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We assess the energy limit up to which Heavy Baryon Chiral Perturbation Theory (HBChPT)

can be applied to the process of neutral pion photoproduction from the proton by analyzing the

latest data collected by the MAMI/A2 collaboration at Mainz. The high-quality differential cross

section and the photon asymmetry measured data allow to testthe theory at a level not previously

achieved. We find that, within the current experimental status, the agreement between theory and

experiment is excellent up to∼170 MeV. Above this energy HBChPT fails to provide high-quality

fits while an empirical parametrization of the multipoles still provides an excellent description of

the data.
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1. Introduction

The spontaneous breaking of chiral symmetry in Quantum Chromodynamics (QCD) makes the
π meson appear as a pseudoscalar Nambu–Goldstone boson [1]. This has some dynamical conse-
quences and one of the most prominent is the softness of the S-wave amplitude for theγN → π0N
reaction in the near threshold region, since it vanishes in the chiral limit [2]. As a consequence
of this softness and the large P-wave amplitude contribution due to the early appearance of the
∆(1232) [3], the S- and P-wave contributions are comparable very close to threshold [4] and even
D waves matter [5]. Hence, the accurate extraction of the S and P waves from pion photoproduction
data becomes an important issue in the study of chiral symmetry breaking and QCD. Consequently,
neutral pion photoproduction from the proton has constituted one of the most studied reactions to
test chiral dynamics in the baryon sector, both from the experimental and theoretical perspectives.
The A2 and CB-TAPS collaborations at MAMI (Mainz) have recently measured the differential
cross section and the photon beam asymmetry [6] in the low energy region for neutral pion photo-
production with such precision that it is possible to extract the P-wave energy dependence and to
use the data to accurately test Heavy Baryon Chiral Perturbation Theory (HBChPT) and assess the
energy range where the theory is accurate.

2. Structure of the Observables

The differential cross section and the photon beam asymmetry (Σ) can be expressed in terms
of the electromagnetic responses [7]:

dσ
dΩ

(s,θ) =
q
kγ

WT (s,θ) (2.1)

Σ(s,θ) ≡
σ⊥−σ‖

σ⊥+σ‖
=−

WS(s,θ)
WT (s,θ)

sin2θ (2.2)

whereWT andWS are the electromagnetic responses,θ is the center of mass scattering angle,kγ

the center of mass photon energy,q the pion momentum in the center of mass, ands the squared
invariant mass. The responsesWT andWS are defined in term of the electromagnetic multipoles:

WT = T0(s)+T1(s)P1(θ)+T2(s)P2(θ)+ . . . (2.3)

WS= S0(s)+S1(s)P1 (θ)+ . . . (2.4)

wherePj (θ) are the Legendre polynomials in terms of cosθ , the dots stand for negligible correc-
tions, and

Tn(s) = ∑
i j

Re{M
∗
i (s) T i j

n M j (s)} (2.5)

Sn (s) = ∑
i j

Re{M
∗
i (s) Si j

n M j (s)} (2.6)

where up to D wavesM j (s) = E0+, E1+, E2+, E2−, M1+, M1−, M2+, M2−. The detailed analysis
of the partial wave structure of the observables and the coefficientsT i j

n andSi j
n can be found in [7].

2



P
o
S
(
C
D
1
2
)
0
6
5

The Upper Energy Limit of HBChPT in Pion Photoproduction César Fernández-Ramírez

0

10

20

30

40

50

60

70

80

90

150 160 170 180 190

T
0 

(1
0-6

/m
2 π+

)

Eγ (MeV)

   

(a)

8

10

12

14

16

18

20

150 155 160

 

 

 

-22

-18

-14

-10

-6

-2

     

T
1 

(1
0-6

/m
2 π+

)

 

   

(b)

-17

-14

-11

-8

-5

-2

1

     

S
0 

(1
0-6

/m
2 π+

)

 

   

(d)

-24

-20

-16

-12

-8

-4

0

150 160 170 180 190

T
2 

(1
0-6

/m
2 π+

)

Eγ (MeV)

   

(c)

-4

-2

0

2

150 160 170 180 190

S
1 

(1
0-6

/m
2 π+

)

Eγ (MeV)

   

(e)

Figure 1: Coefficients of the Legendre polynomial expansion of the observables. Data from [6]. The solid
red line stands for the empirical fit and the dashed blue line for the HBChPT fit. The inset in figure (a)
provides a better look atT0 in the lowest energy region.

3. Results

From the differential cross sections and the photon beam asymmetries measured in [6] it is
possible to extract theTj and Sj coefficients. In Figure 1 we show them. The extractedS1 is
compatible with zero and provides no additional information [8]. Hence, we are able to extract four
single-energy quantities – i.e.T0, T1, T2, andS0 –, from the data, what implies that we can only
extract four single-energy multipoles, in our case ReE0+, ReE1+, ReM1+ and ReM1−, assuming
that the imaginary part of the P waves is zero, ImE0+ is fixed through unitarity and D waves are
fixed by the Born terms. The single energy multipoles can be found in [6, 8].

Together with the single-energy multipoles one can fit the experimental data to different the-
oretical approaches that describe the multipoles. We employ three approaches: 1) HBChPT cal-
culations toO(q4) [5, 9] with the five empirical low-energy constants brought up to date by fitting
these data [8]; 2) relativistic ChPT calculations (also toO(q4)) which as well have five low-energy
constants fit to these data [10]; and 3) an empirical fit [6, 7]:

E0+ = E(0)
0+ +E(1)

0+
ω −mπ0

mπ+
+ iβ

qπ+

mπ+
, (3.1)

Pj/q =
P(0)

j

mπ+
+P(1)

j
ω −mπ0

m2
π+

; j = 1,2,3 (3.2)

whereE(0)
0+ , E(1)

0+ , P(0)
1 , P(1)

1 , P(0)
2 , P(1)

2 , P(0)
3 , andP(1)

3 are free parameters that will be fitted to the
experimental data,ω is the pion energy in the center of mass andβ is fixed through unitarity [8].
We note that chiral symmetry is not imposed in this approach and thatPj partial waves are related
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Figure 2: χ2/dof energy dependence for the empirical (full red circles) [6], HBChPT (full blue circles) [8],
and BChPT (empty green circles) [10] fits. Each point represents a separate fit and the connecting lines are
drawn to guide the eye. The points are plotted at the central energy of each bin, although the calculations
take the energy variation inside of each bin into account. The valueχ2/dof= 1 is highlighted with a solid
line.

to standard electromagnetic multipoles through

E1+ = (P1+P2)/6 (3.3)

M1+ = (P1−P2)/6+P3/3 (3.4)

M1− = (P3+P2−P1)/3 (3.5)

We perform fits to the experimental data in [6] up to differentmaximum photon energiesEmax
γ

within the range[158.72,191.94] MeV and compute theχ2/dof. The amount of data employed in
each fit depends on up to what energy we are fitting, — i.e. for our lowest-energy fit (Emax

γ = 158.72
MeV) we employ 100 experimental data and for our highest-energy fit (Emax

γ = 191.94 MeV) we
employ 514 experimental data. Systematics are not includedin the χ2 and this uncertainty can
amount up to 4% in the differential cross section and 5% in thephoton asymmetry. Figure 2 shows
the χ2/dof for every fit performed versus the upper energyEmax

γ of the fit as well as the number
of data. It is shown that up to∼170 MeV all the fits are equally good providing very lowχ2/dof.
Above 170 MeV the trend is different; while the empirical fit remains with a good and stableχ2/

dof, both the HBChPT and the BChPT start rising, a trend that shows clearly how the theory fails
to reproduce the experimental data above that energy. The empirical fit provides good agreement
with the data up to∼185 MeV where the imaginary parts of the P waves start to be important. The
parameters of the empirical fits are approximately constantonEmax

γ as we is show in Figure 3. The
same graphs for the HBChPT low energy constants can be found in [8].

In Figure 4 we compare the empirical and HBChPT calculationsfor the differential cross
section and the photon beam asymmetry at different energies. For the differential cross section it is
clear that above 170 MeV the HBChPT approach does not providea good description of the data,
however, for the photon beam asymmetry the agreement is goodin the whole energy range.
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Figure 3: Upper energy (fit) dependence of the parameters for the empirical fit. Error bands are computed
at theχ2

min+1 level as described in [6, 8].
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Figure 4: Differential cross section and photon beam asymmetry at different energies. Data from [6]. Solid
red: empirical; Dashed blue: HBChPT.

4. Conclusions

The main results we have obtained can be summarized in:

1. The high-quality experimental data gathered by the A2 andCB-TAPS collaborations at
MAMI allow to obtain the electromagnetic multipoles and their energy dependence to the
best precision ever, what allows to accurately test chiral symmetry and the range of applica-
tion of HBChPT.

2. We can establish a clear upper-energy limit of validity for HBChPT. We have found this limit
to be∼170 MeV of photon energy in the laboratory frame.

3. We do not think that calculating higher orders in HBChPT will help extending the energy
range of application of the theory because data are fairly well reproduced by the empirical fit
up to 185 MeV which expands up to a lower order in pion energy.

5



P
o
S
(
C
D
1
2
)
0
6
5

The Upper Energy Limit of HBChPT in Pion Photoproduction César Fernández-Ramírez

4. Further improvement is necessary in the theory if ChPT is to be applied above 170 MeV.
The relativistic calculation does not provide better agreement with data than the HBChPT
approach [6, 10] what suggests the inclusion of the∆(1232) in the calculation [11] .
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