaclymstances. One needs to
decide which chiral perturbation theory is appropriatetifier problem at hand. Some examples are

e Which chiral symmetrySU(N¢ ). x SU(Ns)g, for Ns = 2,3,... and extensions to (partially)
quenched

e Or beyond QCD

e Space-time symmetry: Continuum or broken on the latticds&Mi, staggered, mixed action

e \olume: Infinite, finite in space, finite T

e Which interactions to include beyond the strong one

e Which particles included as non Goldstone Bosons

e My general belief: if it involves soft pions (or sdft, n) some version of ChPT exists.
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2 flavour 3 flavour 3+3 PQChPT
P’ | F,B 2 | FR,By 2 | Fy,Bo 2
p* | I 743 [ LI HT 1042 | L AT 1142
p° | o 52+4| CI'  90+4| KI  112+3

Table1: The number of terms at LO [19], NLO [14, 15]and NNLO [17] foastlard mesonic ChPT.

An important technical step is the inclusion of externald&ebr sources. This allows to make
the chiral symmetry local[14, 15]. The manifold at the bottom of the potential in a Syatiy
breakdownSU(ng ). x SU(ng) x SU(ng )y is also anSU(ng) manifold. We thus parametrize this
by anng x ng matrix which forng = 3 is

m N8
—=+ = mt K+
V2 /6
U(g) = expliv20/R), with o= | o 7,7 o 2.2)
V2 /6
K- Ko 2
V6
The lowest-order (LO) Lagrangian is
I:02 fpH t t
.,2”227{<DHU DHU)+ (x'U+xU"}, (2.3)

with the covariant derivativéd,U = d,U —ir U +iUl,, and the left and right external cur-
rents/fields/sources:(l), = v, + (—)a,. The scalar and pseudo-scalar external densities are in-
clude viay = 2By(s+ip). The latter allow the inclusion of quark masses via the saddmsity:
S=.# +---. The notation implies a flavour tra¢@) = Trg (A). The next-to-leading-order (NLO)
Lagrangian was worked out by Gasser and Leutwyler [14, 18]tas 10+2 terms. The next-to-
next-to-leading-order (NNLO) Lagrangian is also known][ag well as its infinities [18]. The
number of terms is summarized in Tab. 1. All the cases lisbeve have extra terms in the La-
grangian with the exception of finite volume and temperaturd in most cases the Lagrangian
is known to NLO. The constants in the Lagrangian are oftearrefl to as low-energy-constants
(LECs).

So, what does ChPT really predict given the large numbeeefdonstants. It relates processes
with different numbers of pseudo-scalars and includegisand the eightfold waySU(3)y). The
chiral logarithms can be seen in the two-flavour ChPT NLO esgion for the pion mass[14]

T2 — 2Bt <2Bm>2[ 1 . (2Bm)

= 327T2Iog 72 +25(p) |+

(2.4)

with M? = 2Brh and remember thd +# B, F # Fo, the constants in two and three flavour ChPT
are not necessarily the same. The chiral logarithm is th@Bi) term. The infinities are treated
by the relation between the bare and renormalized couplngisthe renormalized couplings do
depend on the renormalization scalend the scheme used.

Litis not a gauge symmetry since no kinetic terms for the exsddields are included.
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In two-flavour ChPT [14] one uses conventionally the quizmiiti_: %I{(u) - Iog“:—;fr.
which are independent of the scaleFor 3 and more flavours, some of thare zero and one uses
the renormalized constants(u) directly. The result is in principle independent fbut when
estimating some of the constants some choices might ber ltlestie others. The most standard
value isp = m, = 0.77 GeV since if we choosg ~ my;, mk the chiral logarithms vanish and if we
pick a larger scale of about 1 GeV thefyu) ~ 0 and arguments using a large number of colours,
N; — oo are strongly violated.

A question which often comes up is in which quantities to exjpan particular whether to use
lowest-order or physical quantities. | would like to strasse that the expansion is in momenta and
masses but that it isot unique. There simply is no best way to do the expansion siele¢ions
between the masses, e.g. the Gell-Mann—Okubo relatiost. eBut even more, often there are
relations between the kinematical quantities and massesexample isiK scattering withs+
t +u=m+mZ, or one can even use the scattering angle as a kinematicatityua? related
note is that there can be remainipgdependence in a calculation where thelependence is then
higher order. A naive example was discussed in the talk andbedound in [20] showing that the
apparent convergence of the chiral series can differ verghnaepending on what quantities one
expands in. In general, | prefer using the physical masses $iiresholds are correct and the chiral
logarithms do come from physical particles propagatingwel@er, sometimes there are simply too
many choices of physical masses possible, especially trafyamquenched and staggered ChPT,
and for the sake of simplicity it might be easier to keep lawmder masses everywhere.

3. Determining low-ener gy-constantsin the continuum

Lattice QCD has now reached the stage where they can startrideing the ChPT LECs. A
review is the FLAG collaboration [21] and talks at this caefece that had results on LECS are
[10, 22-24].

For the two-flavour constants the status has not really @wnguch since the previous chiral
dynamics. The constants to 1, are determined from ChPT at ordp? and the Roy equation
analysis infit and Fs [25]. A related talk is [26].I_5 andlg come fromR, and T — vy [27, 28]
and fromly — M [29]. Some related work using similar sum rules is [30]. Imdasion:

I, =—0.4+0.6, l,=4.3+0.1, l3=29+24,
l,=4.4+0.2, ls = 12.24-+0.21, lg—Is=3.0+0.3,
lg=16.0+0.5+0.7.

andl; ~ 5-103 from n°-n mixing [14]. In the two-flavour case the contribution fronetbrder
p® LECs was small so the uncertainty on estimating those is emytimportant.

The uncertainty on estimates of the orqlﬁrLECs, theC/, in the three flavour case is much
more important becaumz(,m,z7 > m2. The largelC’ dependent contributions make their estimates
much more relevant. Typically, if the term multiplying a pewlar C leads to a kinematical depen-
dence it can be measured and the estimates tested. Butitlig tmly to a higher order quark-mass
dependence they lead to experiment in a 100% correlated \ithythe orderp* LECs, thelL!.
Here we really need the lattice, typically the latter type&Cpheed scalars to estimate their values
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Figure 3: The quality of the relations found in [31]. Shown are the NL@aNLO predictions for
combinations of observables with vanishes NNLO LEC coantiins as well as the experimental/dispersive
results for the same combinations.

from resonance exchance and are thus intrinsically ledses#iinated. In addition, often the large
N suppressed terms in the ordeft lagrangian contribute with large coefficients as well arid al
estimates so far of the LECs rely on lafgeto a large extent. One big question is thus whether we
are really testing ChPT or simply doing a phenomenologicallifi order to answer this question
a systematic search for relations that are independenedtivas done [31]. We found there 35
relations between 76 observables and of these 13 had sufffaga to study their success. There
were 7 relations it scattering which worked about the same for two and three dla@hPT.
The two relations involving, did not work well in either case. Of the 5 extra relations imirg
rrand 7K scattering three worked well, one of the bad ones involzednd the last one had very
large NNLO corrections. The final relation involvg, and did not work well probably because
ChPT fails to describe the quadratic slope infh®rm-factor [32, 33]. The quality of the relations
is shown in Fig. 3. The conclusion is that three flavour ChR3rt“ef” works taking into account
that the relations involve very large correlations and that the experimental or dispersive input
errors might be underestimated.

The previous major fit to determine thé using NNLO formulas dates back to 2001 [34].
Given that many more calculations in three flavour ChPT at BNiave been performed since
and that the experimental input used then has also changeghdate has become necessary. This
was done in [35] and the main results are summarized in Tabh&.old programs in the isospin
conserving versions were rewritten in C++ for this purpo$ie first column uses the old input
values and reproduces the old fit [34] which was done isospiation included. The next columns
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fit10iso  NA48/2 Fg/Fr All Al

old data i, 1K, (r3) mg/mM
10°L; | 0.3940.12 0.87 089 0.88-0.09
10°L, | 0.73+012 079 080 063 0.61+0.20
10°L5 | —2.34+0.37 -311 -309  —-306 | —3.04+043
10°LY, =0 =0 =0 0.60 0.75+0.75
10°LL | 0974011 091 |0.73] 0.58 0.58+0.13
10°LY =0 =0 =0 0.08
10°%L% | -0.30+0.15 -030 -026  —022 | -011+015
10°L5 | 0.60+020 059 049 040 0.18+0.18
X2 0.26 001 001 120 1.28
dof 1 1 1 4 4

Table2: The main new fit of th&| of [35]. The various columns show the changes w.r.t. the oluf {34].

give the results from including the NA48/2 data on the fortdas [36], the new value d¥ /Fr,
the inclusion ofrrt, K scattering and the scalar radius and finally the new valuesgf. The
LEC that changed most at each step is put in a box. In the fisaltrene note significant values
for the Nc-suppressed constarit§, Lg, albeit with large errors and the fact the the lalgerelation
2L = L5 no longer holds well.

A large number of variations on the fit were tried in [35] bytileg 1 free and varying the input
used for theCl. All of these gave similar values for tHé. However, a problem occurred when
including the relation between the 2 and 3-flavour LECs of.[37 order for getting this relation
to work well we needed nonzero values for at least sbisuppresse€. In [35] a large effort
was done to find reasonable looki@fthat allowed to get good fits to all of the inputs. Many were
found but there is no good ground to prefer any of these. Manéwspecially in trying to include
lattice results is definitely needed. For now, fit All of Taba@d [35] should be regarded as the
standard values for th.

4. Hard pion ChPT

The usual formulation of the powercounting in mesonic ChP3] pssumes that all the mo-
menta in all diagrams are soft and this allows the powerdogrib work as simple dimensional
counting. In baryon and heavy meson ChPT one takes a stéweifuithere is a line with a heavy
mass running through all diagrams but in a way all spatial ertan can still be considered small.
In vector meson ChPT it has been argued that it is possibléstoiraclude diagrams where lines
take a hard momentum, but not a hard mass [38]. This type ohagts was used by Flynn and
Sachrajda [39] to obtain results fif;3 in the heavy Kaon limit also away from the end-point.
These arguments, as described below were generalized plieldsj a larger number of processes
in [40—-43]. Some doubt on the simple arguments has beenrneesia [44, 45].

The underlying idea behind hard pion ChPT is that nonarwigs in the the light masses,
e.g. pion, come from soft lines in the diagrams. The coupliofjsoft particles and in particular
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soft pions are constrained by current algebra via
. i
im (1(q)a|O|B) = — = (al | Q& O] 1B). (4.1)
0—0 Fr

and nothing prevents hard pions to be present in the sfatesr |3). One thus expects that by
heavily using current algebra it should be possible to abthiral logarithms for almost any pro-
cess. one can always expand in soft momenta over hard maollaeggamasses in a way which
is analogous to the treatment of infrared divergences in QHEI2 general argument was already
described in my previous chiral dynamics talk [3] and candamél in [40—42] as well. It roughly
goes as follows: Take any diagram with a particular exteamal internal momentum configura-
tion. Identify the soft lines and cut them. The resultingtpganalytic in the soft stuff and should
thus be describable by an effective Lagrangian with cogplionstants dependent on the external
given momenta (Weinberg’s folklore theorem [13]) Lagramgin hadron fields with all orders of
derivatives. This effective Lagrangian should be thoudhdsoa Lagrangian in hadron fields but
all possible orders of the momenta included: possibly amitefinumber of terms If symmetries
are present, the Lagrangian should respect them. The prndbléhat the simple power-counting
is gone In some cases we can argue that up to a certain order @xpansion in light masses, not
momenta, matrix elements of higher order operators areciigiéuto those of lowest order, first
done in [39] forK,3 and later generalized. The Lagrangian should be completeeineighbour-
hood of the original process and loop diagrams with thiscéiffe Lagrangian should reproduce the
non-analyticities in the light masses. The latter is theialpart of the argument.

A check at two-loop order has been performed for the pionorembd scalar form-factor in
[41, 42] and was found to work well. Applications to tBeD — 11,K, n vector form-factors can
be found in [42] and to some charmonium decays in [43]. In &igshow how the inclusion of the
chiral logarithms improves the relation between he> mandD — K form-factors [42] using the
CLEO data [46].

Recently [44, 45], the test done at two loops was extendedhteehorders. What was found
there was that the hard pion ChPT prediction held to all ardier the elastic intermediate state
but failed in a three loop calculation of the inelastic f@article-cut part. For details | refer to
[44, 45]. The arguments for the general method are the saffioe B divergences, SCET,...,so |
do believe these to be valid. Something like hard pion ChRlilshexist. The arguments for the
proportionality to the lowest order are much weaker andrassthat each soft propagator has a
free momentum. The calculation of [45] was done using d&pemethods and a full calculation
at 3 loops will be very difficult but would allow a better studfwhy the arguments failed. The
ultimate would of course be to find a proper power-countindaurthe given assumptions.

5. Beyond QCD

The methods of effective field theory and in particular ChBif also be used for extensions. A
simple extension is to take QCD wibhlight flavours but one can also envisage usihfgrmions in
different representations of the gauge group. The reptasems can be complex, real or pseudo-
real so we have in general three generic cases to study feptirdaneous breaking of the global
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Figure4: The left plot shows the form-factdr. in D — mev andD — Kev decays from CLEO [46]. In the
right hand side th® — Kev has been corrected with the chiral logarithmsfia_.» = f1p_k Fo—n/Fo—k
[42].

symmetries [47, 48]
SU(N) x SU(N) — SU(N), SU(2N) — SQ2N), SU(2N) — SH2N). (5.2)

The cases correspond to a complex, real and pseudo-reakegpation for thé\ fermions. The
global symmetry group in the latter two caseSi$(2N) since both fermion and antifermion are in
the same representation of the gauge group. Many one-leojtsexisted especially for the first
case, the equal mass case has been pushed to two-loop ofd@riB1]. The main observation
[49] is that the whole machinery developed for ChPT can beditbover with a few simple mod-
ifications to the three cases given above. This allowed usitimpn the calculations for the mass
and decay constants [49], meson-meson scattering [50]renel¢ctroweak precision parameters
[51]. The main idea was that lattice calculation can use ounéilas to extrapolate to the massless
case, see e.g. [52].

The main trick involved is that in all cases mesons can beritest by a unitary matrix) =
exp(i@dX?/(y/2F)) with the X2 a different set of generators for the three cases. All flagouns
in the equal mass case can be done using the relations

1

(XZAXTB) = (A)(B) — N—1F<AB> ; (XA)(X?B) = (AB) — Ne (A)(B).

(XAAXAB) — <A>2<B> 4 :—2L<AJSBTJ5> _ <2A—I\:3|:> . (XBA)(X?B) — :—2L<AB> 4 %(AJSBTJS> - <’;>I\f> .

(X3AX®B) = —<A>2<B> + :—2L<AJABTJA> — <2A—I\:3|:> ., (XBA)(X?B) = :—2L<AB> — %(AJABTJA> — Lz‘i\f? .
(5.2)

The lines are for the complex, real and pseudo-real case]gmc(? :)) ,da = (? —OI ) .
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QCD Adjoint 2-colour
N R n—1-7%
by | 16nL5-+8L5+4H] 32nLg + 8LE + 4H] 32nLg -+ 8L5 + 4H]
o | 3(-1+3) 31t gan) 31t
dv | —24(n?—1) (La+t2) | —12(2n®+n—1) (2La+2) | —12(2n* —n—1) (2La+ )
e 1% Ha- i) g o)
fv | 48(Kfs+ nKhe +nPKy) A T
gv | 8(°—1) (La+iLg) | 4(2n®+n—1)(2La+3ilg) | 4(2n*—n—1)(2La+ iLs)

Table 3: The coefficients appearing the corrections to the vacuupe&ation-value for the three generic
cases witm flavours. Table from [49]. We have defined the abbreviatigns: L, — 2L§ andLg = Lf — 2Lg.

As an example | quote the results for the vacuum expectatibreyqq) for all three cases.

(@9 = (@q)Lo + (AP nLo + (AO)NNLO -
(ddo = ;w (0L + TLiGRi)LO = —NFBoF?

| A(M?) |v|2> |

(@dnio = (9o (av 2 +b\,E

AM?)Z2  M2A(M? M4
(dd)nnLo = (Ao (Cv (F4) + F(4 ) (dv + 1:‘7/_[2) + 7 (fv + %)) . (5.3)

| used herev? = 2BgrhandA(M?) = —% Iog'x'—i . The coefficients appearing are given in Tab. 3.
Note the similarity between the different results and thisterce of a number of largerelations
between the various cases [49].

6. Leading logarithms

The last part on which | want to report is some recent prognesalculating leading logarithms
in effective field theories. Some of this is also mentionethatalk by Kampf [53]. The underlying
argument goes something like: Take a quantity with a sincgdesF (M). The dependence on the
scale in field theory is typically logarithmic, so with= log (/M )we get

F=Fo+FlL+F +FAL2+FAL+ R+ FL3+ - (6.1)

The leading logarithms are the terms WiRl'L™. The F' can be more easily calculated than the
full result. This follows from the fact that for any physiaghantity u (dF /du) = 0 and ultraviolet
divergences in Quantum Field Theory are always local. lomaalizable theories this is embedded
in the renormalization group but for effective field thesrgaich as QCD there is no simple recursive
argument. Weinberg already argued that one can get awaymnliftone-loop calculations to obtain
the leading logarithms [13]. This was proven in [54] and inoanewhat simpler way in [55].
The underlying reason is that the cancellation of nonlooardences gives a set of consistency
relations between contributions of different loop ordeeaplained in [56]. In the massless case
[57 —59] this leads to an almost analytic expression to vagk brders since the diagrams remain

10
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fairly simple to all orders. In the massive case diagrams aity number of external legs show
up but the whole process can be automatized since in [55]dtrealized that the Lagrangians at
higher order do not need to be minimal. Obtaining the minitredrangian at each order would
have been essentially impossible. In the massive caselditpad results relate to ti&N) model,
masses in [55], decay constants and vacuum expectatioasvatwell as form-factors and meson-
meson scattering in [60] and the anomalous sector [61]. rEkia toSU(N) x SU(N) has been
done in the massless case [59] and is in progress for theveassie. | refer to the original papers
for more results but a few highlights are that the lakgéhumber of flavours) limit is not a good
approximation for any of the quantities calculated. Théeseseem to converge in the expected
regions. None of the leading logarithms calculated seerbe tmusually large. Unfortunately the
hope that we might recognize the general result for arlyitkaproved in vain.
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