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1. Introduction

A quantitative understanding of nuclear spectra and reactions requires, first of all, a quantita-
tive understanding of how nucleons interact with each other. Quantum chromodynamics (QCD) is
believed to be a fundamental theory of strong interactions which controls the dynamics between
nucleons. In this picture nucleons are composite particles built out of quarks and gluons. So one
way to clarify the question about few-nucleon interactions is to put quarks and gluons, the funda-
mental degrees of freedom in QCD, on the lattice and perform nuclear Monte Carlo simulations on
supercomputers. There is indeed a lot of activity along this line (see e.g. Refs. [1, 2]). Few-nucleon
lattice QCD simulations are in general very time consuming and have sofar been performed with
unphysical quark masses. The field is strongly progressing, so we may hope to see in the future
simulations of e.g. nucleon-nucleon (NN) scattering lengths or deuteron binding energy at physical
quark masses.

An alternative approach to few-nucleon interactions is to use chiral perturbation theory which
is valid in the low-energy sector where all momenta are well below the chiral scale Λχ ∼ 1 GeV.
Due to spontaneous (and small explicit) breaking of chiral symmetry, one of the prominent symme-
tries of QCD, long-range part of nuclear forces is dominated by Goldstone boson dynamics. Since
the interaction between Goldstone bosons vanishes when their four momenta vanish, one can make
a perturbative expansion in small momenta and masses1 of Goldstone bosons (identified with pions
in the SU(2) sector) divided by the hard chiral-symmetry-breaking scale Λχ . Already two decades
ago Weinberg [3] suggested in his seminal papers to calculate an effective few-nucleon potential
by using chiral perturbation theory. He showed that it is possible to define an effective poten-
tial (scheme dependent quantity) which can be systematically calculated order by order in chiral
effective field theory. The chiral potential serves as an input in numerical few- and many-body
simulations of low-energy observables. This path has beed intensively followed by several groups,
so that chiral NN potential was calculated up to next-to-next-to-next-to-leading order (N3LO) in
the chiral expansion (see Refs. [4, 5, 6, 7, 8, 9] for various review articles). At this order 24 2 un-
known NN low-energy constants (LECs) were fitted to Nijmegen data. At N3LO NN phase shifts
are accurately described up to Elab ' 200 MeV [10, 11]. In the three-nucleon sector the situation
is less clear. The chiral three-nucleon force (3NF) starts to contribute at N2LO. In all numerical
implementations only the leading N2LO 3NF has so far been considered. Already at this order
many observables in the three-nucleon sector are very well described. There are, however, some
observables (like e.g. the nucleon vector analyzing power Ay in elastic neutron-deuteron scattering
below 30 MeV laboratory energy for the incident nucleon) which is not well described at this order.
The most natural way to deal with this issue is to increase the order of chiral expansion to N3LO
for 3NF. This will make a force as precise (from chiral effective field theory point of view) as in
the two-nucleon case and will hopefully resolve some long standing problems. The purpose of this
manuscript is to review a current status of the construction of N3LO and partly (only the longest-
range part) of the N4LO 3NF. In the next section I will discuss the N3LO 3NF and motivate the need
to go to at least N4LO in the framework without explicit ∆-isobar degrees of freedom. In Sec. 2 I
will discuss the longest-range part of the 3NF at N4LO. Since at this order, pion-nucleon scattering

1Goldstone bosons become massive due to small explicit breaking of chiral symmetry.
2The number corresponds to the isospin limit.
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Figure 1: Various topologies contributing to the 3NF up to and including N4LO: two-pion (2π) exchange
(a), two-pion-one-pion (2π-1π) exchange (b), ring (c), one-pion-exchange-contact (d), two-pion-exchange-
contact (e) and purely contact (f) diagrams. Solid and dashed lines represent nucleons and pions, respec-
tively. Shaded blobs represent the corresponding amplitudes.

up to q4-order in the chiral expansion appears as a subprocess, we need to reconsider pion-nucleon
scattering within the same power-counting which has been used in the calculations of few-nucleon
forces (Q/m-corrections are counted as two chiral powers.3 Here, m denotes the nucleon-mass and
Q a small three-momentum of the nucleon). This requires a refit of some LECs in the one-nucleon
sector which contribute to the 3NF at N4LO. All this is discussed in Sec. 4. Finally, in Sec. 5, I
compare the longest-range contributions at N2LO , N3LO and N4LO and try to make a qualita-
tive statement about convergence of their chiral expansion. More quantitative statements are only
possible after the full numerical analysis of three-nucleon observables is performed.

2. Chiral three-nucleon forces up to N3LO

The structure of the 3NF up to N4LO is visualized in Fig. 1 and can be written as

V3N =V2π +V2π−1π +Vring +V1π−cont +V2π−cont +Vcont. (2.1)

While the 2π−1π , ring and two-pion-exchange-contact (2π-cont) topologies start to contribute at
N3LO, the two-pion-exchange (2π), one-pion-exchange-contact (1π-cont) and contact interaction
(cont) graphs already appear at N2LO. It is important to stress that the N3LO contributions do
not involve any unknown LECs. The corresponding parameter-free expressions can be found in
Refs. [13, 14], see also Ref. [15]. Another interesting feature of the N3LO 3NF corrections is their
rather rich isospin-spin-momentum structure emerging, especially, from the ring topology (c) in
Fig. 1. This is in contrast with the quite restricted operator structure of the two-pion exchange
3NF whose effects in the three-nucleon continuum have already been extensively explored. It
is, therefore, very interesting to study the impact of the novel structures in the 3NF on nucleon-
deuteron scattering and the properties of light nuclei, especially in connection with the already
mentioned puzzles. On the other hand, one may ask whether the resulting (leading) contributions
to the structure functions accompanying the novel operator structures in the 3NF already allow
for their decent description. Stated differently, the question is whether the lowest-nonvanishing-
order contributions from the 2π-1π and ring-topologies are already converged or at least provide

3Note that usually in the one nucleon sector Q/m is treated as one chiral power [12].
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a reasonable approximation to the converged result. There is a strong reason to believe that this
is not going to be the case since the contributions due to intermediate ∆(1232) excitations are
not yet taken into account for these topologies at N3LO. In the standard chiral EFT formulation
based on pions and nucleons as the only explicit degrees of freedom, effects of the ∆ (and heavier
resonances as well as heavy mesons) are hidden in the (renormalized) values of certain LECs
starting from the subleading effective Lagrangian. The major part of the ∆ contributions to the
nuclear forces is taken into account in the ∆-less theory through resonance saturation of the LECs
c3,4 accompanying the subleading ππNN vertices [16, 17, 18, 19, 20] (see, however, the last two
references for some examples of the ∆-contributions that go beyond the saturation of c3,4). These
LECs turn out to be numerically large and are known to be driven by the ∆ isobar [21, 18]. As
a consequence, one observes a rather unnatural convergence pattern in the chiral expansion of
the two-pion exchange NN potential V 2π

NN with by far the strongest contribution resulting from the
formally subleading triangle diagram proportional to c3 [22]. The (formally) leading contribution
to V 2π

NN does not provide a good approximation to the potential so that one needs to go to (at least)
the next-higher order in the chiral expansion and/or to include the ∆ isobar as an explicit degree of
freedom [18]. The situation with the 2π-1π and ring topologies in the 3NF is similar. Based on
the experience with the NN potential, one expects significant contributions due to intermediate ∆

excitations, see also the discussion in Ref. [23]. For the ring topology, this expectation is confirmed
by the phenomenological study of Ref. [24]. In order to include effects of the ∆-isobar one needs

• either to go to (at least) next-to-next-to-next-to-next-to-leading order (N4LO) in the standard
∆-less EFT approach,

• or to include the ∆-isobar as an explicit degree of freedom.

It should be understood that both strategies outlined above are, to some extent, complementary to
each other. In particular, N3LO contributions in the ∆-less theory only take into account effects
due to single ∆-excitation but not due to the double and triple ∆-excitations (whose inclusion in the
∆-less approach would require the calculation at even higher orders). These effects are taken into
account already at N3LO in the ∆-full approach. On the other hand, there are also contributions not
related to ∆-excitations which are included/absent in the ∆-less approach at N4LO/∆-full theory at
N3LO. It remains to be seen which strategy will turn out to be most efficient.

Here we concentrate on the ∆-less approach and discuss the longest-range contribution to the
3NF [25] given by the two-pion exchange potential V2π . It has a very restrictive general spin-
isospin-momentum structure in the static limit

V2π =
~σ1 ·~q1~σ3 ·~q3

[q2
1 +M2

π ] [q2
3 +M2

π ]

(
τ1 · τ3 A (q2)+ τ1× τ3 · τ2~q1×~q3 ·~σ2 B(q2)

)
, (2.2)

where ~σi denote the Pauli spin matrices for the nucleon i and~qi = ~pi
′−~pi, with ~pi

′ and ~pi being the
final and initial momenta of the nucleon i. Here and in what follows, we use the notation: qi ≡ |~qi|.
The quantities A (q2) and B(q2) in Eq. (2.2) are scalar functions of the momentum transfer q2

of the second nucleon whose explicit form is derived within the chiral expansion. Unless stated
otherwise, the expressions for the 3NF results are always given for a particular choice of the nucleon
labels. The complete result can then be found by taking into account all possible permutations of
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the nucleons
V full

3N =V3N +5 permutations . (2.3)

We now briefly consider the first two terms in the chiral expansion of the functions A (q2) and
B(q2). The leading contributions arise at N2LO which corresponds to the order Q3 relative to the
leading contribution to the nuclear Hamiltonian and have the form

A (3)(q2) =
g2

A
8F4

π

(
(2c3−4c1)M2

π + c3q2
2

)
, B(3)(q2) =

g2
Ac4

8F4
π

, (2.4)

where gA, Fπ and Mπ denote to the physical values of the nucleon axial vector coupling, pion decay
constant and pion mass, respectively, and the superscripts of A and B refer to the powers of the
soft scale Q. The first corrections at N3LO read [13, 15]:

A (4)(q2) =
g4

A
256πF6

π

[
A(q2)

(
2M4

π +5M2
πq2

2 +2q4
2
)
+
(
4g2

A +1
)

M3
π +2

(
g2

A +1
)

Mπq2
2

]
,

B(4)(q2) = − g4
A

256πF6
π

[
A(q2)

(
4M2

π +q2
2
)
+(2g2

A +1)Mπ

]
, (2.5)

where the loop function A(q) is defined as:

A(q) =
1
2q

arctan
q

2Mπ

. (2.6)

Notice that the leading-loop contributions to the 2π-exchange topology do not contain logarithmic
ultraviolet divergences and, as explained in Ref. [13], turn out to be independent on the LECs
di entering L

(3)
πN . As usual, we denote by L

(n)
πN a pion-nucleon Lagrangian at the chiral order n.

Explicit expressions in the heavy-baryon formulation for n ≤ 4 can be found in Ref. [27, 28]. At
both N2LO and N3LO, all LECs in the effective Lagrangian entering the expressions for the 3NF –
including gA and Fπ – can be simply replaced by their physical values.

We emphasize that relativistic corrections to V2π have a richer structure than the one given in
Eq. (2.2). The explicit form of the 1/m-corrections to V2π at N3LO can be found in Ref. [14], see
also [26] for an early work.

3. The two-pion-exchange 3NF at N4LO

We now turn to the sub-subleading contributions to the 2π-exchange 3NF at order Q5 (N4LO).
The final, renormalized N4LO contributions to the functions A and B in Eq. (2.2) have the form:

A (5)(q2) =
gA

4608π2F6
π

[
M2

πq2
2
(
F2

π

(
2304π

2gA(4ē14 +2ē19− ē22− ē36)−2304π
2d̄18c3

)
+ gA(144c1−53c2−90c3)

)
+M4

π

(
gA
(
72
(
64π

2 l̄3 +1
)

c1−24c2−36c3
)

+ F2
π

(
4608π

2d̄18(2c1− c3)+4608π
2gA(2ē14 +2ē19− ē36−4ē38)

))
+ q4

2
(
2304π

2ē14F2
π gA−2gA(5c2 +18c3)

)]
− g2

A
768π2F6

π

L(q2)
(
M2

π +2q2
2
)(

4M2
π(6c1− c2−3c3)+q2

2(−c2−6c3)
)
,

5
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B(5)(q2) = − gA

2304π2F6
π

[
M2

π

(
F2

π

(
1152π

2d̄18c4−1152π
2gA(2ē17 +2ē21− ē37)

)
+ 108g3

Ac4 +24gAc4
)
+q2

2
(
5gAc4−1152π

2ē17F2
π gA

)]
+

g2
Ac4

384π2F6
π

L(q2)
(
4M2

π +q2
2
)
, (3.1)

where the loop function L(q) is defined according to

L(q) =

√
q2 +4M2

π

q
log

√
q2 +4M2

π +q
2Mπ

. (3.2)

The expressions for the 2π-exchange 3NF up to N4LO depend on a number of low-energy con-
stants. The following notation has been used for the LECs: d̄i are LECs from L

(3)
πN and ēi are LECs

from L
(4)

πN . The LECs ci, d̄i and ēi can be most naturally determined from pion-nucleon scattering
(at least) at the subleading-loop order (i.e. Q4). The heavy-baryon analyses of pion-nucleon scat-
tering at orders Q3 and Q4 can be found in Refs. [12, 29, 30], see also Refs. [31, 32, 33] for the
calculations within the manifestly covariant framework, Ref. [34] for a related calculation which
extends chiral EFT to higher energies by employing constraints set by causality and unitarity and
Ref. [35] for a recent review on baryon chiral perturbation theory. Unfortunately, we cannot use
the values of the LECs obtained in these studies since we use a different counting scheme for the
nucleon mass in the few-nucleon sector, namely Q/m∼ Q2/Λ2

χ [3] rather then m∼ Λχ as used in
the single-nucleon sector, see [4] for an extended discussion. In the next section, I briefly discuss
the analysis of pion-nucleon scattering at order Q4 in the heavy-baryon approach, see Ref. [25] for
more details.

4. πN scattering at order Q4

In the center-of-mass system (cms), the amplitude for the reaction πa(q1)+N(p1)→ πb(q2)+

N(p2) with p1,2 and q1,2 being the corresponding four-momenta and a,b referring to the pion
isospin quantum numbers, takes the form:

T ba
πN =

E +m
2m

(
δ

ba
[
g+(ω, t)+ i~σ ·~q2×~q1 h+(ω, t)

]
+ iεbac

τ
c
[
g−(ω, t)+ i~σ ·~q2×~q1 h−(ω, t)

])
.

(4.1)
Here, ω = q0

1 = q0
2 is the pion cms energy, E1 = E2 ≡ E = (~q 2 +m2)1/2 the nucleon energy and

~q1
2 = ~q2

2 ≡ ~q 2 = ((s−M2
π −m2)2− 4m2M2

π)/(4s). Further, t = (q1− q2)
2 is the invariant mo-

mentum transfer squared while s denotes the total cms energy squared. The quantities g±(ω, t)
(h±(ω, t)) refer to the isoscalar and isovector non-spin-flip (spin-flip) amplitudes. In Ref. [25],
we recalculated these amplitudes in chiral perturbation theory up to the order Q4 using the power
counting which assigns two chiral powers to Q/m. The recalculated amplitudes depend on 13 inde-
pendent (linear combinations of the) low-energy constants to be fixed from a fit to the data, namely
c1,2,3,4, d̄1 + d̄2, d̄3, d̄5, d̄14− d̄15 and ē14,15,16,17,18.

The fit can be most conveniently performed in the partial wave basis using the available partial
wave analyses. In order to estimate a possible uncertainty of the extracted parameters, we consid-
ered two different partial wave analyses in our fitting procedure, namely the one of Ref. [36] by

6
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the group at the George Washington University, to be referred as GW, and the Karlsruhe-Helsinki
analysis of Ref. [37]), to be referred as KH. The energy range of the data fitted corresponds to the
πN laboratory momenta pLab < 150 MeV/c. At higher energies the convergence of the chiral ex-
pansion becomes doubtful. We follow the strategy which is similar to the one utilized in Ref. [12]
and assign the same relative error to all empirical data points.

The partial wave amplitudes f±l±(s), where l refers to the orbital angular momentum and the
subscript ’±’ to the total angular momentum ( j = l± s), are given in terms of the invariant ampli-
tudes via

f±l±(s) =
E +m
16π
√

s

∫ +1

−1
dz
[

g±Pl(z)+~q 2 h± (Pl±1(z)− zPl(z))
]
,

where z = cos(θ) is the angular variable (t = 2~q 2(z− 1)). The amplitude in the isospin basis are
related to f±l± as follows

f 1/2
l± = f+l±+2 f−l± , f 3/2

l± = f+l±− f−l± .

The phase shift for a partial wave amplitude with isospin I is obtained using the following unita-
rization prescription4 [12]:

δ
I
l±(s) = arctan

(
|~q |ℜ f I

l±(s)
)
, (4.2)

which reflects the absence of inelasticity below the two-pion production threshold.
We performed a combined fit for all s-, p-, and d-waves since d-waves are the highest partial

waves where the order-Q4 counter terms contribute. The results of the fits using the GW partial
wave analysis are visualized in Fig. 2. The KH partial wave analysis leads to a similar fit. In the
figure, we show the full, order-Q4 results (solid curves) as well as the phase shifts calculated up to
the order Q3 (dashed curves) and Q2 (dashed-dotted curves) using the same values of LECs (from
the order-Q4 fit) in all curves. In the fitted region (from threshold up to pLab = 150 MeV/c), a good
description of the data is achieved. As one would expect, the convergence pattern when going from
Q2 to Q4 is getting worse with increasing the pion momenta. Interestingly, the d-waves are rather
well reproduced already at the order Q3 where there are no counter terms or other contributions
depending on free parameters. Both the tree-level and finite loop contributions are important for
those four partial waves. Our results for the phase shifts are similar and of a similar quality as the
ones reported in Ref. [29].

We finally turn to the discussion of the extracted parameters. The obtained values of the low-
energy constants are collected in Table 1. As one can see from the table, the LECs ci and d̄i come
out rather similar for the two partial wave analyses. The difference does not exceed 30% except for
the LECs c1 and d̄5 which are, however, considerably smaller than the other ci’s and d̄i’s, respec-
tively. Also the LECs ē14 and ē17 are rather stable. These are the only counter terms contributing
to d-waves, which is why these two constants are strongly constrained by the threshold behavior
of the d-wave phase shifts. In contrast, the other ēi’s are very sensitive to the energy dependence

4It should be understood that this unitarization prescription goes, strictly speaking, beyond the chiral power count-
ing. The resulting model dependence is, however, very small due to the smallness of the phase shifts with the only
exception of the P33 partial wave, see [38] for a related discussion.

7



P
o
S
(
C
D
1
2
)
0
1
4

Chiral expansion of the three-nucleon forces Hermann Krebs

0 50 100 150 200
0

5

10

δ
 [

d
eg

re
e]

0 50 100 150 200

-10

-5

0

0 50 100 150 200

-2

0

2

0 50 100 150 200

-2

-1

0

δ
 [

d
eg

re
e]

0 50 100 150 200
-2

-1

0

0 50 100 150 200
0

15

30

0 50 100 150 200
p

Lab
 [MeV/c]

0

0.1

0.2

δ
 [

d
eg

re
e]

0 50 100 150 200
0

0.04

0.08

0 50 100 150 200
p

Lab
 [MeV/c]

0

0.1

0.2

0 50 100 150 200
p

Lab
 [MeV/c]

-0.2

-0.1

0

S
11

S
31

P
11

P
33

P
13

P
31

D
13

D
33

D
15

D
35

Figure 2: Results of the fit for πN s, p and d-wave phase shifts using the GW partial wave analysis of
Ref. [36]. The solid curves correspond to the full Q4 results, the dashed curves to the order-Q3 results, and
the dashed-dotted curves to the order-Q2 calculation.

of the s- and p-wave amplitudes and, therefore, vary strongly from one analysis to another. Notice,
however, that all extracted constants are of a natural size except for the combination d̄14− d̄15 and
ē15 which appear to be somewhat large.

We stress that the values for c1,3,4 obtained from the fit to the KH partial wave analysis are in
an excellent agreement with the ones determined at order Q3 by using chiral perturbation theory
inside the Mandelstam triangle [39]. It is also worth mentioning that the values of c3,4 are in a
good agreement with the ones determined from the new partial wave analysis of proton-proton and
neutron-proton scattering data of Ref. [40].

5. Results for the two-pion exchange 3NF

With all relevant LECs being determined from pion-nucleon scattering, we are now in the
position to analyze the convergence of the chiral expansion for the two-pion exchange 3NF. In
Fig. 3, we show the results for the functions A (q2) and B(q2) for small values of the momentum
transfer q2, q2 < 300 MeV at various orders in the chiral expansion. More precisely, we plot A (3),
A (3)+A (4) and A (3)+A (4)+A (5) as well as B(3), B(3)+B(4) and B(3)+B(4)+B(5) using

8
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c1 c2 c3 c4 d̄1 + d̄2 d̄3 d̄5 d̄14− d̄15

fit to GW, Ref. [36] −1.13 3.69 −5.51 3.71 5.57 −5.35 0.02 −10.26
fit to KH, Ref. [37] −0.75 3.49 −4.77 3.34 6.21 −6.83 0.78 −12.02

ē14 ē15 ē16 ē17 ē18

fit to GW, Ref. [36] 1.75 −5.80 1.76 −0.58 0.96
fit to KH, Ref. [37] 1.52 −10.41 6.08 −0.37 3.26

Table 1: Low-energy constants obtained from a fit to the empirical s, p- and d-wave pion-nucleon phase
shifts using partial wave analysis of Ref. [36] and of Ref. [37]. Values of the LECs are given in GeV−1,
GeV−2 and GeV−3 for the ci, d̄i and ēi, respectively.

the values of the LECs ci, d̄i and ēi determined from the order-Q4 fit to the KH and GW partial
wave analyses as described in the previous section. We use here the same, fixed values for the
LECs ci (and d̄i) listed in Table 1 at all orders and adopt the same conventions regarding the LECs
as in the case of pion-nucleon scattering. Notice that A (5) and B(5) do not depend on the LECs
ē15,16,18 which are very sensitive to a particular choice of the partial wave analysis in pion-nucleon
scattering, see Table 1. The relevant LECs ē14,17 are, on the contrary, rather stable as discussed in
the previous section.

One observes a very good convergence for the function A with the subleading-order result
(i.e. N3LO) being very close to the one at N4LO. It is also comforting to see that both partial
wave analyses lead to similar results for this quantity. The dependence on the input for pion-
nucleon phase shifts for A is bigger than the changes from N3LO to N4LO which can serve as a
(conservative) estimation of the theoretical uncertainty at N4LO. The convergence for the function
B is somewhat slower with the shift from N3LO to N4LO being of the order of ∼ 30%. Also
the difference between the two partial wave analyses of the order of ∼ 20% is larger than for the
function A . It should be understood that an accurate description of the low-energy pion-nucleon
scattering data at different orders does not automatically guarantee a good convergence of the chiral
expansion for A and B. In particular, these quantities do not depend on the LECs d̄i (to the order
considered) which contribute to πN phase shifts. Thus, the observed reasonable convergence for
the 2π-exchange 3NF is a highly non-trivial test of the theoretical approach.

6. Summary

In this proceeding I discussed the convergence of the chiral expansion of the longest-range
three-nucleon force given by the two-pion-exchange topology (a) in Fig. 1. This part of the three-
nucleon force has been calculated up to next-to-next-to-next-to-next-to-leading order (N4LO) in
the chiral expansion as reported in Ref. [25]. At this order, there appear various low-energy con-
stants from the single-nucleon sector which can be fitted to pion-nucleon scattering data. Since the
standard power counting in the single-nucleon sector slightly differs from the one adopted in NN
sector, a reanalysis of pion-nucleon scattering up to Q4 was necessary. We used two different par-
tial wave analyses of Ref. [36] and [37]) to fit the relevant low-energy constants. Both fits lead to
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Figure 3: Chiral expansion of the functions A (q2) and B(q2) entering the two-pion exchange 3NF up
to N4LO. Left (right) panel shows the results obtained with the LECs determined from the order-Q4 fit
to the pion-nucleon partial wave analysis of Ref. [37] (Ref. [36]). Dashed, dashed-dotted and solid lines
correspond to A (3), A (3)+A (4) and A (3)+A (4)+A (5) in the upper plots while B(3), B(3)+B(4) and
B(3)+B(4)+B(5) in the lower plots.

similar results for the three-nucleon force, see Fig. 3. From Fig. 3, we observe a very nice conver-
gence of the chiral expansion of two-pion-exchange three-nucleon force and do not expect further
important contributions from higher order corrections to this (longest-range) part of the force.

Obviously, it is important to analyze the chiral expansion of other topologies from Fig. 1 as
well. These contributions will be discussed in forthcoming publications. The presented analysis is
only qualitative. A quantitative analysis will be possible once we will be able to make predictions
for three-nucleon observables. An important milestone in this connection that needs to be
achieved is a partial wave decomposition of the derived expressions. While this can be
straightforwardly done numerically [41], one needs considerable supercomputing resources to
perform several-dimensional integrals for a large number of (angular momentum) channels. First
steps in this direction are published in Ref. [42].
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