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Deriving nuclear forces from quantum chromodynamics is amongst the most important challenges

of nuclear physics. The aim of the effective field theory formulation of nuclear forces is to bridge

this gap through chiral symmetry breaking, the main low energy manifestation of quantum chro-

modynamics. However, the realization of this goal is not automatic. The effective field theory we

are using must be renormalizable. Only if this condition is met can we really link the low energy

dynamics of pions and nucleons with that of the the quarks andgluons conforming them. But,

apart from the theoretical motivation, there is a more practical downside of renormalizability. If

we have this property, calculations of observables in nuclear physics become systematic and, in

particular, we can know the error of theoretical predictions in advance. This property is known as

power counting. The original formulation of nuclear effective field theory due to Weinberg – the

Weinberg counting –, though inspired and ingenious, failedto implement renormalizability and

hence power couting. In this contribution we will explain what is missing in the Weinberg count-

ing and how to improve on it to guarantee a fully consistent effective field theory for two-nucleon

processes. As a result we will arrive at a theory in which contact range interactions – that is, four

nucleon vertices – play a more prominent role than expected in Weinberg’s original proposal.
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Nowadays one of the most fascinating theoretical problems of nuclear physics is the expla-
nation of nuclear forces in terms of quantum chromodynamics (QCD). Though there are plenty
of excellent descriptions of the nuclear force, they are commonly phenomenological and as such
lack a clear connection with QCD. To remedy this situation we can try the strategyof computing
the nuclear force directly in the lattice. Explorations in this line are however stillpreliminary and
have not reached the physical pion mass yet [1, 2]. Alternatively the effective field theory (EFT)
formulation of nuclear forces provides a more indirect path to link nuclear physics with QCD [3].
For that, the EFT approach incorporates the main low energy manifestation ofQCD – broken chiral
symmetry –, which constrains in a very particular way the pion-nucleon dynamics. In addition, due
to renormalizability, chiral EFT can be considered to be equivalent to low energy QCD. The rea-
son is that chiral EFT corresponds to the renormalization group evolution of QCD in the infrared
limit 1. As a consequence of renormalizability EFTs contain a peculiar feature known as power
counting, which means that all the possible interactions among the low energy degrees of freedom
of the theory can be ordered from more to less relevant. This entails a remarkable simplification in
the calculation of observables in nuclear physics: if we want to achieve a certain level of accuracy
in theoretical predictions, we know in advance what to include and what to neglect in the computa-
tions. Probably, this is the main practical advantage of nuclear EFT over thetraditional approach.
At this point it is fundamental to remind that the prerequisite for all these desirable features is
renormalizability, something that is forgotten more often than not.

However the application of the EFT concept to nuclear physics is far fromtrivial. The reason
is that nuclear physics is non-perturbative. In the two-nucleon sector for instance we have two
states that are located almost at the threshold, the deuteron and the virtual state in the singlet. In
contrast the traditional knowledge of renormalizability in EFTs is perturbative (see e.g. Ref. [4] for
a lucid exposition) and not easily adapted to the nuclear case. Thus, whenapplying the EFT concept
for the first time in the few nucleon sector Weinberg proposed [5, 6] an interesting workaround:
though nuclear physics is non-perturbative, nuclear forces can be expressed as a perturbative series
in chiral EFT. In other words, we know how renormalization works for thetwo-nucleon potential.
The natural thing to do then is to concentrate on the potential and derive all observables quantities
from it, as has always been the case in traditional nuclear physics. The idea works as follows: first
we begin by noticing that in the EFT formulation the two-nucleon potential can beexpanded as a
series of contributions of diminishing importance at low energies. Graphicallywe have:

where LO stands for leading order, NLO for next-to-leading order andNNLO for next-to-next-to-
leading order, and the dots indicate higher order contributions that are expected to be very small at
low energies. Each of the blobs in the figure above represents a set of Feynman diagrams involving
nucleons and pions, while the size of the blob indicates their relative importance at low energies.

1Of course the practical problem remains of how to unconver the detailed relationship between chiral EFT and
QCD, something that could be probably done in the lattice in the near future.
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Next we iterate this potential in the Schrödinger or Lippmann-Schwinger equation to obtain scat-
tering amplitudes, i.e. the T-matrix. The natural expectation in the Weinberg counting is that, even
if we do not know the inner workings of non-perturbative renormalization, the T-matrix will follow
the same power counting as the potential, that is:

where I have put the interrogation mark to indicate that we do not really knowfor sure. Though
a sensible expectation, there is a catch, as we will see. As a historical note itis worth mentioning
that the Weinberg counting has been followed with enthusiasm in the literature and eventually, at
high enough order (N3LO, i.e. next-to-next-to-next-to-leading order), it has been able to produce
nucleon-nucleon potentials that can describe the two-nucleon scattering data atElab ≤ 300MeV
with a χ2/d.o. f .∼ 1 [7, 8].

What can fail then in the Weinberg counting? Well, the problem is that power counting only
works at low energies. Yet, we are iterating all the EFT contributions to the potential regardless
of their order. As a consequence of the iteration process, we will have two-nucleon loops that are
going to probe the high energy structure of the potential, where the EFT description is no longer
valid. At high enough energies power counting breaks down and each new contribution to the
chiral potential is not necessarily smaller than the previous one. I illustrate this point in figure 1,
where I show the nucleon-nucleon EFT potential at long and short distances. As can be seen, power
counting works as expected at long distances. But in contrast, at shortdistances the situation is the
opposite: each new piece of the potential is bigger than the previous one. In pictures:

and if we do not do take precise measures to counterbalance the short distance physics probed in
the loops, power counting will most probably be lost at the level of the T-matrix.

The solution to this problem involves the renormalization of the scattering amplitude. This
requires the following steps: first we cut off the loop momentum to avoid probing the unphysical
short range structure of the EFT potentials. But this is not enough: the regularization of the loops
atΛ – the cut-off scale – causes the observable quantities to depend onΛ, destroying the predictive
power of the theory. Thus, as a second step, we include four nucleon vertices – counterterms – to
absorb the cut-off dependence. At this point it is worth mentioning that the Weinberg counting is
expected to be used with a finite cut-off and already contains counterterms.But even so it fails to
be renormalizable. The counterterms that are expected in the Weinberg counting are not able to
absorb the fairly strong cut-off dependence generated by the EFT potential, as has been repeatedly
proven in a series of works [9, 10, 11] that analyze the renormalizability of the Weinberg scheme.
The conclusion is that we need to modify and correct the Weinberg counting.
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Figure 1: The chiral two-nucleon potential at LO, NLO and NNLO in the1S0 channel. In the left panel (a),
we show the contributions to the potential at long distances(between 1.5 and 5fm). The bands represent the
size of the contribution at each order: we can appreciate that at long distances the size of the contributions
diminish with the order, In the right panel (b), we can see howthe pattern breaks down at short enough
distances (in particular, between 0.7 and 1.5fm), in which case power counting no longer works as expected
and each new contribution is bigger than the previous one.

Actually, the way to work out a proper power counting for the two-nucleonsystem is straight-
forward. It only requires to follow a small number of steps, like a recipe. They are the following:

a) We only iterate the leading order piece of the potential, which can be defined as the diagrams
that happen to be more important than all the others at low energy.

b) The subleading order pieces of the potential – the diagrams that we havenot included in the
previous step – enter as perturbations (they are small corrections after all).

c) At every step in the calculation, we check for the cut-off independence of the results. If this
condition is not fulfilled, we include new counterterms to absorb the divergences.

There is one thing left to decide: which is the leading order piece of the potential? The answer is not
difficult: we include the one pion exchange potential plus a few contact range interactions in the
S-, P-waves and optionally D-waves to make scattering amplitudes renormalizable, as discussed
in Ref. [9]. Now, the next thing to do is to include the subleading order pieces of the potential
and the counterterms. Determining the necessary number of counterterms is aproblem that can
be elucidated by several means, such as renormalization group analysis [12] and the perturbative
renormalizability of the amplitudes in coordinate [14, 15] and momentum space [16, 17, 18]. The
outcome of all these approaches is extremely similar at the fundamental level. However when one
looks at the fine print there are subtle differences among them, a point thatshould be clarified in
subsequent works hopefully for the relief of power counting aficionados and connoisseurs. Yet
I feel that these differences are merely a manifestation of the possibility of reordering the power
counting expansion in different ways: one can probably rearrange the EFT expansion without
altering the convergence properties of the series, just as happens with astandard power series.

Finally, the comparison with the data (or, equivalently, with the high-precisionpotentials [13])
is remarkably good. In Figure 2 one can see a selection of the results for S- and P-waves at LO,
NLO and NNLO. The phase shifts obtained within a nuclear EFT with explicit power counting [14,
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Figure 2: The S- and P-wave phase shifts in two-nucleon scattering fornuclear EFT, whereδ is the phase
shift andkc.m. the center-of-mass momentum. They have been calculated following the power counting
described in the present contribution, where the one pion exchange potential is non-perturbative and two
pion exchange is included as a perturbation [14, 15]. The bands reflect the cut-off uncertainty of the results
in the rangerc = 0.6− 0.9fm (boundary radius). The dashed line (not always visible)represents the the
0.3fm NNLO results. The phase shifts are compared with the corresponding ones in the Weinberg counting
(the light blue band in the figures), which are calculated from the NNLO potential of Refs. [19, 20].

15] are actually better than the corresponding ones in the Weinberg schemewhen computed at the
same order [19, 20]. In hindsight this is not surprising: power countingat the level of the scattering
amplitudes requires a larger number of counterterms, i.e. free parameters,than what is expected
in naive dimensional analysis. For the partial waves shown in Figure 2 at NNLO we have three
counterterms in the1S0 phase, two (per phase) in the3S1, E1, 3D1, 3P0 and 3P2 and one in the
1P1 and3P1, while in Weinberg we have two per S-wave, one for the S- to D-wave mixing and
one per P-wave. I saidin hindsightas the statement is only obvious now that we know that chiral
two pion exchange can be tamed in perturbation theory, a non-trivial result from the point of view
of conventional wisdom. In the near future we expect to extendactual power counting to chiral
extrapolations, electromagnetic reactions on the deuteron and the three-nucleon sector. In doing so
we will further put to the test the usefulness of the nuclear EFT approach.
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