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Deriving nuclear forces from quantum chromodynamics isrgsbthe most important challenges
of nuclear physics. The aim of the effective field theory falation of nuclear forces is to bridge
this gap through chiral symmetry breaking, the main low gpenanifestation of quantum chro-
modynamics. However, the realization of this goal is nobenatic. The effective field theory we
are using must be renormalizable. Only if this condition &t wan we really link the low energy
dynamics of pions and nucleons with that of the the quarksghmoihs conforming them. But,
apart from the theoretical motivation, there is a more jcattiownside of renormalizability. If
we have this property, calculations of observables in rargiédaysics become systematic and, in
particular, we can know the error of theoretical predictionadvance. This property is known as
power counting. The original formulation of nuclear effeetfield theory due to Weinberg — the
Weinberg counting —, though inspired and ingenious, faiteonplement renormalizability and
hence power couting. In this contribution we will explainatlis missing in the Weinberg count-
ing and how to improve on it to guarantee a fully consistefgtative field theory for two-nucleon
processes. As a result we will arrive at a theory in which acintange interactions — that is, four
nucleon vertices — play a more prominent role than expeat&deinberg’s original proposal.
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Nowadays one of the most fascinating theoretical problems of nucleaigshig the expla-
nation of nuclear forces in terms of quantum chromodynamics (QCD). gihthere are plenty
of excellent descriptions of the nuclear force, they are commonly phemaowcal and as such
lack a clear connection with QCD. To remedy this situation we can try the strafegpymputing
the nuclear force directly in the lattice. Explorations in this line are howevepséliminary and
have not reached the physical pion mass yet [1, 2]. Alternatively fieetefe field theory (EFT)
formulation of nuclear forces provides a more indirect path to link nuclegsips with QCD [3].
For that, the EFT approach incorporates the main low energy manifestat@g@@# broken chiral
symmetry —, which constrains in a very particular way the pion-nucleonrdigsa In addition, due
to renormalizability, chiral EFT can be considered to be equivalent to l@xggrQCD. The rea-
son is that chiral EFT corresponds to the renormalization group evolutiQ€C® in the infrared
limit 1. As a consequence of renormalizability EFTs contain a peculiar featunsrkas power
counting, which means that all the possible interactions among the low ersggses of freedom
of the theory can be ordered from more to less relevant. This entails ak@tasimplification in
the calculation of observables in nuclear physics: if we want to achieeeairt level of accuracy
in theoretical predictions, we know in advance what to include and whagleat in the computa-
tions. Probably, this is the main practical advantage of nuclear EFT ovératifidonal approach.
At this point it is fundamental to remind that the prerequisite for all these al@siffeatures is
renormalizability, something that is forgotten more often than not.

However the application of the EFT concept to nuclear physics is far friwial. The reason
is that nuclear physics is non-perturbative. In the two-nucleon seatdn$tance we have two
states that are located almost at the threshold, the deuteron and the vateahghe singlet. In
contrast the traditional knowledge of renormalizability in EFTs is perturbgsee e.g. Ref. [4] for
a lucid exposition) and not easily adapted to the nuclear case. Thusapplimg the EFT concept
for the first time in the few nucleon sector Weinberg proposed [5, 6] aneistieg workaround:
though nuclear physics is non-perturbative, nuclear forces caxpvessed as a perturbative series
in chiral EFT. In other words, we know how renormalization works fortthe-nucleon potential.
The natural thing to do then is to concentrate on the potential and deriviesaliivables quantities
from it, as has always been the case in traditional nuclear physics. @heviotks as follows: first
we begin by noticing that in the EFT formulation the two-nucleon potential caaxpanded as a
series of contributions of diminishing importance at low energies. Graphieallyave:
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where LO stands for leading order, NLO for next-to-leading orderMdNHO for next-to-next-to-

leading order, and the dots indicate higher order contributions that petexi to be very small at
low energies. Each of the blobs in the figure above represents a sstrohein diagrams involving
nucleons and pions, while the size of the blob indicates their relative impertiriow energies.

10f course the practical problem remains of how to unconver the detailatonship between chiral EFT and
QCD, something that could be probably done in the lattice in the near future.
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Next we iterate this potential in the Schroédinger or Lippmann-Schwingeatiouto obtain scat-
tering amplitudes, i.e. the T-matrix. The natural expectation in the Weinbergiogus that, even
if we do not know the inner workings of non-perturbative renormalizatios T-matrix will follow
the same power counting as the potential, that is:

where | have put the interrogation mark to indicate that we do not really Knoaure. Though
a sensible expectation, there is a catch, as we will see. As a historical r®teoitth mentioning
that the Weinberg counting has been followed with enthusiasm in the literatdreventually, at
high enough order (RLO, i.e. next-to-next-to-next-to-leading order), it has been able toym®d
nucleon-nucleon potentials that can describe the two-nucleon scattatagiit,, < 300 MeV
with a x?/d.o.f. ~ 17, 8.

What can fail then in the Weinberg counting? Well, the problem is that powantog only
works at low energies. Yet, we are iterating all the EFT contributions to tkenpal regardless
of their order. As a consequence of the iteration process, we will haxatiweleon loops that are
going to probe the high energy structure of the potential, where the EFFiptesn is no longer
valid. At high enough energies power counting breaks down and eawhcantribution to the
chiral potential is not necessarily smaller than the previous one. | illustriat@amt in figure 1,
where | show the nucleon-nucleon EFT potential at long and short dessais can be seen, power
counting works as expected at long distances. But in contrast, atdbiamces the situation is the
opposite: each new piece of the potential is bigger than the previousropietures:

@=‘+‘+‘+...

and if we do not do take precise measures to counterbalance the skemtdiphysics probed in
the loops, power counting will most probably be lost at the level of the Tixaatr

The solution to this problem involves the renormalization of the scattering amplitTicis
requires the following steps: first we cut off the loop momentum to avoidipgothhe unphysical
short range structure of the EFT potentials. But this is not enough: ¢udarization of the loops
at/\ — the cut-off scale — causes the observable quantities to depehdiastroying the predictive
power of the theory. Thus, as a second step, we include four nuc&toes — counterterms — to
absorb the cut-off dependence. At this point it is worth mentioning that hi@®¥rg counting is
expected to be used with a finite cut-off and already contains countertBuhgven so it fails to
be renormalizable. The counterterms that are expected in the Weinbarttingpare not able to
absorb the fairly strong cut-off dependence generated by the EFfitigbtas has been repeatedly
proven in a series of works [9, 10, 11] that analyze the renormalizabilitysoWeinberg scheme.
The conclusion is that we need to modify and correct the Weinberg counting
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Figure 1: The chiral two-nucleon potential at LO, NLO and NNLO in ti& channel. In the left panel (a),
we show the contributions to the potential at long distarfbesveen 15 and 5fm). The bands represent the
size of the contribution at each order: we can appreciateatlang distances the size of the contributions
diminish with the order, In the right panel (b), we can see Hiogspattern breaks down at short enough
distances (in particular, betweery@nd 15fm), in which case power counting no longer works as exjecte
and each new contribution is bigger than the previous one.

Actually, the way to work out a proper power counting for the two-nuckggstem is straight-
forward. It only requires to follow a small number of steps, like a recigeyTare the following:

a) We only iterate the leading order piece of the potential, which can be definbe diagrams
that happen to be more important than all the others at low energy.

b) The subleading order pieces of the potential — the diagrams that webawveluded in the
previous step — enter as perturbations (they are small correctionslBfter a

c) Atevery step in the calculation, we check for the cut-off indepenelefithe results. If this
condition is not fulfilled, we include new counterterms to absorb the diveese

There is one thing left to decide: which is the leading order piece of thefaleithe answer is not
difficult: we include the one pion exchange potential plus a few contagerareractions in the
S-, P-waves and optionally D-waves to make scattering amplitudes renornbaliaa discussed
in Ref. [9]. Now, the next thing to do is to include the subleading order piete¢he potential
and the counterterms. Determining the necessary number of counterterrpsoisiem that can
be elucidated by several means, such as renormalization group anaBjsefl the perturbative
renormalizability of the amplitudes in coordinate [14, 15] and momentum spé¢d7118]. The
outcome of all these approaches is extremely similar at the fundamental levetvelr when one
looks at the fine print there are subtle differences among them, a poirghtbald be clarified in
subsequent works hopefully for the relief of power counting aficiosaahd connoisseurs. Yet
| feel that these differences are merely a manifestation of the possibiligooflering the power
counting expansion in different ways: one can probably rearrang BT expansion without
altering the convergence properties of the series, just as happensstatidard power series.
Finally, the comparison with the data (or, equivalently, with the high-prec@iantials [13])

is remarkably good. In Figure 2 one can see a selection of the results &md3>-waves at LO,
NLO and NNLO. The phase shifts obtained within a nuclear EFT with explieitgg@ounting [14,
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Figure 2: The S- and P-wave phase shifts in two-nucleon scatteringdfolear EFT, wher® is the phase
shift andk.m, the center-of-mass momentum. They have been calculatEaving the power counting
described in the present contribution, where the one pi@hange potential is non-perturbative and two
pion exchange is included as a perturbation [14, 15]. Thelbaeflect the cut-off uncertainty of the results
in the ranger = 0.6 — 0.9fm (boundary radius). The dashed line (not always visildgyresents the the
0.3fm NNLO results. The phase shifts are compared with theesponding ones in the Weinberg counting
(the light blue band in the figures), which are calculatediftbe NNLO potential of Refs. [19, 20].

15] are actually better than the corresponding ones in the Weinberg setteanecomputed at the
same order [19, 20]. In hindsight this is not surprising: power couratirige level of the scattering
amplitudes requires a larger number of counterterms, i.e. free paranmbgerayhat is expected
in naive dimensional analysis. For the partial waves shown in Figure 2Nd&tONwe have three
counterterms in théS, phase, two (per phase) in t88;, E1, 3D1, 3Ry and3P, and one in the
1P, and 3Py, while in Weinberg we have two per S-wave, one for the S- to D-wave miximty a
one per P-wave. | saiith hindsightas the statement is only obvious now that we know that chiral
two pion exchange can be tamed in perturbation theory, a non-trividt femm the point of view
of conventional wisdom. In the near future we expect to exigetdal power counting to chiral
extrapolations, electromagnetic reactions on the deuteron and the tloleemsector. In doing so
we will further put to the test the usefulness of the nuclear EFT approach
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