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The AdS/CFT correspondence may offer new and useful insights into the non-perturbative regime
of strongly coupled gauge theories such as Quantum Chromodynamics. Soft-wall AdS/QCD
models have reproduced the linear trajectories of meson spectra by including background dilaton
and chiral condensate fields. Efforts to derive these background fields from a scalar potential have
so far been unsuccessful in satisfying the UV boundary conditions set by the AdS/CFT dictionary
while reproducing the IR behavior needed to obtain the correct chiral symmetry breaking and
meson spectra.
We present a three-field scalar parametrization that includes the dilaton field and the chiral and
glueball condensates. This model is consistent with linear trajectories for the meson spectra
and the correct mass-splitting between the vector and axial-vector mesons. We also present the
resulting meson trajectories.
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1. Introduction and Motivation

Quantum chromodynamics has been well tested for high-energy collisions, where perturbation
theory is applicable. However, at hadronic scales, the interaction is non-perturbative, requiring a
new theoretical model. The Anti-de Sitter Space/Conformal Field Theory (AdS/CFT) correspon-
dence establishes a connection between n-dimensional Super-Yang Mills Theory and a weakly-
coupled gravitational theory in n+ 1 dimensions [1]. Phenomenological models inspired by this
correspondence are known as AdS/QCD, and have succeeded in capturing some features of QCD.
A representative, though not exhaustive, list of examples is included here: [2, 3, 4, 5, 6, 7].

Quark confinement in QCD sets a scale that is encoded in a cut-off of the fifth dimension in
the AdS theory. Soft-wall models use a dilaton as an effective cut-off to limit the penetration of
the meson fields into the bulk. The simplest soft-wall models use a quadratic dilaton to recover
the linear Regge trajectories [2], while models that modify the UV behavior of the dilaton more
accurately model the ground state masses. We use the meson action from [8].

Smeson =
∫

d5x
√
−ge−Φ(z)Tr

[
|DX |2 +m2

X |X |2 +κ|X |4 + 1
4g2

5
(F2

L +F2
R )

]
. (1.1)

Here, Φ is the dilaton, X is the scalar field, and FL,R contain the vector and axial vector gauge
fields. The z-dependent vacuum expectation value of the scalar field encodes the chiral symmetry
breaking,

〈X〉= χ(z)
2

I, (1.2)

where I is the NF ×NF identity matrix. The field strength tensors and covariant derivative are
defined as

FMN
L,R = ∂

MAN
L,R−∂

NAM
L,R− i[AM

L,R,A
N
L,R]

DMX = ∂
MX− iAM

L X + iXAM
R .

Please see [8, 6] for details on the field content, the equations of motion, and the numerical methods
for calculation of the meson spectra.

The models of [2, 8] use parametrizations for the background dilaton and chiral fields that
are not derived as the solution to any equations of motion. A well-defined action provides a set
of background equations from which these fields can be derived. In addition, this action provides
access to the thermal properties of the model through perturbation of the geometry [9]. The full
action contains the meson action (1.1) and the gravitational action, each of which has an intrinsic
coupling to the dilaton,

S =
∫

d5x
√
−ge−ΦLmeson +

∫
d5x
√
−ge−2ΦLgrav.

In the Einstein frame, the action for the background fields reads

Sgrav =
1

16πG5

∫
d5x
√
−gE

(
RE −

1
2

∂µφ∂
µ

φ − 1
2

∂µ χ∂
µ

χ−V (φ ,χ)

)
. (1.3)

The dilaton is scaled for a canonical action, φ =
√

8/3Φ.
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One background equation does not depend on the potential,

6aφ
′′(z)+ [φ ′(z)]2(6a2−1)− [χ ′(z)]2 +

12aφ ′(z)
z

= 0. (1.4)

Examining (1.4), and requiring the IR behavior that φ = λ z2 and χ = Γz, determines a = 1/
√

6
[10]. This determines a relationship between λ , the parameter that sets the slope of the Regge
trajectories, and Γ, which is related to the mass-splitting between the vector and axial vector mesons
[8]

∆m2 = lim
z→∞

g2
5χ2

z2 = g2
5Γ

2 = g2
563/2

λ . (1.5)

Using the experimental value of λ gives a value of ∆m2 that is ∼ 50 times larger than what is
observed experimentally. Because this inconsistency arises from a background field that does not
depend upon the choice of potential, this problem is pervasive in such models with two background
fields.
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Figure 1: The ρ and a1 meson masses [11] are fit well using the three-field parametrization.

2. Three-Field Model

We propose to solve this problem by adding another scalar field to the action for the back-
ground fields, G, dual to the glueball field. By this association, the UV boundary condition is
limz→0 G(z) = goz4, where go is the gluon condensate. To maintain linear confinement, G ∼ z in
the IR. The background equations that result are

χ
′2 +G′2 =

√
6

z2
d
dz

(
z2

φ
′) , (2.1)
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Ṽ +12 =

√
6

2
z2

φ
′′− 3

2
(zφ
′)2−3

√
6φ
′, (2.2)

∂Ṽ
∂φ

= 3zφ
′, (2.3)

∂Ṽ
∂ χ

= z2
χ
′′−3zχ

′
(

1+
zφ ′√

6

)
, (2.4)

∂Ṽ
∂G

= z2G′′−3zG′
(

1+
zφ ′√

6

)
, (2.5)

where (′) indicates differentiation with respect to z. Here we have used a conformally transformed
potential from the one in (1.3), V (φ ,χ) = e2φaṼ (φ ,χ). The potential depends on z only through
the fields, so we may eliminate one of (2.3-2.5).

Examining (2.1) in the IR limit, we see that we can adjust the coefficients of the dilaton and
chiral condensate fields independently. Thus, the addition of a third scalar background field re-
solves the phenomenological problem present in the two-field models of [10, 12].

-1
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Figure 2: The f0 meson and pion masses [11] are fit well using the three-field parametrization. The param-
eter κ is adjusted to avoid a virtual f0 ground state. The pion ground state is massless, due to the zero quark
mass in the model.

As a check on the three-field setup, we seek a parametrization for the chiral and glueball fields
that yields an expression for the dilaton free of special functions. In addition, the parametrization
must yield meson spectra that match well with experiment. The following expressions for the
derivatives of the chiral and glueball fields match these criteria:

G′(z) =
A
B3

(
1− e−Bz)3

, χ
′(z) =

α

β 2

(
1− e−β z

)2
. (2.6)

The parametrization of the chiral field indicates a zero quark mass. The above parameters are
defined: α = σ/3, α/β 2 = Γ, A = go/4. B is set by ensuring (2.1) is satisfied in the IR limit.
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The values of the parameters, as determined by a least-squares fitting to the ρ and a1 spectra,
are: σ = (0.375GeV)3, go = (1.5GeV)4, Γ = 0.25GeV, λ = (0.428GeV)2. The vector and axial-
vector meson spectra that result from this parametrization are shown in Figure 1.

The parameter κ , from the quartic term in the scalar potential in 1.1, is adjusted to give the
correct value for the ground state f0 meson. We find that κ = 12.4, in contrast to the negative value
found in [8]. The scalar potential in the meson action is no longer unbounded from below. There
is no virtual ground state for the scalar meson spectrum, which occurs in some models without a
quartic interaction term. The results are plotted in Figure 2.

The numerical results for the pseudoscalar mesons fit the data quite well with the parameters
fit to the other sectors. The ground state pion is massless due to the zero quark mass. The linear
Regge trajectory is found numerically, without need of a large-z approximation, as in [6]. The
results are plotted in Figure 2.

2.1 Potentials for Power-Law Background Fields

We can learn about the asymptotic behavior of the potential by examining its form when the
chiral and glueball fields are assumed to have generic power-law behavior: χ ∼ zn, G ∼ zm. The
dilaton is determined by (2.1). Adapting the potential ansatz from [10] to the three-field model,

Ṽ =−12+4
√

6φ + c2φ
2− 3

2
χ

2 + c3G2 + c4χ
4 + c5φ χ

2 + c6G4 + c7φG2 + c8χ
2G2, (2.7)

and inserting in equations (2.1-2.5), we solve for the coefficients ci. There is a unique solution
leaving c2 free, which is identified with the dilaton mass as in [10].

c3 =
−3m−6mn−7m2n+2m3n+7mn2−2mn3

2n(1+2m)
(2.8)

c4 =
n2(c2−12n(1+n))

48(1+2n)2 (2.9)

c5 =
6n2− c2n

2
√

6(1+2n)
(2.10)

c6 =
m2(c2−12m(1+m))

48(1+2m)2 (2.11)

c7 =
6m2− c2m

2
√

6(1+2m)
(2.12)

c8 =
−m(6mn+6n2 +12mn2− c2n)

24(1+2m)(1+2n)
(2.13)

Thus, the ansatz (2.7) yields the asymptotic behavior of the potential. However, it remains to find
a potential that is consistent with both the UV and IR limits of the background fields.

3. Conclusion

We have shown that a gravitational action containing only two background fields does not
yield the correct form of chiral symmetry breaking, provided that one of the background fields is
identified as the chiral condensate function. In an attempt to circumvent this problem, we have
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suggested adding a third background field, to be identified with the glueball condensate. A partic-
ular parametrization of such a three-field model produces meson spectra that fit the data well. It
remains to produce a potential that yields this or another suitable set of background fields.
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