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1. Introduction

In this talk | will consider electromagnetic form factdfs(t) of light pseudoscalar mesofs
(in particularP = m), defined as

(PT(p)IE™ P (p)) = (p+ P)uFe(t), (1.1)

and form factors relevant for the weak semileptonic trams#tP, — P./v (whereP; = B,D or K
andP, = D or m), appearing in the matrix element

(P35 (P3P (p)) = (P + P (1) + (p— P)u f- (1) (1.2)

Here f, (t) is the vector form factor andy(t) = f, (t) + m f_(t) is the so-called scalar form
PR

factor. In the general discussion | shall denote a genededméc form factor byF (t).

At low energies the theoretical description of the hadrdoitn factors is based on Chiral
Perturbation Theory (ChPT), lattice QCD and various tygg€3@©D Sum Rules, while perturbative
QCD is valid at high momentum transfers of spacelike tytpe,—Q? < 0, where it predicts in
general an asymptotic/Q? scaling. At intermediate energies a consistent descripdioes not
exist, the theoretical models proposed in the literatuiegoaffected by large uncertainties.

Analyticity and unitarity have been much exploited in phaemological studies of form fac-
tors, especially in the early sixties, when enthusiastsnafysic S-matrix theory were quotécs
saying that "one of the most remarkable discoveries in aitang particle physics has been that
of the existence of the complex plane”. The question is wdretiiiese properties are still useful
at present, when a successful theory of strong interacagists. The goal of this talk is to show
that, suitably exploited, analyticity and unitarity prdei useful tools as a link between various
descriptions and for making precision predictions at loergres.

The analytic properties of form factors are in general miicipker than those of the scattering
amplitudes (complications like unphysical regions or aalmms thresholds are not encountered in
the cases considered). Causality implies that a genenic flactorF (t) is a real analytic function,
F(t*) = F*(t), in the complex-plane with a cut along the real axis from the specific lowegtuity
thresholdt, to infinity. The discontinuity across the cut is given by anitty, which in the elastic
region reads

ImF(t+ig)=0(t—t.)at)(f5() F(t), t<tpn, (1.3)
whereo (t) = /1—t, /tis the two particle phase spadé(t) = (€291 —1)/(2io(t)) is the partial
wave amplitude with the same spirand isospin quantum numbers, arig is the first inelastic
threshold. This implies in particular Fermi-Watson theore

argF (t+ig)] = g(t),  ty <t <tp, (1.4)

whereéﬂ(t) is the phase-shift of the corresponding partial wave oftielasattering.
The form factors are analytic &= 0, where they admit Taylor expansions convergent inside
the circle passing through the nearest singularities. & bgpansions are written usually as
1
F(t):1+(—5<r,2T>t+ct2+dt3+--- (1.5)
17, Schwinger irParticles, Sources and Fieldgol. 1, page 36, Addison Wesley, 1970.
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for the pion electromagnetic form factor, wheré) denotes the charge radius squared, and

2
fi(t) = f(0) <1+/\4#+%/\{#+--->, k=0, (1.6)
for the weak form factors, wheid is a suitable mass scale.

There are three known types of integral representationshwiskploit analyticity and allow
the analytic continuation of the form factors from the cuptonts inside the analyticity domain:
the standard dispersion relation, based on Cauchy integdathe reality property, written (modulo
subtractions) as

(<) / H /
F () = 1/ ImF (t' +ig)dt 7 (1.7)
/e, t/—t
the Omneés representation, which expresses the functi@mristof its phase
F(t) = P(t)ex t/mdt’ o(t) 5(t) = argF (t+ i) (1.8)
N P\ 7 bt —t) )’ =a ' '

whereP(t) is an arbitrary polynomial accounting for the zerog=@f) at pointst; in the complex
plane,P(t;) = 0, and the representation in terms of the modulus

VE=T 2 In|F(@)|dt ) 1.9)
m o VUt (t-t))’ '

where B(t) is a so-called Blaschke factor, with the propeB(t)| = 1 for t > t,, which also
accounts for the possible zeros at poit8(t) = 0.

None of these standard representations has complete iijeutnaginary part is not directly
measurable, the phasét) is sometimes known from Fermi-Watson theorem in the elasgon,
but is unknown fot > ti,, while the modulugF (t)| is measured directly in some cases, but only on
a limited energy range. Moreover, both the phase and modefussentations require the positions
of the zeros in the complex plane, which are not known. Varinalytic parametrizations are also
often employed, but they have in general little predictiegvpr outside their original range, due to
the phenomenon known as "instability of analytic contirat[1].

In this context, it is remarkable that Okubo [2], back in tlzle 70’, devised an approach
which produced almost model-independent constraints @Khform factors in the physical re-
gion of K — m¢v decays. The method starts with a polarization tensor of tatdei operator,
calculated from current algebra at spacelike momenta, &pldies unitarity and positivity of the
spectral functions in the dispersion relations valid far itvariant amplitudes. These steps lead to
an upper bound on a weighted integral along the unitarityo€tite modulus squared of a related
form factor. From this condition, mathematical techniqaésomplex analysis [3, 4] allow one to
derive bounds on the values of the form factor and its devivatat points inside the analyticity
domain. Okubo approach, known also as "method of unitagiynbs”, was further applied by
Micu [5], Auberson et al. [6], Singh and Raina [7] and othethaus.

A modern version of the approach was put forward in 1981 byrdy Machet and de Rafael
[8], who obtained the input spacelike correlators from yodrdtive QCD and Operator Product
Expansion (OPE) rather than from current algebra. LatederRafael and Taron [9] made a first
application to the semileptonic decays of heavy quarks éncintext of Heavy Quark Effective

F(t) = B(t)exp(
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Theory (HQET) and derived bounds on the slope of the uniVésgar-Wise function. These papers
opened the way to many applications to the pion electromagferm factor and form factors
describing the semileptonic decags— D*)¢v, B — m¢v, D — m¢v andK — m¢v (see [10]-[24]
and references therein). Also, suitable mathematicahiqales were developed for covering more
complex situations, determined by the theoretical and rx@atal progress (for recent reviews
see [25, 26)).

In the present talk | give a brief presentation of these teglas and their applications. After a
short introduction to the standard Okubo approach, | dsouSection 3 three functional extremal
problems related to this approach and its generalizatiorSection 4, | present several applications
to the pion electromagnetic form factor and the form factetevant for the semileptonic decays
D — mv andB — v, leaving the presentation & — 7 v to another talk at this Workshop [27].
A few concluding remarks are given in the final section.

2. Okubo approach

| illustrate the procedure in its modern version appliedthar first time in [8]. We start with
the polarization tensor of the weak curréﬂﬁak relevant for the transitio; — P>/v:

i / X T(O[T {3142K(x)38e3(0) T} 10) = (— gy P+ )T (@P) + GuTo(?),  (2.1)

and write unsubtracted dispersion relations for the catoes:

x1(Q9) = 28002 [Q°N1(—Q%)] = 7_1/0 dtm7 (2.2)
9 1o timMo()
Xo(Q%) = 902 [Qzﬂo(—Qz)] = 7—_[/0 dtm- (2.3)

Unitarity and positivity connect the spectral functionglof above dispersion relations to the weak
form factors defined in (1.2). Namely, keeping two-bodyestdh the unitarity sum leads to the
inequalities

1 [(t—t)—t)P?

3 2
mil > —— 2.4

im() > S (IO g gz (2.5)

wheret, = (Mp, = Mp,)?. By inserting these inequalities into the dispersion retet (2.2) and
(2.3), one obtains the generic relation

1 i 2
E/pmwanmgu (2.6)

wherep(t) is a definite weight antl is calculated from perturbative QCD and OPE for the corre-
sponding correlators (we omitted for simplicity the depemce onQ? of p andl). To ensure the
validity of OPE, the spacelike momentu@® must be taken sufficiently large for light mesdns
andPs, while the choiceQ? = 0 is reasonable for heavy-heavy or heavy-light form factors

A comment about the connection of the relation (2.6) withstadility of analytic continuation
is of interest. As is known, analyticity has two facets, vwhinay be referred to as its "splendour”
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and its "dangers". They are related to the fact that anatgintinuation is unique, but it is also an
unstable (ill-posed) problem in the Hadamard sense. Thanmthat two analytic functions very
close along a range in the complex plane may differ arbitrarily much outsideThere are many
phenomenological consequences of this instability: arnmie example is the poor determination
of resonances deep in the complex energy plane @ile fo(500) in 717t scattering) from Breit-
Wigner parametrizations valid on the real axis.

A known mathematical result (known as Tikhonov regular@at stipulates that the analytic
continuation is stabilized if the class of admissible fimt$ forms a compact set. It can be shown
(see Ciulli et al. [1]) that the.>-norm condition (2.6) derived from Okubo approach defines a
compact set in the Hardy spakg of analytic functions with finitd_2-norm on the boundary [4],
and plays the role of a stabilizing condition which ensures gtability (.e. the continuity with
respect to the input variation) of the extrapolation to poinside the holomorphy domain.

For the present discussion the crucial fact is that from tmmd(2.6) one can derive explicit
constraints on the values of the form factors at interiomfgand on the parameters of Taylor
expansions like (1.5) and (1.6). Mathematically, the peablbelongs to the analytic interpola-
tion theory for functions in the Hardy clas$? [3, 4] and is known to physicists as the "Meiman
problem" [3]. In the next section we shall discuss threeivassof physical interest.

3. Meiman problem and its generalizations

Problem 1: From the 1>-norm condition (2.6) find constraints on the valueff and the
derivatives F¥(t;) at some real or complex points on the first Riemann sheet ofdheplex t-
plane outside the unitarity cut.

The problem is written in a canonical form by performing tle@formal mapping

VE =T+ =T '

which maps thé-plane cut foit > t. onto the unit diskz| < 1, wherez= Z(t,ty). Herety <t. is
an arbitrary parameter, denoting the point mapped ontorigapZ(to,to) = O.

Consider further a so-called outer function [#§. a function analytic and without zeros in
|z < 1, with modulus squared ojz] = 1 equal top(t)|df/dZ, wheret = f(z 1) is the inverse
of (3.1). Denoting byw(z) this function, it is written in general in terms of its modslon the
boundary a%

Z(t,to)

2 0 )
w(z) — exp[%T [ ae ZQ—J_F; Inp(E(6°,to))[df /dZ] | (3.2)
Then the functiorg(z) defined by
9(2) =F(f(z o)) W(2) (3.3)

is analytic in|z] < 1 and satisfies the inequality

1
21

2In many cases of physical interest the functigia) has a simple analytic expression, see for instance [8, 12225

/ () do <1. (3.4)
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With techniques of complex analysis [3, 4], one can show {Bak) implies the positivity of the
following determinant and of its minors:

3 Z¢ (@) (@)
1- 1-z7z 1-z
A P (3.5)
; (@) (2z2)< R
N1z 1- 2oz 1-27
wherel =1 —yK-1g? andé&, = g(z,) — S k-5 0z are defined in terms of the values (for simplicity
we restricted to real pointg, and the derivatives at= 0):
k
L9 g 0<k<K-1  g@)—& @-7 1<n=N.  (36)
K dx |,

By using (3.3) one can express the inequality (3.5) as a gtiadronstraint on the values of the
form factorF (t) and its derivatives. From this, upper and lower bounds$-{R) at an arbitrary
pointt, included in the set (3.6) are easily obtained by solving catizlequations.

It is possible to implemented exactly also the phase in thstiel region, if it is available
through the Fermi-Watson theorem (1.4) and the known pkhgtef the related scattering ampli-
tude. The corresponding extremal problem is:

Problem 2: From the relations (1.4) and (2.6), find constraints on thtuga Kt,) and the
derivatives ¥ (t;) at some real or complex points on the first Riemann sheetdautise cut.

The problem can be solved exactly with standard technigtiesoctional optimization, which
lead to an integral equation of Fredholm type for a generdlizagrange multiplier. The general
solution is given in [25, 26].

In physical situations, the condition (2.6) is sometimgdaeed by the inequality

1 @
= [pwF@Pde<r, (37)
tin
wheretj, is the first inelastic threshold ard is a known quantity. We can formulate then the
following extremal problem:

Problem 3: From the relations (1.4) and (3.7), find constraints on thkuga Kt,) and the
derivatives ¥ (t;) at some real or complex points on the first Riemann sheetdautse cut.

Note that the integral (3.7) from, to infinity is not available directly from Okubo approach.
If some data on the modulus beldyvare available, the quantity can be estimated by subtracting
the integral on the range. , ti;) from the total integral (2.6), obtained from Okubo appro&eor
the pion electromagnetic form factor, the recent highisttes data on the modulus on the cut allow
a direct evaluation of the integral (3.7) for suitable clesiof the weighp(t), thus superseding the
Okubo approach.

The solution to Problem 3 is found by defining first the Omnéaxfion (fort > tj,, the un-
known phasé(t) = arg[F (t +i€)] is taken as an arbitrary smooth function):

o(t) = expGT /:dtt/(at/(t_/)t)> , (3.8)
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and define the functioh(t) by F(t) = &'(t)h(t), which is obviously real belowp,, i.e. is analytic
in thet-plane cut only fot > ti,. Then the condition (3.7) is written as

= [owiomPhwPdi< 39)
tin
Thush(t) satisfies the conditions of Problem 1, with two modificatiothet-plane cut fort >t
is replaced by the-plane cut fot > tj,, and the weighp(t) is replaced by (t)|0'(t)|?. Therefore
the solution can be written in the form (3.5), where now thefaomal mapping reads

\/tin—to—\/tin—t ~
= to,tg) =0 3.10
N = Z(to, %) (3.10)

and the functiorg(z) is defined by:

Z(t,10)

9(2) =F(f(z o)) [0(f(z00))] " W(2) w(2), (3.11)
involving the Omnes functiod(t) defined in (3.8) and the two outer functions [13, 25]
21T i0 )
w(z) = exp[% /0 deze—i |n[p(f(é9,to))|df/dzu] (3.12)

and

VU —tin(t —T(zt0))

Some rigorous properties of the bounds can be establisheg:are independent of the pa-
rameterty in the conformal mappings (3.1) or (3.10) and remain the sathe < sign in (2.6) or
(3.7) is replaced by the equality sign. Moreover, the bouwefgend in a monotonous way on the
parametel (1), in the sense that a larger valueldt’) gives weaker constraints. An important
property of the solutions to Problems 2 and 3 is that the beulwdnot depend on the arbitrary
phased(t) fort > ti, used as input in the Omnes function (3.8), if it is sufficigstinooth [13, 25].

One can show also that by varying the weigl(t) in (2.6) or (3.7), when the weight is at our
disposal, we can approach the more stringent bounds givérelgquivalent conditions formulated
in the strongetL*-norm [4], for instance agF|| .~ = tSLth|F(t)| < | instead of (2.6). The strategy

>t

w(z) = exp <7V fin _nf(z’to) T Injo(t) ) . (3.13)

for the choice ofp(t) in such cases is to make a compromise between choices tdabletrong
bounds and the need to ensure a precise calculation of taepgard in (2.6) orl” in (3.7).

A hierarchy of the extremal problems can be establishedgaaus result is that the bounds
obtained from Problem 2 are stronger than those obtained Fhmblem 1. In some cases, Problem
3 leads to results much stronger than Problem 2, becauseliénments explicitly through the
Omnes function the Riemann sheets of the elastic branait-fi8, 25].

From (3.5) it follows that interpolation theory correlasact values oF (t) at points inside
the analyticity domain. However, the values used as inppractical applications are in general
known with limited accuracy, and at least a part of the ersostatistical. A nontrivial question
is how to merge the statistical errors with the formalism ofitds. A natural strategy is to vary
the input values inside the error bars and take the weakesidsd.e. the union of the individual
allowed domains for the output variables obtained with gjdaput values). Then it is reasonable
to attach to the predicted allowed domains the probabilitthe input values to be within their
guoted error intervals. Some illustrations are given inrtbet section.

7
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4. Applications

Applications of the techniques discussed above were regpdor B — D*)¢v decays [9, 11,
12], Ky3 form factors [14, 15, 18, 191Bm form factors [10, 16, 17]P form factors [20] and
the pion electromagnetic form factor [13, 21, 22, 23, 24]. dntion that the list of references is
incomplete and | apologize for the omissions due to lack atspMore references are given in the
reviews [25, 26] and the papers quoted above.

The applications can be grouped into several types, whilkhll flustrate with a few examples
(for results orK it form factors see [27]).

4.1 Constraintson thelow energy shape parameters

The shape parameters are defined by the Taylor series (1L&)&r They are of interest
for testing the expansions of ChPT, performing fits of septdaic decay data and the precise
determination of the elements of the CKM matrix in flavour gilg. Rigorous constraints on these
parameters have been derived for the pion electromagretic factor and for th&D™*), DT and
K form factors.

We illustrate first this application with ti@rrform factors [20]. This is a typical application of
Okubo approach, where the condition (2.6) is obtained flwaperturbative QCD/OPE calculation
of the heavy-light polarization function. Results for selanoments which generalize the corre-
lators defined in (2.2) and (2.3) are available in the litemt leading to independent constraints
on the form factors (see [20]). In Figs. 4.1 we show the althwlemain for the slopd; and
curvatureA of the Drt scalar weak form factor (with the scdié in (1.6) taken adl;;). The left
panel illustrates the increase of the constraining powamnlarious pieces of input are introduced
successively: the large ellipse is obtained with the sofutib Problem 1 using only the integral con-
dition (2.6) and the normalizatiofy(0) = 0.67+ 0.1, the intermediate ellipse is obtained by solving
Problem 2 with a model for the phase in the elastic regiontla@dmall ellipse is obtained by using
in addition a low energy theorem of Callan-Treiman (CT) tyfa¢M3 — M2) = 1.5840.07. In the
right panel we show the small ellipses obtained with thréegiral conditions of the type (2.6). The
allowed domain is the intersection of the three domains. pidiet corresponds to a recent pole fit.
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Figure1: Allowed domain for the slop&/ and curvatur@ of the scalaDrt form factor.

Very strong constraints on the low energy parameters ager@ut for the pion electromagnetic
form factor [13, 21, 23, 24]. In this case a very rich and mednformation exists on the unitarity
cut: the phase below the first important inelastic threshgte (M, + M,T)2 is known from Fermi-
Watson theorem (1.4) and the precise calculation of theepslaift 5! of the P-wave of rtrT elastic
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scattering from ChPT and dispersive (Roy) equations, whi#gemodulus has been measured from
high statistics data oa"e~ — " i~ annihilation by several experimental groups, in particuia

to 3 GeV by BaBar collaboration. Moreover, a few precise measents at spacelike momenta
t < 0 are now available. It turns out that the most suitable wagxfoit this information is based
on Problem 3 of Section 3, with a suitable choice of the wegdht in (3.7), which allows a precise
calculation of the integrdl’. As discussed in detail in [23], this strongly constrains lehaviour

of the form factor in the elastic region of the unitarity cbhelow thewr threshold, leading to
predictions more precise than the data at low energies awitijprg nontrivial consistency tests of
various data sets. Strong constraints are obtained althd@hape parameters defined in (1.5): a
precise prediction for the charge radius is obtained witlaoy specific parametrization [24]:

(r2) = (0.4340.01) fm?, (4.1)

while the next coefficients in (1.5) are restricted to thegem38 GeV * < ¢ < 4.1 GeV* and
10.3 GeV % < d < 10.6 GeV 5, with a strong correlation among them [21, 24].

4.2 Zeros

The knowledge of the possible zeros of the form factors isoigmt for testing symmetry
properties and in specific dispersion relations like thesph@..8) and modulus (1.9) representa-
tions. The formalism discussed here can be used to defineid®ma the real axis and in the
complext-plane where zeros are excluded. To see this, insert the Ftt)=0 in the determinant
(3.5), adding this assumption to the known input values. iQisly, if the inequality (3.5) is vio-
lated, the assumption that a zero is present is wrong. Oénshin this way a rigorous description
of the domains where zeros are forbidden. For illustratienpnesent in Figure 4.2 such domains
obtained for theDrt scalar form factor and the pion electromagnetic form faatoth the input
discussed in Section 4.1.

Im t
o

T

L
Imt
o

T

1

Figure 2: Left: domain in the complex-plane without zeros for the scallxrr form factor fo(t); right:
domain without zeros for the pion electromagnetic formdagtin GeV?).

4.3 Extrapolation to spacelike energies

The input for the pion vector form factor used in Section 4akwxploited in [22] for deriving
model-independent upper and lower bounds on the form fatspacelike moment@? = —t > 0.
They are of interest for establishing the onset of the asgtigategime of perturbative QCD, which
is expected to be rather slow in this case due to the comgtidaterplay between the soft and the
hard dynamics.
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In Fig. 4.3 we present upper and lower bounds on the proQget —Q?) derived from the
solution of Problem 3, using the weigpft) = 1/+/t. The inner white region denotes the allowed
domain delimited by the upper and lower bounds obtained thiéhcentral values of the input,
while the cyan bands show the enlarged alowed domain, @utdig varying the input quantities
inside their error intervals. One can see that perturb&@® to LO is excluded fof? < 7 Ge\?,
and perturbative QCD to NLO is excluded f@? < 6 Ge\?, respectively. Among the theoreti-
cal models, some are consistent with the bounds, while ®tier in slight disagreement at large
energies (for details see [22])

Q°F(-Q) [GeV’]

Q" [GeV’]

Figure 3: Bounds onQ?F(—Q?) along the spacelike axis, compared with perturbative QC@ saveral
nonperturbative models for the pion electromagnetic faaotdr.

4.4 Analytic parametrizations with unitarity constraints

The techniques presented above are useful also for candrdhe free parameters and the
truncation errors of the specific expansions of weak forrtofadn the physical region of semilep-
tonic decays. The method was applied to Bi2*) form factors [11, 12] and thBrt vector form
factor [17].

| briefly discuss the vector form factdr. (¢°) of B — /v semileptonic decay, of interest for
the determination of the elemejp| of the CKM matrix. The parametrization [17]

1 K
AN kZO be(to)Z,  z=2Zd,to) (4.2)
whereMg- < Mg + My, implements correctly analyticity and QCD asymptotic sxal The stan-
dard Okubo approach gives a quadratic condition on the fre#ficientsby(to):

K
Z Bik(to)bj (to)bi(to) < 1, (4.3)
if=o

f+(q2) =

whereBj(to) are calculated in [17]. From the inequality (4.3) one caramban estimate of the
truncation error, defined as the magnitude of the first négdieterm in the expansion (4.2). Based
on this, a strategy for controlling the total error was addpin [17]: the numbeK of terms in
(4.2) was increased until the systematic error becamegiblgliin the entire semileptonic region
0 < ¢? < (Mg — My)? (this was achieved witk = 3 in (4.2)). Figure 4.4 shows the result of
the fit of semileptonic data and QCD sum rules and latticeutations, for the optimal mapping
to = (Mg +My)(v/Mg — /My)? and the corresponding constraint (4.3). It leads to theigiied
\Vub| = (3.5440.30) x 1073 [17].

10
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Figure 4: B vector form factor determined from the constrained fit, shawth points from sum-rules
(LCSR) and lattice input. Right: numerator of the optimalgraetrization. The band is the statistical error.

5. Conclusions

In this talk | presented more sophisticated analytic tegqes that might be an useful alterna-
tive to the standard dispersion representations (1.8) &hd (1.9), and to the specific parametriza-
tions usually adopted for the hadronic form factors. Thesaniques allow a more conservative
implementation of the available input on the modulus andptiese on the unitarity cut, avoiding
ad-hoc assumptions often adopted in standard approache®riiental data, low-energy theo-
rems of ChPT and lattice calculations at points inside therhorphy domain provide a further
valuable input in the formalism. The price to be paid for theager model-independence is the fact
that one can derive only upper and lower bounds on the gigmntf interest, instead of making
definite predictions. However, due to the increased acgwtihe input, the bounds are often very
stringent, competing in precision with experiment and tagcal predictions. Therefore, the for-
malism proves to be a strong tool for precison predictionkamronic form factors at low energies.
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