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1. Introduction

In the description of nucleon structure, transverse moomardependent parton distribution
functions [1] (TMDs) play a role complementary to genemdizparton distributions (GPDs).
Whereas GPDs encode information about the transverseakgairibution of partons (through
Fourier transformation with respect to the momentum transfTMDs contain information about
the transverse momentum distribution of partons. As dedafurther below, the definition of
TMDs involves a number of subtleties not encountered in @se f GPDs, which also must
be taken into account in formulating corresponding lat@@D calculational schemes. Castin a
Lorentz frame in which the nucleon of masg propagates with a large momentum in 3-direction,
P+ = (P°+P%)/v/2 > my, the quark momentum components scale such that TMDs areiprin
pally functions f (x,kr) of the quark longitudinal momentum fraction= k*/P* and the quark
transverse momentum vectar, with the dependence on the comporient= (k® —k3) /v/2 < my
becoming ignorable in this limit.f (x,kr) will thus be regarded as having been integrated over
k~. The TMDs also depend on a collection of further parametdrishwwill be specified below as
needed.

Experimentally, TMDs manifest themselves in angular aswytnies observed in processes
such as semi-inclusive deep inelastic scattering (SIDhg)tae Drell-Yan (DY) process. Corre-
sponding signatures have emerged at COMPASS, HERMES ahd2+t4], and that has motivated
targeting a significant part of the physics program at fuexperiments in this direction, e.g., at
the upgraded JLab 12 GeV facility and at the proposed eledtno collider (EIC). To relate the
experimental signature to the nucleon structure encodddvibs, a suitable factorization frame-
work is required. One possible such framework which is paféirly well-suited for connecting
phenomenology to a lattice QCD calculation has been addaimcgs—8]. Factorization in the
TMD context is considerably more involved than standardireedr factorization, with the result-
ing TMDs in general being process-dependent, via initidlanfinal state interactions between the
struck quark and the nucleon remnant.

The main thrust of the present work lies in casting the phesraiogical definition of TMDs
into a form amenable to evaluation within lattice QCD, anesgnting exploratory results for se-
lected TMD observables. This is facilitated by writing theflamental TMD correlator introduced
below in terms of invariant amplitudes, so that the problem loe transformed to a Lorentz frame
in which rotation to Euclidean lattice time becomes simpeparticular, time-reversal odd (T-odd)
observables such as the Sivers and Boer-Mulders shiftseitliscussed. A detailed account of
this work was presented in [9].

2. Definition of TMD observables

The fundamental correlator defining TMDs is of the form

d?br d(b-P) . ol (bPS..)
r] — . _ . unsubtr.
dJF(x,kT,RS...)_/(Zn)Z G ©Px(b-P) —ibr k) j(bz’m) » 2.1)
with N 1

Plnsuon(D-PS ) = (RS GO) F #[0.....b] q(b) IR (2.2)
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whereSdenotes the spin of the nucleon dndtands for an arbitrary-matrix structure. Heuristi-
cally, the Fourier-transformed bilocal quark bilinear cgger counts quarks of momentukrin the
nucleon state, witl controlling the specific spinor components involved. Hogregauge invari-
ance additionally enforces the introduction of the gaugeneation%/, the precise path of which
is not specified at this point; its choice will be guided by piysical process under consideration.
In turn, the presence & introduces divergences additional to the wave functioomelizations
of the quark operators (this is indicated by the subscripstbtr.”); these divergences accordingly
must be compensated by the additional “soft factef’ Here,.# does not need to be specified in
detail, since only appropriate ratios in which the soft dastcancel will ultimately be considered.
Finally, ®I (x,kr,P,S...) is, as noted further above, a function only of the three quadknen-
tum components contained xandkr, whereas the small componéut is integrated over; thus,
in its Fourier transform, the conjugate componbhtis set to zero, as written in (2.1). The pairs
x < (b-P) andkr < by consequently act as pairs of Fourier conjugate variablg®.it). It is
important to note for further reference that the quark sajpam b in general includes a transverse
componenby and therefore is generically space-like.

Decomposing the correlateb!” (x kr,P,S,...) into the relevant Lorentz structures yields the
TMDs as coefficient functions. At leading twist,

ol — f,— |8KS L 2.3)
LN odd
Kr -
O Ngy+ L gy (2.9
o okkj —K23))S,. | Ak &k,
¢[I0+y5] — Sh ( J T JhL KL th 25
Shy+ 2%, 1T+mN L+ e » (2.5)

whereA denotes the nucleon helicity (.87 = AP™ /my, S~ = —Amy/2P*). In particular, the
two TMDs fi; andh; are odd under time reversal. Nonvanishing effects in thésamels can
only occur if a mechanism is operative which breaks timersal invariance. The former TMD,
characterizing the unpolarized distribution of quarks itransversely polarized nucleon, is the
Sivers function, whereas the latter TMD, characterizing distribution of transversely polarized
guarks in an unpolarized nucleon, is the Boer-Mulders fionct

Up to this point, no reference has been made to a physica¢gsoghich may be parametrized
by the TMDs. However, the usefulness of a definition of TMDsastingent upon such a con-
nection being possible. This requires a factorization fratork which allows one to separate the
description of the physical process into the hard, pertivbaertex, a TMD encoding the structure
of the nucleon, and further components such as fragmentatiations describing the hadroniza-
tion of the struck quark. In general, the possibility of atéaization of this kind is not guaranteed.
For example, for reaction classes with multiple hadronsoitinlthe initial and the final state, it has
been argued that TMD factorization in general fails [10]wdwer, for certain processes, including
semi-inclusive deep inelastic scattering (SIDIS) and thellExan (DY) process, factorization ar-
guments have indeed been constructed, one possible apgragog been advanced, e.g., in [5-8].
Fig. 1 schematically exhibits the principal elements imedl in a description of SIDIS. One par-
ticularly noteworthy aspect is the final-state gluon exgemnbetween the struck quark and the
nucleon remnant. These final state effects break timegal/@variance and thus lead to nontriv-
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Figure 1: lllustration of the elements of SIDIS factorization. Thevkr shaded bubble represents the struc-
ture parametrized by TMDs.

ial T-odd TMDs. At a formal level, a resummation of these gluexchanges in the spirit of an
eikonal approximation yields a Wilson line approximateblidwing the trajectory of the struck
quark, close to the light cone. This motivates a specificah@or the gauge connection between
the quark operators in (2.2). Namely, parallel Wilson liaes attached to both of the quark oper-
ators, extending to large distances along a directictose to the light cone; at the far end, these
lines are connected by a Wilson line in thelirection to maintain gauge invariance. The result is
a staple-shaped connecti@n[0, nv,nv+ b, b|, cf. Fig. 2, where the path links the positions in the
argument of77 with straight line segments, amgparametrizes the length of the staple. Formally,
thus, itis the introduction of the additional vectowhich breaks the symmetry under time reversal
and makes nonvanishing Sivers and Boer-Mulders effectsilpes

At first sight, the most convenient choice for the staplediosm v would seem to be a light-like
vector. However, beyond tree level, this introduces rapidivergences which require regulariza-
tion. One advantageous way to accomplish this is to takbghtly off the light cone into the
space-like region [5, 6], with perturbative evolution etiolas governing the approach to the light
cone [7]. Within this scheme, a “modified universality” haeh established, i.e., common TMDs
describing both SIDIS and DY, except that in the DY process, initial state interactions which
play a crucial role; correspondingly, the staple directiosinverted and the T-odd TMDs acquire a
minus sign. A scheme in whioch(along with the quark operator separations generically space-
like is also attractive from the point of view of lattice QCBs discussed further below. It will

ol
nv+b
b ;Z -------- >
= = v
0 n

Figure 2: Staple-shaped gauge connectiO, nv,nv+ b, b.
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thus constitute the starting point for the development efl#titice calculation. A useful parameter
characterizing how closeis to the light cone is the Collins-Soper evolution paramete

v-P

2.6
BYER (2.6)

J\I)

in terms of which the light cone is approached fop 0o,
The correlator (2.2) can be decomposed in terms of invaamnlitudesﬁig. Listing only the
leading twist components,

1 - o -
ﬁq’tﬂubtr = Ao +imné&ijbiSjA1B (2.7)
P+ un):s)fbtr = —NAes+ i[(b-P)A —mn(br ST)]'K?B (2.8)

1 g . ~ ~ i ~ -
oo Plrsaba. = M bjAue — SAgg — imuAbiAyge + my[(b- P)A — my(br - Sr)biAus . (2.9)

These amplitudes are useful in that they can be evaluatedyidesired Lorentz frame; they will
thus facilitate casting the problem in a frame which is gaittrly suited for the lattice calculation.
On the other hand, in view of (2.3)-(2.5), they are clearlysely related to Fourier-transformed
TMDs. Performing the corresponding algebra, and quotinly dme components necessary for
defining the Sivers and Boer-Mulders shifts below,

fHO®2,2,...,nv-P) = 2Agm(~b2,b-P=0,{,nv-P)/.A (2, .. (2.10)
fHUO W2 2 nv-P) = —2Am(—b2,b-P=0,{,nv-P)/F(K,..)) (2.11)
YW ¢ nv-P) = 2A(~b3,b-P=0,{,nv-P)/F (1% ...) (2.12)

where the generic Fourier-transformed TMD is defined as
£ (2 2 . \" 20 dbrke ¢ (s K2
PR,y =t (S0 /ldx/d ke €07 F(xK2,..) | (2.13)
3 _

Here, the superscript denotes the first Mellin moment i In (2.13), thebr — O limit formally
yields kr-moments of TMDs. However, this limit contains additionalgailarities, which one can
view as being regulated by a finite-. In the following, results will only be given at finiter.
Note the presence of the soft factoréon the right-hand sides of (2.10)-(2.12). One can construct
observables in which the soft factors cancel by normalizivey(Fourier-transformed) Sivers and
Boer-Mulders functions (2.11) and (2.12) by the unpolatizéD (2.10), which essentially counts
the number of valence quarks. Thus, one defines the “gernedaBivers shift”

fLO R ) Auzs(—b%,0,{,nv-P)
ki 2. )= Ar ATt ~128 : 7A7r’ 2.14
W BT =M o T ™ R 12,0,8.0v-P) o

which is the regularized, finiter generalization of the “Sivers shift”

i (0,..) _ Jdxf d?ke k@ l(xkr. Sy = (1.0)

f[l]( )(07) N defdsz (‘D[Vﬂ(x’ kr,Sr=(1,0)) 7 (219
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nucleon nucleon
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(fixed position)  (fixed momentum)
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Figure 3: Lattice QCD scheme for evaluating matrix elements of thet{$?2) in a nucleon state, cf. main
text. The staple-shaped gauge connections defined at a single Euclidean time, the operator insertion
time 1; the thick blue path representiriy should thus be viewed as protruding out from the plane of the
page at the fixed time. Shown is specifically thd-quark part of the matrix element.

which, in view of the right-hand side, formally represerte average transverse momentum of
unpolarized (U”) quarks orthogonal to the transversd () spin of the nucleon, normalized to the
corresponding number of valence quarks. In the interpogtadf (2.15), it should be noted that the
numerator sums over the contributions from quarks and aatic, whereas the denominator con-
tains the difference between quark and antiquark contabsi thus giving the number of valence
quarks. Analogously, one can also extract the generalizezt-Blulders shift

&B(_b%HO?Z»nV' P)

2\ _
(ky)ut(by,...) =My Fon(2,0.6.7v-P)

(2.16)

Note that the ratios (2.14) and (2.16), besides cancelifigfactors, also cancerl-independent
multiplicative wave function renormalization constantsaehed to the quark operators in (2.2) at
finite physical separatioh.

3. Lattice evaluation

The formal framework laid out above provides all the necgsstements for a lattice QCD
evaluation of generalized shifts such as (2.14) and (2.1%)e path towards these observables
proceeds via the calculation of nucleon matrix elementheftype (2.2) and subsequent decom-
position into invariant amplitudes, as given in (2.7)-(2.90 elucidate the strictures imposed on
the calculational framework by employing lattice QCD toatatine the nucleon matrix elements
(2.2), it is useful to briefly review the standard scheme usedvaluate such matrix elements.
As depicted in Fig. 3, one places a source and a sink with thatgm numbers of the nucleon
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state under consideratibat locations on the Euclidean lattice widely separated idiHean, i.e.,
imaginary time; then, imaginary time evolution generaté®aa fidenucleon ground state at in-
termediate times well separated from source and sink duegdonential decay of excited state
contributions. In this region, one can evaluate nucleomiggcstate matrix elements. However, this
computational setup implies a strong restriction on the tyfomatrix element that can be evaluated.
Having already used the temporal direction on the latticepoesent an imaginary time coordinate,
one cannot represent Minkowski, i.e., real time separatmmthe lattice. Consequently, only the
matrix elements of operators which are defined at a single tiem be straightforwardly accessed
in this standard scheme.

This is the point where it becomes crucial to be working witthedinition of the fundamental
TMD correlator (2.2) in which the four-vectotsandv are generically space-like. Only in that case
is there no obstacle to boosting the problem from the Lorématme in which (2.2) is originally
defined to a frame in which andv are purely spatial, and evaluatiﬁdﬂsubtr‘in that frame using
lattice QCD. Having accomplished that, it is the decompmsitnto invariant amplitudes (2.7)-
(2.9) which permits the connection back to the original lndzeframe; the results extracted for the
invariant amplitudeﬁiB are immediately valid also in that frame, thus completirggdbtermination
of quantities of the type (2.14) and (2.16).

One special aspect of the lattice TMD calculation pursued fsethe large number of matrix
element evaluations implied by a survey of staple-shapdddeometrie% characterized in terms
of the separations and nv. This is efficiently handled by the sequential propagatohiéque:

As depicted in Fig. 3, one evaluates the forward quark pragmagwhich not only provides the
propagation of thed-quark from source to operator insertion (black line in F3jy, but two of
which can furthermore be contracted at the sink tigaeto generate a new source for subsequent
propagation fromgnk back to the operator insertion tinte Note that the contraction &k also
includes the projection onto the desired nucleon three-emtomP. The sequential propagator
(dark shaded region in Fig. 3) determined in this manner,l@oed with the forward propagator,
thus only has to be calculated once for givermand then, finally, can be contracted with a large
set of gauge connectior®” described by differenb andnv to arrive at the corresponding set of
matrix elements.

Since, in a numerical lattice calculation, the staple extemecessarily remains finite, two
extrapolations must be performed from the generated daiaely, the one to infinite staple length,
n — +oo, and the extrapolation of the staple direction towardsitite l:one,f — o0, As shown be-
low, the former extrapolation is under control for a rangg@afameters used in this work, whereas
the latter extrapolation presents a formidable challefigee main limitation in this respect is the
set of nucleon three-momenRaccessible with sufficient statistical accuracy; limiednplies
limited 2 cf. (2.6). In the following, only data for the isovectar;- d quark combination will be

Ln practice, projection onto definite three-moment@nis only performed at the sink; together with projection
onto zero momentum transfer at the operator insertion, nméume conservation then implies that also only the source
component with momentui® contributes to the matrix element.

2The set of relevant geometries is subject to certain canssravhich however only partially mitigate the volume of
the calculation: Concentrating on the lowgghoments, cf. (2.13), implies evaluation specificallypalP = 0. Together
with b™ = 0, this means thdtis purely transverse. On the other hand, in the adopted framkg5, 6], v is taken to have
no transverse components, and, therefore, lalso= 0.
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Figure 4: Generalized Sivers shift as a function of the staple exjévit with the different panels showing a
sequence of results obtained for increasing quark sepatati The parametef characterizing the approach
to the light cone is fixed; from [9].

shown, since in this channel, couplings of the operatorrilseto disconnected quark loops in
the nucleon cancel. Such disconnected contributions hat/been evaluated. Calculations were
performed on three MILC 2+1-flavor gauge ensembles [11] withttice spacing oA = 0.12fm,
corresponding to pion massas; = 369 MeV andm; = 518 MeV, with two lattice sizes used in
the former case, 20« 64 and 28 x 64. Form,; = 518 MeV, the lattice size is 30 64. In addition

to the three-moment® = 0 andP = (—1,0,0) - 2r1/L (whereL denotes the spatial lattice extent),
which were employed on all ensembles, in the heavier piorsraasemble, fraught with less sta-
tistical uncertainty, als® = (1,—1,0) - 2rr/L andP = (—2,0,0) - 2r7/L were used. The latter case,
paired withv = (£1,0,0), provides the Iarges*,t; | value accessed, namelﬁ,\ =0.78.

4. Numerical results

Figure 4 shows a sequence of data for the generalized Shifr%(@.14) as a function of the
staple extenty|v|, with the quark separatiobr varying from panel to panel. The T-odd behavior
of this observable, manifested in the antisymmetry in theéatste n|v|, is evident, withn — o
corresponding to the SIDIS limit, wheregs— —o yields the DY limit. The data level off to
approach clearly identifiable, stable plateaux as theestapbth grows. The limiting SIDIS and DY
values, represented by the open symbols, are extracted fmysing antisymmetry im, allowing

SFormy, the value of the nucleon mass as determined on the ensemdée consideration is used, rather than the
physical nucleon mass.
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Figure 5: Dependence of the generalized Sivers shift on the quarkagpal bt | in then — o SIDIS limit;
from [9].

one to appropriately average thje— 4o plateau values. As the quark separatm|nincreases,
statistical fluctuations become more noticeable, thudilgthe range obt for which the plateaux
yielding the SIDIS and DY limits can be extracted.

Fig. 5 summarizes the results obtained for the SIDIS lima &mction ofbr, at the same fixed
{ as used in Fig. 4. The shaded area belbw ~ 0.25fm indicates the region where the results
may be significantly affected by finite lattice cutoff effeels the quark operators in (2.2) approach
one another. Thus, fcfr = 0.39 and a limited range difr, a sizeable negative SIDIS Sivers shift is
found in the isovecton) — d quark case.

Turning to the dependence of the generalized Sivers shitherCollins-Soper parametér,
Fig. 6 displays data for this shift as a function of the stapdentn |v| analogous to Fig. 4, except
that the panels correspond to varyiﬁgwhile the quark separatiooy is fixed at|br| = 0.36fm.
Thus, the lower left-hand panel in Fig. 4 fits in between the panels shown in Fig. 6 in terms
of a sequence of panels at differefitfor a fixed |br|. Note that the = 0 data were obtained
usingP = 0, in which case one cannot identify a “forward” or a “backdiadirectiorf'. For this
reason, only a single branch ifjv| is displayed, the sign being a matter of definition. Thesa dat
illustrate how the quality of the signal deteriorates asrheleon momentunfP|, and therefore

0.6 0.6
Sivers Shift (SIDIS), u—d — quarks Sivers-Shift, u—d — quarks
S o S
2 0.4 ?=0 3 0.4 %
s 02f lbr|=0.36fm, s 02(il] &HH;;;
= =518MeV S t *
200 m =00 - -
a R a K'=0.78 *s
= = . *3
2, 02 ., 1 2 02t | by =0.36fm, qﬂ %
W * * W _
g -04 M z 0af | M=518MeV
«— DY SIDIS||
-0.6 e —0.6
5 10 o0 —oc0o 10 -5 0 5 10 o0
nlv| (lattice units) nlv| (lattice units)

Figure 6: Generalized Sivers shift as a function of the staple extgnf, for two extreme values of the
Collins-Soper parametér, from [9].

4A way to define this limit cleanly is given in [9].
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Figure 7: Dependence of the generalized Sivers shift on the CoIItnrseSparametezf inthen — o SIDIS
limit for all three ensembles investigated. The quark safianbr is held fixed; from [9].

2, is increased, even when the same staple parametensi n|v| are employed. At the largest
Collins-Soper parameter accessed in this investigaﬁ’Oﬁ,O.78, identification of plateaux in|v|
becomes difficult, especially in the SIDIS direction. Thatphu averages in the right-hand panel
of Fig. 6 were formed using the same range)¢f| as in all other cases considered.

Fig. 7 summarizes the SIDIS limit results as a functior{ dbr the samgbr| = 0.36fm as
used in Fig. 6, with then,; = 518 MeV data discussed up to this point supplemented bytssfsoin
the other two ensembles included in this investigation.eNbat the relevant data are represented
by the full symbols; the empty symbols correspond to a aenpairtial contribution to the Sivers
shift which will not be discussed further here; for detadf,[9]. The statistical uncertainty of the
generalized Sivers shift quickly increasesfais raised. No clear trend as a function &ban be
identified at the present level of accuracy, and connectiitly perturbative evolution equations at
Iargef will clearly represent the most difficult challenge for theegent approach. Furthermore,
within the (sizeable) uncertainties, no significant vaoiatof the generalized Sivers shift can be
discerned as one changes the pion mass or the spatial ektbatlattice.

The generalized Boer-Mulders shift (2.16) exhibits cherastics similar to the ones of the
generalized Sivers shift. Fig. 8 shows representativetsefar the dependence on the staple extent

— i —d - 0.00 ; : .

< 0.2 Boer—Mulders Shift, u-d — quarks 1 - Boer—Mulders [Shift (SIDIS),

() ) u—d — quarks
a@/ O.lfi §§§;;. © -0.05
00+ . S -0.10
a 7=0.39 . o % %
= _ N 1= [

7o 01 | Ibr|=0.36fm, ey, 1§ T -0 { $ A

z m, = 518MeV 2 7=0.39

-0.2 | _py SIDIS — € o020 m, = 518MeV
- -10 -5 0 5 10 L 0.0 0.2 0.4 0.6 0.8
nlv| (lattice units) |br| (fm)

Figure 8: Results for generalized Boer-Mulders shift. Left: Depearieon the staple extenty for fixed
quark separatiobr and Collins-Soper parametér right: Results in the) — « SIDIS limit as a function
of by for fixed ¢. From [9].
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Figure 9: Results for generalized Boer-Mulders shift as a functioﬁ &dr all ensembles; from [9].

n|v| and the dependence of thle— oo SIDIS limit result on the quark separatidx. The T-odd
behavior of the observable is again evident, and plateanxbeaidentified as the staple length
grows. The SIDIS limit data as a function bf closely parallel the behavior of the generalized
Sivers shift displayed in Fig. 5. The dependence of the gdimed Boer-Mulders shift in the
SIDIS limit on the Collins-Soper evolution paramet%,r for all three ensembles considered in
this investigation, is summarized in Fig. 9 for a fixed quagharation|br|. Again, the statistical
uncertainty of the observable quickly increasesf as raised, precluding the identification of any
trend as a function of which might aid in connecting the results with perturbatesolution
equations at Iargé. Within the sizeable uncertainties, the data obtainedffdrdnt pion masses
and spatial lattice extents are compatible with one another

Comparing the results for the Sivers and Boer-Mulders shiftthe isovectoru — d flavor
channel considered above, the magnitude of the Boer-Mallslgift is smaller than the one of its
Sivers counterpart, and the signal for the former is of lagh lquality than the one for the latter.
One reason for this is that, if one separatesuhandd-quark contributions, the Sivers shifts in
the two cases are of opposite sign (thus reinforcing eaddr attheu — d difference), whereas the
Boer-Mulders shifts are of the same sign, thus canceling e#iter to some extent.

It should be remarked that the qualitative observationserbehavior of the Sivers and Boer-
Mulders shifts made here are compatible with phenomencdbginalyses of experimental SIDIS
data [12, 13], as well as considerations based on the chrgmaogic lensing mechanism [14, 15].
However, it must be stressed that a variety of systemateceffstill need to be taken into account
before a fully quantitative comparison can be envisaged.

5. Summary and outlook

This exploratory study of TMDs within lattice QCD, employgistaple-shaped gauge connec-
tions to incorporate final/initial state effects (for SIDLY), has provided first results for T-odd
Sivers and Boer-Mulders observatiieBoth of the corresponding TMDs are sizeable and negative
in the isovectoru — d quark case. To cancel soft factors and multiplicative revaization con-
stants, appropriate ratios of Fourier-transformed TMg(eralized shifts”, cf. (2.14) and (2.16))

5Complementary results on T-even TMDs are also availableaamgresented in the comprehensive report [9].
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were constructed. The staple directiowas taken to be generically space-like, with the light-cone
limit to be approached by extrapolation in the Collins—qumrameterf . This extrapolation has
to be performed in addition to the one to infinite staple etstgn While the latter extrapolation is
under control for a range of parameters considered in thi&vthe Iimitf — oo Clearly presents a
formidable challenge for the approach presented here. Wishin mind, the Boer-Mulders func-
tion of the pion is presently being investigated. Both the@domass of the pion compared with
the one of the nucleon (note that the hadron mass enters timeniteator on in (2.6)), as well

as the reduced statistical fluctuations of pion correlatpesmitting the treatment of higher hadron
momenta, are expected to aid in accessing lattice datamwﬁg
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