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Chiral dynamics makes definitive predictions for the elatiagnetic polarizabilities of hadrons
near the chiral limit; but, agreement with experiment isutguns in some cases. We provide an
overview of lattice QCD methods to compute the electric aadnetic polarizabilities of hadrons.
Central to these methods is the lattice simulation of quarksiform, classical electromagnetic
fields. A long-term goal is the determination of polarizétas directly from lattice computations,
however, in the near term, one may need to rely on partialgngbed chiral perturbation theory.
Nonetheless the same striking predictions for the pion mapsndence of electric and magnetic
polarizabilities can be made from chiral dynamics, ancetbatith lattice QCD. A particular focus
is a novel new method to handle charged particle correldtioctions in magnetic fields.
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1. Electromagnetic Polarizabilities

The electric and magnetic polarizabilities provide an apputy for a stringent test of the
chiral dynamics inside hadrons. Essential to the story whtynamics is the spontaneous break-
down of chiral symmetry. For the case of two massless quavkrBathe QCD functional integral
possesses & (2). ® SJ(2)r symmetry, which is broken to the vector subgroup by the vacuu
expectation value of the chiral condensate(p, r >+ 0. In this picture, the pions emerge as
Goldstone modes, and have masses that vanish in the ab$expdiat chiral symmetry breaking,
that ism2 = 0+ my <PY > |F2, where the explicit chiral symmetry breaking is parametatiby
my, the quark mass. This picture is an effective descriptidowfenergy QCD provided the quark
masses are small compared to the scale of strong interactionterms of hadronic parameters
that are free from QCD renormalization scale and schemendepee, this condition translates
into my/(4nF) < 1; and, when met, allows for the quark mass dependence oétmrgy QCD
observables to determined systematically in an expanioatahe chiral limit,mg = 0.

In chiral perturbation theory, the interactions of hadrovith pions are constrained by the
form of spontaneous and explicit chiral symmetry breakifyg.a result, the bare hadron fields are
dressed with pions in a Fock state expansion, schematiziihe form

]I‘I°> = coln°>+cl\non+n‘>+..., IN) =co[n) +ca|prT ) +..., (1.1)

where the bare fields are denoted with lower-case lettedgigare related to the wave-function
renormalization, and;’s are determined by the interactions of the theory. Dependh kinemat-
ics, the higher Fock components may only be virtual statdsvA we have chosen states that are
electrically neutral to emphasize that dynamical fluctuaiproduce Fock components containing
charged hadrons. The electromagnetic interaction thuesers a probe sensitive to the higher
Fock components of the bare hadron fields. Within chiralysbdtion theory, the electric and mag-
netic polarizabilities g andfBv, respectively) are determined to leading order entiraynfhigher
Fock components. For the poins [1], and nucleons [2], thewe éharacteristic singularity in the
chiral limit of these quantities,

QE B~ e o B~ (12)
/Mg Mg /Mg

Experimental determination of polarizabilities can beieehd through the analysis of low-energy
Compton scattering data. In principle, this is easiestHergroton, however, the low-energy limit
is dominated by the total charge interaction, the Thomsoascsection; and, while increasing the
energy leads to increased sensitivity to polarizabiljtiealso introduces higher-order response of
the nucleon. For the most recent comprehensive analysisotdrpCompton scattering, see [3].
For the neutron, one must use Compton scattering off demtear other light nuclei to extract
polarizabilities, which introduces additional theoraticncertainty. For pions, experiments have
resorted to photo-pion production off the nucleon [4], asd/mesults are anticipated from recent
COMPASS measurements using pion scattering off Primakaftqns [5].

2. Methodsfor Particlesin Electric Fields

The electromagnetic polarizabilities provide an oppdtyufor lattice QCD computations, as
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they are quantities that have been subject to debate. Adatdtermination of the polarizabilities of
the deuteron, for example, would be a major contributiorgreswould be able to study few-body
dynamics in addition to the chiral behavior. Needless tq kdtice QCD is not yet at the point
of such studies, however, there has been progress in gesttiong interactions in the presence
of uniform, classical electromagnetic fields, see [6] foermiews. One might think the natural
starting point for lattice computations of polarizabégiwould be the Compton scattering tensor,

Tu(KK) = [ cxatyer 500 (HIT (3,093, (1)} H), @)

however, this presents two major complications. The loergy limit in Eq. 2.1 is constrained by
spatial momentum quantization conditions resulting fragniqalic boundary conditions imposed
on the quark fields. Progress has been made on this front. &dieed terms at second order in the
photon frequency can be isolated by studying zero momenariviadives of the quark propagators,
and these can be computed approximately by using partiailstead boundary conditions, and
taking the limit of vanishing twist angle [7]. This procedueads one to the computation of certain
hadronic four-point functions for which nearby intermediatates between the current insertions
present an essential complication. While there has beamgs® in computing four-point functions
in the case of the mesons, namely Kje-Ks mass difference [8], it is likely that such methods will
not be practicable for nucleons.

The external field approach provides an alternate methoddesa electromagnetic polariz-
abilities. One adds a classical electromagnetic field to @GmBputations, and studies the sub-
sequent external field dependence of hadronic correlatinotibns. Such dependence gives one
access to hadronic couplings to the external field. To irecld external electromagnetic field, one
appenddJ (1)-valued links to thedJ (3) color gauge links

Up(X) — U™ (x)Up(%). (2.2)

This must be done for valence quark propagators, and in thekgleterminant used to generate
gauge ensembles. The latter encompasses contributiorts thue electric charges of sea quarks,
and has only been achieved on lattices studying thermodgsawith staggered quarks. In the
near term, calculations in weak external fields will excludatributions from the sea quarks in
gauge field generation. Gauge ensemble re-weighting tgebgiare a promising way to include
sea quark charges [9]. The light quark mass regime is prdilerfor the quenching of sea quark
charges altogether, due to the so-called exceptionaligggafje configurations. Exceptional config-
urations create an essential roadblock for post-multighyeélectromagnetic links to existing gluon
gauge configurations. Inasmuch as such configurations arengountered, one can address the
guenching of sea quark electric charges using chiral geation theory, for a discussion see [10],
and predictions exist for pion and nucleon polarizabsitees a function of the sea quark electric
charges [11]. As our methods are addressed with explorétiige studies, we couple the external
fields to valence quarks only.

A final word on the inclusion of uniform, external electromatjc fields on a lattice. The peri-
odicity of lattice quark fields leads to a quantization cdiodion the strength of external fields [12],
because the hyper-torus forms a closed surface that dodsakoany flux. For electric and mag-
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netic fields, the quantization conditions are of the form
qf =2m/LB,  gB=2m/L? (2.3)

wherelL is the length of a spatial direction, with all three spatisédtions assumed to be of the
same length, ang is the length of the temporal direction of the lattice. Wetevd’ for the
electric field to make clear that we are in Euclidean spaceravthe action density would appear
as%F“vo = % B2+ £2). Analytic continuation is necessary for results in Minkéspace; but,
as we are interested in quantities that are perturbativieeirstrength of the field, the continuation
is trivial. The Schwinger mechanism [15], which is a nontpdrative phenomenon, is fortunately
absent in Euclidean space. In this section, we concern lvass@ith external electric fields.

2.1 Neutral Particles

For neutral hadrons, the method is simple to explain. Orledies an external electric field,
and measures two-point correlation functions of hadronghé long Euclidean time limit, these
correlation functions should follow an exponential fafljof

Go(1) =Zse BT, (2.4)

whereE (&) is the energy of the hadron in the external electric field. &oeutron in an external
electric field, the energy is given by [16]

E(&) =Mn+ (ag — p2/4M32) £2/2+ ..., (2.5)

where terms of ordef* have been dropped. The contribution involving the squateeheutron
magnetic moment arises from treating the neutron spinvidtitally. In terms of neutron Compton
scattering, the analogous contribution appears as a Bom teamely the second-order term arising
from two interactions of leading-order. The exponentidlbféof neutron correlators leads to an
extraction of the quantity in parentheses. If one is intexk# isolating the electric polarizability,
one requires a method to determine the neutron magnetic ntoeaed this can be achieved by
looking at the amplitudes in off-diagonal spin componeritthe correlator [16]. In that study, an
ensemble of anisotropic clover fermions [17] was succdigsfised to demonstrate the technique.
The analogue of the Born term was shown to affect extractioheoelectric polarizability by 50%.

2.2 Charged Particles

The study of charged particles in external electric fieldshgiously complicated, however,
the same philosophy can be applied. One determines hadromelation functions for various
field strengths, and then matches onto the behavior expfotada single-particle effective action.
This behavior is not a simple exponential falloff in Euckaetime. For example, the charged pion
propagator should behave as [18]

@ ds 102 e 1E2( o
Ge(T :Zf/ : efQQé’r cothQé’sfiEn(é’)s’ 26
s(0) “Jo sinhQé&’s (2.:6)

Istrictly speaking such quantization conditions do not leajiist uniform electromagnetic fields. There are also
gauge-invariant, finite volume artifacts involving the rAoirial holonomy of the external field [13]. While such cant
butions should be exponentially suppressee " lattice results suggest that the effect might be non-gié even
at large pion masses [14]. That study employs methods diffehan those outlined here.
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with Ex(&) = myp+ %aE(§2+---. While fits to the non-standard-behavior can be challenging,

the technique has been successfully demonstrated in aoratquly lattice calculation of charged

pion and kaon correlation functions [19]. Similar success &lso achieved in the study of proton
correlators using a generalization of the method to spihgaaticles [16].

3. A Method for Charged Particlesin Magnetic Fields

The quantization condition for uniform magnetic fields hadfar proven restrictive for the
study of perturbatively small effects for hadrons. Withregesed lattice volumes, smaller magnetic
field strengths can be accessed. The energy eigenstateargédtparticles in external magnetic
fields are described by Landau levels. For the charged pienlong-time limit of the standard
lattice correlation function should produce the standambaential behavior

Ga(1) = 5 (m(%, )7 (0,0)) = Zge =BT 4 ..., (3.1)

X

whereE is the pion energy in the lowest Landau leviey(B) = m;+ % + %BM B?+---. The
omitted terms in the long-time limit of the correlation fdion include excited hadronic states, as
well as the higher Landau levels. For large values of thereatenagnetic field, the Landau levels
will be widely separated in energy, and only the lowest Lankdael will survive the long-time
limit. As we are interested in perturbatively small magodiglds, however, the narrow Landau
level spacingAE /M = |QB|/M?, will lead to a pileup. For smaller values of the magneticdfiel
one will require longer times to separate out the contrdsufrom the lowest Landau level.

This complication can be sidestepped altogether [20].datépg Eq. 3.1, we see that the sum
over all lattice sites projects the correlator onto zerdiapmomentumpg = 0. In the presence of
a magnetic field, it is impossible for all components of thneementum to remain good quantum
numbers. Consequently the correlator contains all Landaeld. A more judicious choice of
correlation function is given by

“8(T) = ;wS(X)W(KT)"T(Oa 0)), 3.2)

where gp(x) is the coordinate wave-function of the lowest Landau leviéle long-time limit of
the correlation function has the same exponential falludfyever, the first omitted terms are from
higher lying hadronic states just as in the absence of thenatagfield. This can be demonstrated
with the Schwinger proper-time trick. Explicit projectiaf the lowest Landau level should be an
economic technique in perturbatively small magnetic fields

As the technique must be practicable on the lattice, we figaged the effects of discretiza-
tion on the lowest Landau level, and the effects of finite mdu For the former, we found that
discretization effects on the wave-function of the lowesttlau level required in Eq. 3.2 were neg-
ligible. The discretization corrections to the energy @& tbwest Landau level could have a more
substantial effect competitive with the magnetic poldbility,

E§(B,a) = m+|QB| - (%a2Q2+ mnBM> B (3.3)

Finite volume corrections where shown to be important; tam, be treated as an application of the
magnetic periodicity of the action [21].
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