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1. Introduction

The chiral theory of Nuclear Forces has become a populamapprin recent years [1, 2].
Indeed, while Charge Dependence and One Pion Exchangealpdbaisatisfactory fit to np and pp
data [3] leading to high quality potentials used for Nuclepplications [3, 4, 5, 6], Chiral Two
Pion Exchange potentials [7] have improved the analysi9][8,

In this contribution we reanalyze the problem directly inme of a delta-shell potential which
gives a simple way to coarse grain the interaction betweemtwleons down to the relevant short-
est de Broglie wavelength [10]. This form was first introdditg Aviles [11] and has recently been
used to calculate nuclear binding energies [10], to ex{E2} and propagate [13, 14] the corre-
sponding uncertainties inherent to the NN interaction @vauate the effective interactions [15].

2. Delta-shell and Chiral Potentials

In our analysis the potential consists of a short range pa@cka long range contribution as
follows

18
V(r)= Zlon

Z\/i’nric‘i(r )

- [VOPE(r) +Vrpe1dr) +VrpEsdr) +Vem(r)] O(r—re), (2.1)

where O, are the set of operators in the AV18 basis [#]are the concentration radii angl,
are strength coefficients, which are used as fitting paramef@r definitenes€opg(r), Vrpeio(r),
Vrpesd ) andVem(r) are those of Ref. [8]. The distance between the delta-shelis determined
from the shortest de Broglie wavelength (for a detailed &xation see the appendix in [16] and
[10]) below pion production threshold i.é\r = 1/\/Mymy; ~ 0.6fm, so thatr; = iAr <r¢. Our
purpose is to see how small cenbecome wheNopg(r), Vrpeio(r) andVrpesdr) in Eq. (2.1) are
subsequently added.

3. Chiral TPE vs OPE

As a preliminary step in our analysis we fitted Eq. (2.1) to auo®-database constructed
from the np phase-shifts given by the 1993 Partial Wave Asiglsind the subsequent phase-shifts
of the 6 high quality potentials that givey#/v < 1 when compared to experimental scattering
data [3, 4, 5, 6]. Given this, we have two alternatives basethe treatment of this pseudodata.
Either we make accurate fitséachsingle potential phase-shifts and we average the sevemetiff
results and determine their mean squared deviation or w@& asimean value and an error to the
compilation as a whole and make a standard fit taking the pskta with errors as experimental
data. While the first procedure seems to be a quite naturataviaigorporate correlations between
different partial waves, it turns out that these correlaiare almost negligible as can be seen for
some representative cases in Fig. (1).

Table (1) shows the value g /v and the number of parameters for every potential depending
on the long range interaction and the radial cut-off. Thelteshow, in agreement with previous
findings, that for OPE and TPElo the range of validity is betwd.8fm and 24fm since using
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Figure 1: Correlations among different phase-shifts of the PWA ardgih quality potentials [3, 4, 5, 6]
which provided ax?/d.o.f < 1. The correlation factor was calculated using the equatign=
Sit1 (X —X)(yi —¥)/(noxoy) where the bar indicates the mean of a variable aride corresponding stan-
dard deviation.

re[fm] 1.8 2.4 3.0
#p  X?/v #p  X?/v #p X%V
OPE 37 21383 47 06470 51 0.4653

TPElo 40 2.0661 46 0.7361 52 0.5047
TPEso 32 0.5911 44 0.5225 51 0.3928

Table 1: x2/v and number of parameters for fits to phasehifts

re[fm] 1.8 2.4 3.0
X?/v X%/v x?/v
OPE 245 056 0.47
TPElo 292 0.69 0.49
TPEso 054 0.70 0.41

Table 2: x?/v to wolfenstein parameters

rc = 1.8fm no longer gives a satisfactory fit. With TPEso one can gerdm r, = 1.8fm and even
reduce the number of parameters needed.

Just as the PWA and the 6 high quality potential show a digpem the phaseshifts the same
occurs with the scattering amplitude. This can be easilg bgaising the Wolfenstein decomposi-
tion of the scattering amplitude [17],

M(kt.ki) = a(8,p) +m(6, p)(a1,n)(02,n) + (9(6, p) — (8, p))(01,m) (g2, M)
+(9(8,p) +h(6, p))(01,1)(02,1) +¢(8, p) (01 + 02,Nn) (3.1)

and comparing the 5-complex Wolfenstein parameters fayemteraction. Since all the scattering
observables can be directly calculated from the Wolfengterameters the dispersion on the am-
plitude can be a measure of the dispersion on observablesliadnith this in mind we calculated
the Wolfenstein parameters of the potentials in table (13 &sction of laboratory energli ag
and scattering anglé and compared them to the mean of the PWA and 6 high qualitynpate
using the standard deviation as the uncertainty to cakw@at®/v. The results are shown in ta-
ble (2) and exhibit very similar features to the ones in tdthe Figure (2) shows the disperssion
of the Wolfenstein parameters for the high quality potdsit#s a function of the scattering an@le
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Figure 2: np Wolfenstein parameters for different energies in thedatory system as a function of the CM
angle. Upper paneE ag = 100MeV. Lower panelE_ ag = 350MeV. The band represents the compilation
of the PWA and six high quality potentials [3, 4, 5, 6] whictopided ax?/d.o.f < 1. The dashed line
denotes the results obtained by the fitted interaction wlRft@ndr; = 3.0fm, while the doted line comes
from the interaction with TPE ang = 1.8fm.
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Potential re(fm) Bp(MeV) n As (fm1/2) Py rm(fm)  Qp (fm?)
OPE 30  -22(2) 0025(2) 088(3) 5.7(2) 1.97(8) 0.272(9)
TPElo 24  -22(3) 0.0252) 0.89(4) 56(3) 201 0.27(1)
TPEso 18  -2.2(4) 0.025(3) 0.88(6) 56(4) 20(1) 0.27(2)
Empirical 2.2245(2) 0.0256(5) 0.8781(44) 5.67(4) 1.953(0.2859(3)

Table 3: Deuteron properties. Notation is as follov®s binding energyn assymptotic ratioAs S-state
normalizationPp D-state probabilityr, root mean square radius aQg electric quadrupole moment.

at T ag = 100MeV andT ag = 350MeV. We also show the Wolfenstein parameters given by the
coarse grained interactions with OPE usigg- 3.0fm and TPEso withi, = 1.8fm.

4. Deuteron Properties

For a comparison between OPE and (chiral) TPE we calculater @éuteron properties with
the potentials constructed in this contribution. The rssate shown in table (3) and show no sig-
nificant diference on the central values and very similaeuainties, being all of them compatible
with previously known empirical values, and reflecting tiseydodata uncertainties.

Deuteron form factors using OPE with = 3.0fm and TPElo withro = 1.8fm are presented
Fig. (3) with propagated uncertainties. As we see there isigmuificant difference between using
OPE or TPE as the long range np interaction. The rather siisalieghancy between calculated and
experimental values could be resolved by the inclusion oédneExchange Currents (MEC). In
the G¢ form factor we see that within errors there is no discrepancy

5. Conclusions

In the present contribution we have adressed a comparigareée the well-known OPE po-
tential and the chiral TPE interactions. The short distgnieee of the potential is represented
by a delta-shells potential which features a coarse gminfrthe unknown physics down to the
smallest de Broglie wavelength probed by the NN interastibelow pion production threshold.
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Figure 3: Deuteron Form Factors from OPE with = 3.0fm (blue band) and TPE with, = 1.8fm (red
band). The error bar was obtained by propagating the uniegrfaom the pseudodata as explained in the
text.
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The long range part is assumed to be valid down to a radiabftutistancer. and we analyze the
quality of each fit as a function of this distance. For our gsialwe use pseudodata consisting of
a compilation of the np phase shifts given by 7 high quality &, 4, 5, 6]. The error asignment
corresponds to a lack of correlation between differentiglariaves; a circumstance which turns out
to be true within the inherent uncertainties of the difféggotentials. There is substantial reduction
in the number of parameters needed for the short range p#nedhteraction. Indeed for OPE,
one has¢ = 3.0 fm, x?/v = 0.47 and 51 parameters are needed whilst OPE + (chiral) TPEso,
givesr, = 1.8 fm, x2/v = 0.59 and the number of parameters is reduced to 32. From a Nuclea
Physics Structure point of view it is uncertain what couldtlve real advantage in implementing
as a matter of principle the chiral TPE interaction. Actyalb decide objectively on this issue
requires a meticulous determination of both statistical systematic errors. We have illustrated
this point by computing the deuteron form factors and pragiag the corresponding uncertainties
deduced by the error treatment of the pseudodata. This iscgatissue to discern on the real role
of the MEC conributions to the form factors. For instance, ¢harge form factor acquires purely
transverse contributions which have been estimated to b#.shhe question is whether or not the
size of the MEC's is larger than the estimated uncertainties
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