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1. Introduction
The Banks-Casher relation [1] relates the spectral density ρD of the Hermitian Dirac operator −iD
with the chiral condensate Σ

ρD (γ,m) =
Σ

π
[1+O({|γ|,m}/ΛQCD)] , (1.1)

where γk are the eigenvalues of the massless operator and m is the sea quark mass. In principle the
Banks-Casher relation provides a tool to determine the chiral condensate [2] with a lattice QCD
computation.

A more standard way to determine the chiral condensate with lattice QCD computations is
to study the quark mass dependence of the pion mass and comparing it with the predictions of
chiral perturbation theory (χPT). Recent lattice calculations are performed close to the physical
values of the quark masses (see ref. [3, 4] for recent reviews). To control accurately the light quark
mass dependence of hadronic quantities it is important, if possible, to have independent determi-
nations of leading order (LO) low energy constants (LECs), as for example the chiral condensate.

Figure 1: Light quark mass dependence of
the ratio between the pseudoscalar meson mass
squared and the renormalized light quark mass
in units of the Sommer parameter r0.

In the plot in fig. 1 we show the light quark
mass dependence of the squared pion mass com-
puted by the European Twisted Mass Collab-
oration (ETMC) with N f = 2 dynamical light
quarks [5]. Despite the rather good description
of the lattice results with χPT, it is obviously de-
sirable being able to predict, in an independent
way, the behaviour close to the chiral limit (red
ellypse) to better constrain the light quark mass
dependence. A constraint of the chiral fit will be
beneficial for a more accurate determination of
the next-to-leading order LECs and a better con-
fidence on the chiral fits.

An example of independent determination of
LO LECs is provided by lattice calculations in
the so called epsilon-regime, where first estimates
of the chiral condensate and decay constant are
rather encouraging [6, 7]. Using Wilson-type fermions as a QCD discretization, calculations are
affected by potentially large cutoff effects, thus it is important to have a theoretical analysis of quan-
tities such as the spectral density, based on Wilson chiral perturbation theory (WχPT) [10, 11]. 1

These proceedings are a status report of an ongoing attempt to understand cutoff and finite size
effects affecting the spectral density of the Wilson operator.

2. Chiral condensate from the mode number
With Wilson fermions it is advantageous to consider the Hermitean Wilson-Dirac operator Q =

γ5Dm, where Dm is the massive Wilson opearator. To compute the spectral density ρQ in WχPT

1The analysis of two-point functions in the epsilon-regime within the framework of WχPT has been discussed in
refs. [12, 13] and more recently extended in ref. [14].
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Figure 2: Left plot: the spectral density [ρQ(λ ,m)+ρQ(−λ ,m)]NLO in the infinite volume. We used the
parameters Σ = (275 MeV)3, mPCAC = 26.5 MeV, F = 90 MeV, L̄6 = 5, µ = 139.6 MeV. The solid black
line corresponds to the continuum χPT prediction, while the red (blue) lines correspond to the lattice WχPT
prediction (O(a)-improved) on eq. 2.3 with â2W ′8 = ±5 · 106 MeV4, corresponding to ∆ = ∓0.53. Right
plot: result of the global fit of the data published in [2] with our formula for the renormalised mode number
(eqs. 2.4 and 2.3). The fit parameters are Σ, ∆ and L6 and we obtain χ2/dof = 0.91.

one introduces a flavour doublet of valence fermions χv with a Wilson twisted mass action and
twisted mass µv. The spectral density is related to the discontinuity of the valence pseudoscalar
condensate along the imaginary axis in the twised mass plane [15]

Disc
[
〈χ̄vγ5τ

3
χv〉
]∣∣

µv=iλ = 2iπ [ρQ(λ ,m)+ρQ(−λ ,m)] , (2.1)

thus the valence pseudoscalar condensate is a tool to compute the spectral density in WχPT 2. After
matching the continuum Symanzik effective theory with the generalized effective chiral Lagrangian
one needs to choose a proper power counting for the scales involved in the problem. The scales are
the sea quark mass, m, the valence twisted mass µv (directly related to λ ), the lattice spacing a and
the linear size of the space-time volume L. In the following we always consider the sea quark mass
in the so-called p-regime. For the other scales we consider m∼ µv ∼ a∼ 1/L∼O(p2). The result
of the calculation [16] in terms of the PCAC quark mass mPCAC is given by

[ρQ(λ ,mPCAC)+ρQ(−λ ,mPCAC)]NLO = 2 [ρQ(λ ,mPCAC)]NLO,cont (2.2)

+
2Σλ

π

√
λ 2−m2

PCAC

[
m2

PCAC∆

λ 2−m2
PCAC

+
16â
F2 W6

]
. (2.3)

In these formula ∆=−16â
F2

(
W8
2 + W10

4 +
âW ′8
M2

ss

)
, Mss is the pseudoscalar meson mass (made of two sea

quarks), Σ and F are the LO LECs, â = 2W0a and W0 as the others W s are the LECs parametrizing
O(a) and O(a2) effects. Details on the calculation and a discussion on the applicability of this
formula can be found in refs. [16, 17].

Potentially even with Wilson fermions one can use the spectral density, or equivalently the
renormalization group invariant (RGI) mode number [2]

ν (Λ,m) =V
∫

Λ

−Λ

d λρQ (λ ,m) , (2.4)

2We recall that in the continuum the two spectral densities are connected by the relation ρQ(λ ,m) =
λ√

λ 2−m2 ρD

(√
λ 2−m2,m

)
.
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to determine the chiral condensate. To test our formula we compared the resulting mode num-
ber (2.4) with the numerical data published in [2]. We have fixed F = 90 MeV and the renormali-
sation scale µ = mπ ; we have performed a global fit at all the 3 masses available and all the values
of ΛR with 3 fit parameters: Σ, ∆ and L6.3 From the global fit we obtain

Σ
1/3 = 266(7)MeV , ∆ =−0.62(80) , L6 = 6(1) . (2.5)

The numerical data and our global fit are shown in the right plot of fig. 2. For Σ we obtain a
perfectly consistent result with Giusti and Lüscher [2] without performing any chiral extrapolation.
We have also performed a fit fixing F = 80 MeV obtaining compatible results within errors. Lattice
determinations of the chiral condensate using the mode number can be found in [2, 8, 9].

3. Cutoff effects close to the threshold
To improve the theoretical description of the spectral density of the Wilson operator for λ ' m
one needs to consider two important points. The first one is that finite size effects diverge for
λ → m [16] and the second one is that the when λ ' m the power counting for the valence quark
masses need to be reconsidered, i.e. the treatment of the cutoff effects in a perturbative fashion
might not be adequate.

To overcome this difficulties we opt for the following power counting

m∼ O(p2), mP =
√

m2
v +µ2

v ∼ O(p4), 1/L,1/T ∼ O(p) , a∼ O(p3) , (3.1)

that implies cutoff effects affecting the spectral density at NLO order. The framework is the so-
called mixed Chiral Effective Theory [18], where some masses obey the p-regime counting, and
others are in the epsilon-regime. As an intermediate step of our calculation we introduce a θ -term
solely in the mass-term of the action as follows

L2 =
F2

4
Tr
[
∂µU∂µU†]− Σ

2
Tr
[
U†

θ
U(x)†M +M †U(x)Uθ

]
− âF2

4
Tr
[
U +U†] , (3.2)

where the mass matrix in the replica formalism [19] is

M = M † = diag(m, . . . ,m︸ ︷︷ ︸
Ns

,mv + iµvτ
3, . . . ,mv + iµvτ

3︸ ︷︷ ︸
Nr

) , Uθ = diag(e
iθ
Ns
1s ,1r) . (3.3)

While in the continuum it is not important how the θ -term is introduced in the parametrization
of the U-field [18, 20], adding a θ -term in the sea sector only, becomes relevant at finite lattice
spacing. With this choice, even with a θ -term in the action, we can reabsorb the leading O(a)
cutoff effects in a redifinition of the quark mass, because with our choice of power counting (3.1),
in the sea sector the leading O(a) effects appear at NNLO, i.e. the sea quarks are effectively in
the continuum up to higher order corrections. With this particular choice of power counting and
parametrization of the θ -term we can achieve, as in the continuum [18, 20], a factorization of the
partition function for the zero and non-zero modes. The periodicity in θ of the chiral Lagrangian
allows us to write the partition function in standard fashion

Z (θ) =
ν=+∞

∑
ν=−∞

e−iνθ Zν , Zν =
1

2π

∫ 2π

0
dθ eiνθ Z (θ) . (3.4)

3In this proceedings with Σ we denote its value renormalised in the MS scheme at a scale of 2 GeV.
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By performing an exact integration over the constant field θ one obtains

Zν ∝ e
−Nsν2

2zs

∫
U(Nr)

dU0
(
detU0

)ν e
mvΣV

2 Tr
[
U†

0+U0

]
, zs = mV Σ , (3.5)

from which one observes that the distribution of ν is Gaussian and it is controlled by the sea quarks
which are in the p-regime. The computation of the spectral density is now a computation at fixed ν ,
i.e. ρ =∑ν ρν

Zν

Z . The sum over ν can be done because we know the weight factor Zν

Z (cfr. eq. 3.5).
We expand the pseudo Nambu-Goldstone field U(x) around the ground state of the theory UV

UV = diag( 1︸︷︷︸
Ns

,eiτ3ω0︸ ︷︷ ︸
Nr

) , sinω0 =
µv

mP
, cosω0 =

mv

mP
, (3.6)

and with this parametrization, the mass term in the chiral Lagrangian becomes like in the untwisted
case, with a degenerate polar mass mP in the valence (replicated) sector.

We compute the pseudoscalar valence condensate (cf. eq. (2.1)) in the chiral effective theory,

〈P3
v 〉=

1
V

〈
∂

∂J

∫
d4xL (x)

〉
|J=0, (3.7)

where now the source term has the following form

M →MJ = M + Jτ̂
3, M †→M †

J = M †− Jτ̂
3 , τ̂

3 = diag( 0︸︷︷︸
Ns

, τ
3︸︷︷︸

2

,0, . . . ,0︸ ︷︷ ︸
Nr

). (3.8)

The final result of the calculation can be written as

〈P3
v 〉 =

Σeff

2
F1 +8BâW6F2 +2BâW8F3 (3.9)

+
Σ

2
[
4BâW6NsmV F2 + â2VW ′6(F4 +4NsF2)+ â2VW ′7F5 + â2VW ′8F6

]
,

where Fi=1..6 are integrals over zero modes and Σeff is an effective chiral condensate

Figure 3: Significance of the NLO corrections for
Σeff/Σ in a typical range of sea quark masses for dy-
namical lattice QCD computations.

which includes NLO corrections from the
sea quarks and the lattice spacing

Σeff = (Σeff)cont +16Σ
âW6

F2 . (3.10)

The explicit formula for (Σeff)cont can be
found in [21]. In fig. (3) we show the impact
of the NLO corrections to the chiral conden-
sate [21]. One observes that in the typical
range of quark masses for dynamical simula-
tions the relative corrections induced by the
presence of sea quarks can reach 30%. This
is a warning in case one would like to extract
the chiral condensate from fits of mode num-
bers where the effect of the sea quarks have been neglected. To compute the zero-modes integrals
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we switch to the supersymmetric formulation. All integrals at fixed ν can be computed by derivat-
ing the graded SU(2|2) partition function [22, 23] with respect to appropriately chosen sources.
The integrals have been computed and cross-checked. The final step to determine the formula for
the spectral density is the calculation of the discontinuity along the imaginary axis in the twisted
valence mass plane (cfr. (2.1)). The analysis of the final result is in progress. We conclude ob-
serving that the effects of the sea quarks are twofold. They change the absolute normalization by
introducing an m dependence in Σeff and they control the distribution of ν , which, we remark, stays
Gaussian only because the sea quarks are in the p-regime.
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