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The application of chiral effective field theory (χEFT) to the nuclear few-body sector has achieved

an extremely high level of precision. Calculations of the nuclear potential are performed up to

next-to-next-to-next-to leading (N3LO) order in the chiral power-counting. In this contribution,

we summarize our efforts to extend the application area of chiral EFT to electromagnetic pro-

cesses. We present our construction of the electromagneticcurrent operator consistent with the

potential at N3LO. As an application of our current operator in the calculation of observables,

We focus on the electromagnetic form factors of the deuteron, which allow us to determine two

low-energy constants.
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Introduction

The past two decades saw a very successful application of chiral effective field theory (χEFT)
to few-nucleon dynamics at low energies, see Refs. [1, 2] forrecent reviews. Two-nucleon po-
tentials have been derived to next-to-next-to-next-to-leading order (N3LO) in the chiral expan-
sion [3, 4] and they accurately describe existing low-energy scattering data and static properties of
the deuteron. Electromagnetic reactions on light nuclei such as elastic electron scattering, photo-
/electrodisintegration and radiative capture have been extensively studied in nuclear physics. To
achieve an accurate description, the knowledge of the electromagnetic current operator, constructed
consistently with the nuclear potential, is needed. In their seminal paper [5], Park et. al. were the
first to applyχEFT to derive the exchange currents. However, this work is limited to threshold
kinematics|q| ≪ Mπ with Mπ denoting the pion mass. More recently, this work was extended
to the general kinematics suitable to study, e.g., electronscattering off light nuclei at momentum
transfer of|q| of orderMπ by the JLab-Pisa [6, 7, 8, 9] and Bochum-Bonn groups [10, 11, 12].

In this work, we discuss the expansion of irreducible two-nucleon operatorsJ0 andJ in powers
of P≡ (p,Mπ)/Λ with Λ denoting the hard scale in the theory, e.g. the cutoff (∼ 600 MeV) used
in calculations. Following this expansion, the leading-loop order iseP4. In calculations of the
deuteron form factors one has to keep in mind that most of the corrections to the two-body pieces
of the two-nucleon current and charge operators at this order are of isovector type and thus do not
contribute. In particular, up to this order, the only two-body contributions to the isoscalar charge
density operator,J(s)0 emerge from the leading relativistic corrections of one-pion range so that

J(s)0 is parameter free. The impact of these corrections on the deuteron charge and quadrupole form
factors,GC andGQ is studied in Refs. [13, 14]. In these works the deuteron wavefunctions obtained
from χEFT potentials at various orders were used to computeGC andGQ (see also Refs. [15, 16]
for earlier work along the same lines). Good agreement with the compilation of elastic electron-
deuteron data from Ref. [17] was then found for both form factors in the kinematic rangeQ2 < 0.35
GeV2, provided factorization was employed in order to account for single-nucleon structure.

The isoscalar two-nucleon current operatorJ(s) has two two-body contributions at ordereP4:
one from a short-distance operator and one of one-pion range. The impact of these terms on the
magnetic moments of the deuteron and trinucleons was examined in Ref. [18]. To study the inter-
play of these terms with each other and with one-body mechanisms, it is illuminating to take a look
at the|q|2-dependence of observables. In this contribution we present the results of our study in this
direction [12], usingχEFT expressions forJ(s) derived in Refs. [10, 11] to extend the predictions
given forGM in Refs. [14, 16] toO(eP4).

Results

Since the deuteron is isoscalar, here, we are only interested in the isoscalar part of the exchange
currents. This yields a two-body isoscalar current operator J(s) [10, 11]:

J(s)2B = 2e
gA i
F2

π
d̄9 τ1 · τ2

σ2 ·q2

q2
2+M2

π
[q1 ×q]+ ieL2 (σ1+σ2)×q1+(1 ↔ 2) , (1)

whereq labels the photon momentum,q1/2 labels the momentum transfer on nucleon one/two
respectively and̄d9 andL2 are low-energy constants (LECs) that parametrize physics not explicitly
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included inχEFT. SinceGM is determined completely by the one-body part ofJ(s) up toO(eP3)

the total form factor is thus
GM =

1√
2η |e| 〈1|J

(s)
1B

+
+J(s)2B

+
|0〉. (2)

Here we use factorization to computeJ1B, i.e. we write:

J(s)1B

+
=

|e|
M

[G(s)
E (Q2)2p++ iG(s)

M (Q2)(σ1×q)+], (3)

with p the momentum of the struck nucleon, andG(s)
E andG(s)

M the isoscalar single-nucleon form
factors, for which we take the parameterization of Ref. [19]. The use of the results from Belushkin

et al. for the one-body part ofJ(s)1B

+
is equivalent (up to corrections that begin only two orders

beyond the order to which we work) to making a chiral EFT expansion for the "body" form factors
DM andDE [20]. Since we are primarily interested in the nuclear effects, we adopt here this more
practical approach, which allows us to concentrate on the relevant scales of the two-nucleon system,
without having to worry whether the theory describes the isoscalar nuclear structure satisfactory.

We now evaluate the matrix elements in Eq. (2) with a variety of χEFT deuteron wave func-
tions computed with the NLO and NNLOχEFT potentials and different values of the cutoffsΛ in
the Lippmann-Schwinger equation andΛ̃ in the spectral function. The result found forGM with
LO χEFT wave functions and the leading piece ofJ(s), denoted here asO(eP), was computed in
Ref. [21]. Corrections to this come both from higher-order pieces of the NN potential,V, which
affect the wave function, and from the corrections toJ(s) discussed in the previous section. The
NNLO χEFT potential includes all effects up toO(P3) relative to leading (in this counting), so its
deuteron wave function, when combined with theO(eP4) J(s), yields aχEFT calculation forGM

which includes all effects up toO(eP4).
The pertinent matrix elements are computed via Monte-Carlo(MC) integration. To increase

efficiency, we use importance sampling with the weight function of Ref. [22]:

p(k)≡ p(k) =
(r −3)(r −2)(r −1)

8π
Cr−3

(k+C)r . (4)

The functional form ofp(k) is chosen such that the weight function is maximal at the origin,
reflecting the largeS-wave component of the deuteron wave function. The parameters C and r
control the vanishing of the weight function at large momenta and are tuned to optimal values (in
terms of the efficiency of the MC integration) by calculatingthe expectation value of the one-pion
exchange potential yieldingC= 1 GeV andr = 11.

As in Ref. [22] we perform a path average over several runs. Weuse 2730 sample points and
and the path average is performed for 3000 runs. Analysis of the run-to-run fluctuations indicates
a final answer with better than 1% precision throughout the momentum range of 0−800 MeV. At
several points we compared this MC answer to calculations using quadrature methods, and always
found agreement within the precision claimed.

In order to fix the values of the two LECs enteringJ(s), namelyd̄9 andL2 we adopt the follow-
ing procedure. First, we fix the value ofL2 for a givend̄9 by demanding that the magnetic moment
of the deuteron is reproduced. Then, we perform aχ2-fit to the experimental data for|q| < 400
MeV (including four points from the parametrization of Ref.[24]) to determined̄9. We found, that
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Figure 1: The magnetic form factorGM as a function of|q|. On the left panel the result withJ(s) computed
up toO(eP4) and on the right the impulse-approximation result. The dashed/dotted lines are the contribu-
tions from two-body pieces ofJ(s), as described in the text. Experimental data for the magnetic moment
is from [23]. The remaining data are from the parameterization of [24] (upward triangles) and scattering
experiments reported in [25] (downward triangles), [26] (squares) and [27] (solid dots). The light blue (dark
red) band represents the results with NLO (NNLO) wave functions.

using even lower-|q| data for this fit resulted in unstable answers, reflecting theinsensitivity ofGM

to this LEC at small values of|q|.
The results of this procedure are shown in the left panel of Fig. 1. The light/blue (dark/red)

band is obtained using wave functions computed with the NLO (NNLO) χEFT potential. The width
of the band shows the variation of the prediction asΛ andΛ̃ are changed in the rangeΛ=400. . .550
MeV (Λ = 450. . .600 MeV) at NLO (NNLO) andΛ̃ = 500. . .700 MeV. The cutoff variation is
reduced at NNLO, and the data well described forQ2 < 0.35 GeV2.

In order to assess the momentum transfer at which theχEFT expansion forJ(s) breaks down,
in the right panel of Fig. 1 we show the size of different contributions to the final result. This
time the bands represent the impulse-approximation resultobtained with NLO (light/blue) and
NNLO (dark/red) wave functions. The dotted (dashed) line isthe effect from the piece ofJ(s)2B

that is proportional toL2 (d̄9). For both two-body matrix elements, we show results averaged
over the five cutoff combinations considered, with the lightblue lines showing the NLO case, and
the dark red lines obtained with NNLO wave functions. We estimate the breakdown scale of the
EFT expansion by values of momentum transfer at which theO(eP4) two-body contributions start
becoming comparable to the effect of theO(eP) (impulse-approximation) piece of the current. The
right panel of Fig. 1 shows that the smaller two-body contributions toGM found with the NNLO
wave function delay the breakdown of the expansion. Even so,we would infer a breakdown scale
|q|= 600 MeV, as there the short-distance effect∼ L2 becomes equal in magnitude to the impulse-
approximation result.

In Table 1 we present the values of̄d9 and L2 obtained in our fits. Small values of̄d9 are
preferred, which is consistent with the findings of Ref. [28]. Reassuringly, the inferred values of
d̄9 show only a very mild dependence on the cutoffs as compared tothe expected natural size of
this LEC,|d̄9| ∼ 1 GeV−2. In contrast, the values ofL2 do depend on the choice of the regulator
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employed for the NN potential, as one would expect. It is comforting to see that all obtained values
of L2 are natural with respect to the cutoff scaleΛ employed in these calculations. The values of
L2 reported in the table show that two-body effects inGM play a larger role in the calculation with
NLO deuteron wave functions, as seen in the right panel of Fig. 1.

Summary

The first two-body effects in the deuteron magnetic form factor GM, occur atO(eP4) in χEFT,
i.e. three orders beyond leading. The description ofGM is improved by the inclusion of these
effects. Further, this allows for an exact reproduction of the deuteron magnetic moment. Experi-
mental data is then well described forQ2 < 0.35 GeV2, and the chiral expansion forGM is found
to converge well forQ2 < 0.25 GeV2, provided that the NNLO wave functions of Ref. [4] are
employed.
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Order Λ/Λ̃ [MeV] d̄9 [GeV−2] L2 [GeV−4]

NLO 400/500 −0.010 0.243
NLO 400/700 −0.011 0.249
NLO 550/500 0.016 0.605
NLO 550/600 0.017 0.731
NLO 550/700 0.018 0.892

NNLO 450/500 −0.011 0.188
NNLO 450/700 −0.009 0.173
NNLO 550/600 0.005 0.089
NNLO 600/500 0.001 0.113
NNLO 600/700 −0.001 0.028

Table 1: Values ford̄9 andL2 found by fitting data up to|q|= 400 MeV, using different values of the cutoffs.
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