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1. Introduction

The use of effective interactions in Nuclear Physics has been the traditional procedure to side-
step the short-distance correlations triggered by the hard core of the NN potential below relative
distances of about half a fermi [1, 2]. While this is an acceptable requirement, we take the viewpoint
that any sensible definition of an effective interaction should also unveil hidden symmetries so that
they become manifest and can be exploited in the solution of the Nuclear Many Body Problem.

One outstanding and time honoured symmetry was suggested by Wigner in 1937 [3] to study
nuclear specroscopy and the corresponding SU(4) spin-flavour symmetry group is generated by the
Lie algebra of isospin T, spin S’ and Gamow-Teller G generators in terms of the one particle
spin ¢} and isospin 7¢ Pauli matrices,

1 . 1 . . 1 .
T==Y1, S=-Yo, G'=:) o4 (1.1)
2 A 2 A 2 A

The one-nucleon irreducible representations is a quartet made of a spin and isospin doublet 4 = (p 1
,pd,nT,n])=(S=1/2,T =1/2). NN states with relative angular momentum L and total spin
S and isospin 7T fulfilling (—1)5*2*T = —1 due to Fermi statistics correspond to an antisymmetric
sextet and a symmetric decuplet which, in terms of (S, T') representations of the SUs(2) ® SUr(2)
subgroup, are

64 = (1,00@(1,0) L=0,2,... —("80,°81),("D2,’D123),(!G2,>G123),... (1.2)
105 = (0,0)®(1,1) L=1,3,... — P Pa), ("R R, (1.3)

In particular, one obtains Vs, (r) = Vig (r) which seems verified for » > 2fm (but not below). An
amazing result is the large N, justification of this symmetry to &'(1/N?) accuracy [4, 5] which
strongly suggests to understand in what sense can the symmetry be ckecked in the much studied
NN interaction, as this is a direct consequence of the underlying QCD dynamics.

A long distance interpretation of the symmetry has been given within a large N, spirit recently,
particularly the role in higher partial waves and the companion Serber symmetry [6, 7, 8]. Within a
Wilsonian approach saturation of effective parameters has been observed in [9] and in [10] by two
different methods. On a more fundamental level, recent lattice calculations have observed Wigner’s
symmetry at the potential level [11] and also at the scattering length level for the unphysical pion
masses about four times larger than in the real world [12]. In the present contribution we summarize
the findings of our renalysis [13] based on the Similarity Renormalization Group and provide some
outlook.

2. Wigner Symmetry and Potentials

A rather simple way to see how Wigner symmetry emerges from low energy NN-scattering
data is by taking as an effective interaction a square well potential of depth —V;y and range r.. The
potential parameters will be fixed by the corresponding scattering length ¢ and effective range rg
given by the equations,

tan/MVyr, 1 rg

, ron=r.|1———— 5
MV() OC()I”CMV() 3060

Qo =Tc 2.1
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Figure 1: Square wells potentials, diagonal matrix elements,V (p, p), off-diagonal matrix elements, V (0, p),
and phase shifts for the 1Sy (blue) and 3S; (red) channels. Parameters are adjusted to reproduce the scattering
lengths and effective ranges (see main text).

We will, in addition, define the volume integrals of the potential as

. 4w 1 . 4w
C() = /d3xVeff(x) = —?Vorz, C2 = _6 /d3xr2 Veff(X) = —%Vorg (2.2)

Now fixing the values in the 1Sy (o9 = —23.74fm, ry = 2.75fm) and 3S; (ap = 5.40fm, ry =
1.75fm)channels, and imposing that there are no 'Sy bound states and just one *S; bound state (the
deuteron) we get (Cy 15,,Co35,) = (—1030, —1288)MeVfm® and (C; 15,,Cy 35,) = (715,554)MeVim®.
The numerical value for Cy agrees with the EFT estimate [14]. The role of tensor force and higher
partial waves has been further explored [9]. Note that the volume integrals as well as the momen-
tum space potential generically defined as

VW p) =My [ e ()i pr Vi () 23

are very similar numerically (see Fig. 1), Vsg, ~ Vi . For the phase-shifts the previous approxima-
tion is crude but it makes sense for wavelengths larger than the range of the NN interaction when
compared to high quality potentials [15].

3. Wigner Symmetry and the SRG

The previous analyses of the effective interaction and Wigner symmetry are based on very
low energy data. There is another rather surprising way of unveiling the Wigner symmetry beyond
this restricted range and can be seen by using data up to about the lowest pion production inelastic
threshold. The SRG method has been amply used for NN interactions in the last years ([17, 18])
and is based an an integro-differential equation for every (coupled) partial waves

1.-dVy,(p',p 2 [
—4151(“) = —(pz—pQ)ZVz(p’,p)JrE/O q°dq (p*+p”* = 2¢°) Vo (p',q)Va(q. PB.1)

where A is the SRG cut-off. The solution generates from an initial potential V;_..(p,p) a one-
parameter family of phase-equivalent potentials at all energies, 8, (p) = 8y —..(p) which are driven
to a stable fixed point at A — 0 [13]. Large momentum-differences |p — p’| > A are suppressed as

(2 2)\2 4
Vi(p',p) = Vi—w(p!, p)e™ PP (3.2)
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Figure 2: Comparison between diagonal, V(p, p), and fully off-diagonal, V(p,0), matrix-elements of the
SRG-evolved potentials for the S-waves (in fm) as a function of the CM momentum p (in fm™1), showing
Wigner symmetry for Awigner ~ 3 fm~!. We use the Argonne AV 18 potential as the initial condition [16].

implying a simplification of the nuclear many body problem. We show in Fig. 2 (compare with
Fig. 1) the results for the 1S and 3S; channels for several SRG-cut-offs for the AV18 potential [16].
As we can see, there is a scale AWigner ~ 3fm~! where

Visy Awsgner ('3 P) 2 V35, dgianes (P ) (3.3)

Of course, since the SRG transformation is unitary, the phase-shifts remain the same for any value
of A and despite the 'Sy and 3S; phase-shifts being very different the SRG-evolved and phase-
equivalent potentials look very similar.

4. Finite Nuclei and Nuclear matter

If is tempting to make simple estimates based on harmonic oscillator (HO) shell model wave
functions. Of course, once we make a unitary transformation such as SRG on the two-body sector
we are effectively generating multinucleon forces [19]. From a practical point of view, 3- and
4-nucleon forces are so far fixed from *H or *He binding energies, and they turn out to almost
vanish at about A ~ 2fm ™" [19]. From Fig. 3 we see that for A ~ 1fm~" we get (B0, B0 BHO ) =
(—1.5,—7.1,—24.0)MeV, close (except for B,;) to more accurate calculations [19], regardless on
using NijmlI [15], AV18 [16] and the chiral N3LO-EM [21] and N3LO-EGM [22] potentials. This
is in line with the coarse grained potentials calculation [20] and are marginal, at least for the *H
and “He binding. Further, working at the SRG Wigner scale kWigner = 3fm~! gives unbound triton
and a poor value BEII% = —10MeV, while in Ref. [19] it is found (B3p, Bape) = (—8.1,—26.8)MeV.
Nuclear matter in the Hartree-Fock approximation saturates, although it describes a Coester-like



Symmetries of the similarity renormalization group

E. Ruiz Arriola

B (MeV)

B (MeV)

B (MeV)

B/A (MeV)

B/A (MeV)

Figure 3:

B/ A (MeV)

6 T T T T 6 T T \x T T
st s d i 4
ar d 4 - -
3 3 - -
Z — = infinity Z Z
21 22k 4 2 2 -
= o a
L — = infinity AN i ]
o o - -
i+ - - -
L | 2 1 L 1
3 35 il 15 2 25 35 4 1 15 25 35 4
b (fm) b (fm)
T T 16 T T T T 16 T T T T T n|
3 1
H ° H » e
8 B sH -
2 12 s T
24 — —4 2 2 -
= — 7= infinity S <
@ § @ =
— h=3fm 1 r
ok — n=2fm’ 4 ok -
— h=lfm’
aF - a4 -
1 | 3 1 L | L | r 1 1 1 1
3 35 1 15 2 25 3 35 I 15 2 25 35 4
b (fm) b (fm)
T T “0 T T T T T 0 T T T T T
4
304 He 301 He - 0 4HC -
20 20 - 20 -
10 — 10 - 10 -
- 3 Z 3
or ok 2 oF =4 = 0 -
® Exp = < <
GFMC = = =
10 A _ucom -10 - 04 -
20 201 - 201 -
30 EY - ES B
1 1 L 1
I 15 5 3 35 e I
o ()
12 2
0t e 0f
8 - st
6 9 6
4 e af
z b 4 2 oF 2
< = =
a 2 4 a 2f a
4 4
0f 4
N 1 1 1 0 1 1 1 L 1 1 1 1 1 L L
ol 5 o 15 2 25 3 35 4 1 15 2 25 3 35
r, (im) v, (im)
20 0 T T T 2 T
161~ 161~ 40 - 16
— o= infinity Ca
nf B . i g nf
— =3
oL s — =2’ g s
— =t
4 s ® Exp s T s
o < ot 2 o =
< = =
At @ 4 = ab = ab B
5L L sk L[ =ty ]
RES 2l 2 A
161 161 16 B
20 L ! ! ! 1 1 | 1 | 20 1 1 1 1 | 20 1 L | L |
1 15 25 35 1 15 2 25 3 35 4 15 2 25 35 1 15 2 25 3 35 4
T () Fons () T () i, ()
T T
4 0 i
- 1o} i
- 0 i
2 132" % ]
2 4 25k 2 i
= < =
2 = 2 i
— o= infinity 1 o[ A=y ]
S0t B sof|— ' -
— h=lfm’ - !
K AFDMC 4 wf | s AmMC 4 wof| e 4 ]
« nuclear matter “© nuclear matter nuclear matter nuclear matter
T R R N 0 T P R BN R Lo 1 0 T S B |
05 1 15 2 25 3 35 0 05 1 15 2 25 3 35 4 05 1 15 2 25 3 35 05 1 15 2 25 3 35 4
K, (i) kg (i) K (i) K (i)

Binding energies

including Coulomb (in

MeV) vs msr ry, (in fm) for 2H = d, 3H, *He, 1°0O
and “OCa and nuclear matter for different SRG-A for NijmlII [15], AV18 [16], N3LO-EM [21] and N3LO-
EGM [22] potentials (from left to right) and Harmonic Oscillator wave functions. We compare to some
calculations and also to experimental data. Nuclear matter is computed in the Hartree-Fock approximation.
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band along the SRG trajectory typical of two-body interacions. This of course raises the question

on whether or not the needed 3- and 4-body forces are SU(4)-invariant (see e.g.[23]).

5. Conclusions

From a fundamental viewpoint, QCD large N, based arguments foresee fulfilling Wigner sym-

metry with a relative ¢(N.?) accuracy. This complies with our finding at Awigner, @ remarkable

and surprissing result if we consider that nowhere in the design and optimization of the modern

high-quality interactions was the Wigner symmetry pattern explicitly implemented.
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