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1. Introduction

The size of the nucleon–nucleon S–wave scattering lengths is larger than expected from stan-
dard arguments of chiral counting, and understanding their values fromQCD is still a major chal-
lenge [1]. Lattice calculations at physical light quark masses are very costly (although they have
recently been carried out for some observables) and, hence, the useof chiral extrapolations will be
needed for some time in order to obtain reliable estimates [2, 3]. The quark massdependence of
low–energy observables can be obtained from suitable chiral effective theories.

The introduction of dibaryon fields in nucleon–nucleon effective field theories (NNEFT) is a
very convenient way of implementing large scattering lengths [5 – 7]. It wasalready noticed in [9]
that beyond next-to–leading order (NLO), part of the calculation must beorganized in powers of
√

mπ/Λχ , mπ being the pion mass andΛχ a typical hadronic scale, rather than in powers ofmπ/Λχ

[7]. It is in fact an accident due to Wigner symmetry that the would–beO(m3/2
π /Λ3/2

χ ) correction
vanishes [7, 10]. In addition, it was pointed out in Ref. [11] that the termsgiving corrections
√

mπ/Λχ were generically large. In this paper we show that these terms can be summedup in
the 3S1 channel and, furthermore, that they give a vanishing contribution to the scattering length.
This allows us to provide a reliable chiral extrapolation formula for the inverse scattering length
including terms up to orderm3/2

q /Λ1/2
χ , mq being the average light quark masses. Unfortunately

neither the arguments that allow the resummation nor the proof that the effect vanishes apply to the
1S0 channel.

2. NNEFT with Dibaryon fields

Our starting point is the effective field theory (EFT) for the the baryonic number two sector
of QCD for energies much smaller thanΛχ , proposed in Ref. [6, 7]. The distinct feature of this
EFT is that, in addition to the usual degrees of freedom for a NNEFT theory, namely nucleons
and pions, two dibaryon fields, an isovector (Da

s) with quantum numbers1S0 and an isoscalar (~Dv)
with quantum numbers3S1, are also included. Chiral symmetry, and its breaking due to the quark
masses in QCD, constrain the possible interactions of the nucleons and dibaryon fields with the
pions. When we restrict ourselves to energiesE & mπ , we can integrate out nucleons and pions of
such energies. The only pionic degrees of freedom remaining are the so–called potential pions, that
is pions withq0 ∼ q2/mN, wheremN is the nucleon mass. We call the EFT for this energy region
potential NNEFT (pNNEFT). Forp. m2

π/Λχ we can integrate out the potential pions (as well as
the nucleons with such momenta). Thus the EFT for this energy region does not have dynamical
pions and we will refer to it as pionless NNEFT (/πNNEFT). In /πNNEFT the expression for the
scattering lengths is very simple

a−1
i =

πδmi

mNA2
i

, i = s(1S0) ,v(
3S1) , (2.1)

whereδmi is the dibaryon residual mass, andAi is the low–energy constant associated to the LO
nucleon–dibaryon vertex. These two low-energy constants receive matching contributions when
going from the high energy NNEFT to/πNNEFT. In the next section we study in detail the con-
tributions to the residual mass with one radiation pion, the remaining matching contributions are
discussed in [7, 8].
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Figure 1: Potential pion exchanges in the1S0 channel can be approximated by contact interactions and resummed into
an effective vertex when the external momentum is bigger than the pion mass.

Figure 2: Resummation of potential pions in the dibaryon–nucleon vertex.

3. Potential pions in loops with radiation pions

We discuss in this section this particular class of contributions to the residual mass of the
matching calculation of NNEFT with pNNEFT involving radiation pions. The lowest order dia-
grams involving one radiation pions cancel due to Wigner symmetry. When a potential pion, in
this case a pion withq0 ∼ mπ andq ∼

√
mπmN, is added to one of those diagrams a parametric

suppression of only
√

mπ/Λχ occurs [7, 10], which numerically turns out to be O(1) [8, 11]. It is
then necessary to sum up these kinds of contributions.

3.1 Loop resummation

Let us consider the exchange ofn potential pions between two nucleon lines. If we project it
to the1S0 channel, the three–momenta coming from the vertices of each potential pion exchange
contract between themselves. Note that this is not the case if we project to the3S1 channel, where
a three–momentum from one of the vertices of a given potential pion exchange may get contracted
with a three–momentum of a neighboring potential pion exchange vertex. If thesen–pion ex-
changes are in a loop with a radiation pion, then the three–momentum in the denominator of the
potential pion propagators dominates over the pion mass and the pion energy. As a consequence,
the potential pion exchanges collapse into a local vertices. Again, this is notso in the3S1 channel,
where even at very large momentum transfer the potential remains non–local. In the left hand side
of Fig. 1 we depicted the first terms in a series of diagrams with an arbitrary large number of poten-
tial pion exchanges. Using the previous reasoning we can collapse the potential pion exchanges into
local vertices obtaining the diagrams on the right hand side. Naively we would expect each bubble
to suppress the diagram by a factor of

√

mπ/Λχ . However a more careful analysis shows that the
actual size of each bubble is in fact

√
mπ/α ∼ 1.19, and hence the series should be resummed. The

result of the resummation can be cast as an effective energy–dependent four–nucleon vertex with
coupling constant

Ce f f = i
g2

A

2 f 2
π

α
α +

√

q0− iε
, (3.1)

where we have taken the external energy to be−q0, and α = 8π f 2
π/(g

2
Am3/2

N ). An analogous
resummation has to be done for potential pion exchanges in the nucleon–dibaryon vertex of Fig. 2.
Furthermore, using the effective vertex of Eq. (3.1) we can constructthe self–energy depicted in
Fig. 3, which inside radiation pion loops turns out to be of orderO (1) and thus has to be included
in the LO propagator. Note that in order to have a1S0 nucleon–nucleon state in a loop with a single
radiation pion, the initial nucleon–nucleon state must be in the3S1 channel.
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Figure 3: OrderO(m2
π/Λχ ) contributions to the dibaryon residual mass. Inside radiation pion loops the1S0 receives

an additional self–energy contribution.

3.2 Cancellation of the contributions toa
3S1

Making use of the new effective vertices we can summarize all the contributions with one
radiation pion and any number of potential pions in the diagrams of Fig. 3. Thefirst two diagrams
are given by

A1+2 =−8A2
v

1
α

B(5/4,0) , (3.2)

and the third and fourth ones

A3 = 8A2
v

(

1
α

B(1/4,1)−α2B(1,1)+αB(3/4,1)−B(1/2,1)

)

, (3.3)

A4 = 8A2
v

(

B(1/2,1)−αB(3/4,1)+α2B(0,2)−α3B(1/4,2)−α6B(1,2)+α7B(5/4,2)

)

, (3.4)

with B(β1,β2) defined as

B(β1,β2) = (µ2)d−4
∫

dd−1q
(4π)d−1

q2

(q2+m2
π)

β1

1

(q2+m2
π −α4)β2

. (3.5)

These contributions are ofO
(

m2
π/Λχ

)

, the same order as the bare residual masses. The sum of
these three contributions (A1+2, A3, A4) adds up to zero, which can be checked by making use of
the relation

B(β1−1,β2) = B(β1,β2−1)+α4B(β1,β2) . (3.6)

The reason for this cancellation is that the contact four–nucleon interaction can be removed by the
following local field redefinition of the dibaryon field:Da

s → Da
s − g2

A/
(

2 f 2
π As
)

NTP
1S0
a N where

P
1S0
a , is the projector to the1S0 partial wave. As we have mentioned in the previous section, the

resummation cannot be carried out for the analogous diagrams fora
1S0. However, it is likely that the

perturbative expansion also breaks down in this channel due to numerical factors coming from loop
integrals. Hence, any prediction for the quark mass dependence ofa

1S0 in terms of a perturbative
expansion has to be taken with caution, because it could be missing large corrections. Part of the
reasoning we have used in the3S1 channel can be adapted to discuss the result for the diagrams with
a single potential pion exchange in a loop with a radiation pion in the1S0 channel. In this set of
diagrams we can approximate the potential exchange by a four–nucleon contact term, and following
the same reasoning as for the contributions toa

3S1. The contact term can then be eliminated by a
field redefinition for the~Dv dibaryon field. We then conclude that the sum of the diagrams must
vanish.
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ζ1 ζ2 ζ3

1S0
πδ ′

ms
mNA2

s

2π((s1+s2)/B0−8c1)
mNA2

s

g2
A

16mN f 2
π

(

1
A2

v
+ 2csv

gAAsAv
− 3

A2
s

)

−
g2

A
4 f 2

π

(s1+s2)/B0−8c1
A2

s
+
(

g2
AmN

f 2
π

)2
log(2)
128π2

3S1
πδ ′

mv
mNA2

v

2π(v1/B0−8c1)
mNA2

s

g2
A

16mN f 2
π

(

1
A2

s
+ 2csv

gAAsAv
− 3

A2
v

)

−
g2

A
4 f 2

π

(v1/B0−8c1)
A2

v
+5
(

g2
AmN

f 2
π

)2
6+13log(2)

256π2

Table 1: Independent free parameters in terms of the effective theory low energy constants.
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Figure 4: Plots ofa
1S0 (left) anda

3S1 (right). The solid and dashed lines correspond to the LO and NLO respectively.
The triangular dot in thea

3S1 figure corresponds the physical value of the scattering length.

LO χ2
d.o. f ζ1(MeV) ζ2(MeV−1) NLO χ2

d.o. f ζ1(MeV) ζ2(MeV−1) ζ3(MeV−2)
1S0 3.74 −126 0.67·10−3 1S0 2.4 −246 4.56·10−3 9.21·10−6

3S1 0.91 −98 1.59·10−3 3S1 0.4 −155 3.83·10−3 10.1·10−6

Table 2: Parameters results from the fit.

4. Comparison with lattice data

The expressions for the scattering lengths can be rewritten to collect all theparameters into
three independent ones [8],

a−1
i = ζi1

(

1−
g2

AmN

8π f 2
π

mπ

)

+

[

ζi2−
g2

AmN

16π f 2
π

ln

(

m2
π

µ2

)]

m2
π +ζi3m3

π +
1
2

(

g2
AmN

8π f 2
π

)2

m3
π ln

(

m2
π

µ2

)

, (4.1)

i = s(1S0) ,v(3S1). The expression obtained is quite simple and emphasizes themπ dependence.
The relation of theζ parameters to the low energy constants of the EFT can be found in Table 1.
We fitted the lattice data of the NPLQCD Collaboration [12, 13]. We forced the expressions for the
scattering lengths to reproduce the experimental values at the physical pion mass,a

1S0 =−23.7 fm
anda

3S1 = 5.38 fm. The remaining parameters have been obtained by minimizing an augmented
chi–square distribution for each scattering length. The values obtained for the parameters and the
chi–squared per degree of freedom are collected in Tables 2. The values obtained forζs1 andζi3,
i = s,v, at NLO are on the limit of what we would consider natural size. This could indicate that
significant cancellations occur at the physical pion mass in order to produce the observed values of
the scattering lengths. Note that the fine tuning increases with the precision ofthe expression used.
In the1S0 channel our results in the chiral limit indicate that the scattering length remains negative,
thus the system is unbounded. In the3S1 channel our extrapolation of the scattering length to the
chiral limit shows that it evolves from positive values at the physical pion mass to negative values,
hence going from a bounded nucleon–nucleon system to an unboundedone.
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5. Conclusions

We have showed that contributions to the dibaryon residual masses involving an arbitrary
number of potential pion exchanges in loops with radiation pions can be computed in the3S1

channel. These are all ofO(1) and have to be resummed, the result of the resummation takes the
form of a contact interaction. We showed that by performing dibaryon local field redefinitions
we can get rid of the contact interaction, and hence the contribution of all diagrams involving these
potential pion exchanges must be zero. In the1S0 channel it has not been possible for us to compute
the contribution of an arbitrary number of potential pions in a loop with a radiation pion. However,
similar arguments still apply to the diagrams with only one potential pion, which should then add
up to zero. It is very likely that in the1S0 channel the perturbative series breaks down as in the
3S1 channel, which means that it is possible that we are missing large contributions. We have
given chiral extrapolation formulas for 1/a

1S0 and 1/a
3S1 up to corrections of orderO

(

m3
π/Λ2

χ

)

.
In section 4 we carried out a fit of these expressions to lattice data. The results show that our
expressions fora

3S1 are much more compatible with lattice data than those fora
1S0, which could

indicate that the missing, potentially large, contributions toa
1S0 previously mentioned do exist.

Using these results to extrapolate the scattering lengths in the chiral limit, we obtainthata
1S0 keeps

its negative sign, whilea
3S1 changes from positive to negative.
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