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We analyse the interplay between nucleon-nucleon potentials deduced from chiral perturbation

theory and a coarse grained representation of the short distance interactions by delta-shells po-

tentials below a certain cut-off distance. While we find thatthe number of parameters is greatly

reduced when Chiral Two Pion Exchange contributions are included we also observe that dis-

cerning the necessity of improvements on the interaction requires a detailed analysis of all error

sources. Our points are best illustrated by computing deuteron static properties as well as electro-

magnetic form factors after error propagation.
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1. Introduction

The chiral theory of Nuclear Forces has become a popular approach in recent years [1, 2].
Indeed, while Charge Dependence and One Pion Exchange provided a satisfactory fit to np and pp
data [3] leading to high quality potentials used for Nuclearapplications [3, 4, 5, 6], Chiral Two
Pion Exchange potentials [7] have improved the analysis [8,9].

In this contribution we reanalyze the problem directly in terms of a delta-shell potential which
gives a simple way to coarse grain the interaction between two nucleons down to the relevant short-
est de Broglie wavelength [10]. This form was first introduced by Aviles [11] and has recently been
used to calculate nuclear binding energies [10], to extract[12] and propagate [13, 14] the corre-
sponding uncertainties inherent to the NN interaction or toevaluate the effective interactions [15].

2. Delta-shell and Chiral Potentials

In our analysis the potential consists of a short range pieceand a long range contribution as
follows

V(r) =
18

∑
n=1

On

[

∑
i

Vi,nr iδ (r − r i)

]

+
[

VOPE(r)+VTPE1o(r)+VTPEso(r)+Vem(r)
]

θ(r − rc), (2.1)

whereOn are the set of operators in the AV18 basis [4],r i are the concentration radii andVi,n

are strength coefficients, which are used as fitting parameters. For definitenessVOPE(r), VTPElo(r),
VTPEso(r) andVem(r) are those of Ref. [8]. The distance between the delta-shells∆r is determined
from the shortest de Broglie wavelength (for a detailed explanation see the appendix in [16] and
[10]) below pion production threshold i.e.∆r = 1/

√
MNmπ ∼ 0.6fm, so thatr i = i∆r ≤ rc. Our

purpose is to see how small canrc become whenVOPE(r), VTPElo(r) andVTPEso(r) in Eq. (2.1) are
subsequently added.

3. Chiral TPE vs OPE

As a preliminary step in our analysis we fitted Eq. (2.1) to a pseudo-database constructed
from the np phase-shifts given by the 1993 Partial Wave Analysis and the subsequent phase-shifts
of the 6 high quality potentials that give aχ2/ν . 1 when compared to experimental scattering
data [3, 4, 5, 6]. Given this, we have two alternatives based on the treatment of this pseudodata.
Either we make accurate fits toeachsingle potential phase-shifts and we average the seven different
results and determine their mean squared deviation or we asign a mean value and an error to the
compilation as a whole and make a standard fit taking the pseudodata with errors as experimental
data. While the first procedure seems to be a quite natural wayto incorporate correlations between
different partial waves, it turns out that these correlations are almost negligible as can be seen for
some representative cases in Fig. (1).

Table (1) shows the value ofχ2/ν and the number of parameters for every potential depending
on the long range interaction and the radial cut-off. The results show, in agreement with previous
findings, that for OPE and TPElo the range of validity is between 1.8fm and 2.4fm since using
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Figure 1: Correlations among different phase-shifts of the PWA and six high quality potentials [3, 4, 5, 6]
which provided aχ2/d.o. f . 1. The correlation factor was calculated using the equationrx,y =

∑n
i=1 (xi − x̄)(yi − ȳ)/(nσxσy) where the bar indicates the mean of a variable andσ the corresponding stan-

dard deviation.

rc [fm] 1.8 2.4 3.0

#p χ2/ν #p χ2/ν #p χ2/ν

OPE 37 2.1383 47 0.6470 51 0.4653
TPElo 40 2.0661 46 0.7361 52 0.5047
TPEso 32 0.5911 44 0.5225 51 0.3928

Table 1: χ2/ν and number of parameters for fits to phasehifts

rc [fm] 1.8 2.4 3.0
χ2/ν χ2/ν χ2/ν

OPE 2.45 0.56 0.47
TPElo 2.92 0.69 0.49
TPEso 0.54 0.70 0.41

Table 2: χ2/ν to wolfenstein parameters

rc = 1.8fm no longer gives a satisfactory fit. With TPEso one can go down to rc = 1.8fm and even
reduce the number of parameters needed.

Just as the PWA and the 6 high quality potential show a dispersion on the phaseshifts the same
occurs with the scattering amplitude. This can be easily seen by using the Wolfenstein decomposi-
tion of the scattering amplitude [17],

M(k f ,ki) = a(θ , p)+m(θ , p)(σ1,n)(σ2,n)+ (g(θ , p)−h(θ , p))(σ1,m)(σ2,m)

+(g(θ , p)+h(θ , p))(σ1, l)(σ2, l)+c(θ , p)(σ1+σ2,n) , (3.1)

and comparing the 5-complex Wolfenstein parameters for every interaction. Since all the scattering
observables can be directly calculated from the Wolfenstein parameters the dispersion on the am-
plitude can be a measure of the dispersion on observables as well. With this in mind we calculated
the Wolfenstein parameters of the potentials in table (1) asa function of laboratory energyTLAB

and scattering angleθ and compared them to the mean of the PWA and 6 high quality potentials
using the standard deviation as the uncertainty to calculate aχ2/ν . The results are shown in ta-
ble (2) and exhibit very similar features to the ones in table(1). Figure (2) shows the disperssion
of the Wolfenstein parameters for the high quality potentials as a function of the scattering angleθ
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Figure 2: np Wolfenstein parameters for different energies in the laboratory system as a function of the CM
angle. Upper panel:ELAB = 100MeV. Lower panel:ELAB = 350MeV. The band represents the compilation
of the PWA and six high quality potentials [3, 4, 5, 6] which provided aχ2/d.o. f . 1. The dashed line
denotes the results obtained by the fitted interaction with OPE andrc = 3.0fm, while the doted line comes
from the interaction with TPE andrc = 1.8fm.
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Potential rc(fm) BD(MeV) η AS (fm1/2) PD rm(fm) QD (fm2)

OPE 3.0 -2.2(2) 0.025(2) 0.88(3) 5.7(2) 1.97(8) 0.272(9)
TPElo 2.4 -2.2(3) 0.025(2) 0.89(4) 5.6(3) 2.0(1) 0.27(1)
TPEso 1.8 -2.2(4) 0.025(3) 0.88(6) 5.6(4) 2.0(1) 0.27(2)

Empirical -2.2245(2) 0.0256(5) 0.8781(44) 5.67(4) 1.953(3) 0.2859(3)

Table 3: Deuteron properties. Notation is as follows,BD binding energy,η assymptotic ratio,AS S-state
normalization,PD D-state probability,rm root mean square radius andQD electric quadrupole moment.

at TLAB = 100MeV andTLAB = 350MeV. We also show the Wolfenstein parameters given by the
coarse grained interactions with OPE usingrc = 3.0fm and TPEso withrc = 1.8fm.

4. Deuteron Properties

For a comparison between OPE and (chiral) TPE we calculate a few deuteron properties with
the potentials constructed in this contribution. The results are shown in table (3) and show no sig-
nificant diference on the central values and very similar uncertainties, being all of them compatible
with previously known empirical values, and reflecting the pseudodata uncertainties.

Deuteron form factors using OPE withrc = 3.0fm and TPElo withrc = 1.8fm are presented
Fig. (3) with propagated uncertainties. As we see there is nosignificant difference between using
OPE or TPE as the long range np interaction. The rather small discrepancy between calculated and
experimental values could be resolved by the inclusion of Meson Exchange Currents (MEC). In
theGC form factor we see that within errors there is no discrepancy.

5. Conclusions

In the present contribution we have adressed a comparison between the well-known OPE po-
tential and the chiral TPE interactions. The short distancepiece of the potential is represented
by a delta-shells potential which features a coarse graining of the unknown physics down to the
smallest de Broglie wavelength probed by the NN interactions below pion production threshold.
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Figure 3: Deuteron Form Factors from OPE withrc = 3.0fm (blue band) and TPE withrc = 1.8fm (red
band). The error bar was obtained by propagating the uncertainty from the pseudodata as explained in the
text.
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The long range part is assumed to be valid down to a radial cut-off distancerc and we analyze the
quality of each fit as a function of this distance. For our analysis we use pseudodata consisting of
a compilation of the np phase shifts given by 7 high quality fits [3, 4, 5, 6]. The error asignment
corresponds to a lack of correlation between different partial waves; a circumstance which turns out
to be true within the inherent uncertainties of the different potentials. There is substantial reduction
in the number of parameters needed for the short range part ofthe interaction. Indeed for OPE,
one hasrc = 3.0 fm, χ2/ν = 0.47 and 51 parameters are needed whilst OPE + (chiral) TPEso,
givesrc = 1.8 fm, χ2/ν = 0.59 and the number of parameters is reduced to 32. From a Nuclear
Physics Structure point of view it is uncertain what could bethe real advantage in implementing
as a matter of principle the chiral TPE interaction. Actually, to decide objectively on this issue
requires a meticulous determination of both statistical and systematic errors. We have illustrated
this point by computing the deuteron form factors and propagating the corresponding uncertainties
deduced by the error treatment of the pseudodata. This is a crucial issue to discern on the real role
of the MEC conributions to the form factors. For instance, the charge form factor acquires purely
transverse contributions which have been estimated to be small. The question is whether or not the
size of the MEC’s is larger than the estimated uncertainties.
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