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1. Introduction

Chiral Perturbation TheoryPT [1], has become a standard tool for the phenomenological
description of QCD processes involving pseudo—Goldstone bosons-agergy. However, when
pion scattering amplitudes are calculated in the isoscalar channel, a baatgemmse is observed,
even at reasonably low—momenta. This has led some authors to resum dedaés of diagrams,
using a number of unitarization techniques (see, for instance, [2, 3}t Bf these approaches
improve considerably the description of data with respect to stanglid and indicate that a
scalar isospin zero resonance at relatively low—mass, the sigma, exatt the mass and width of
the sigma resonance are nowadays claimed to be known very accumgtely4 1" éGMeV, r/2=
272fsl’25 MeV [4] (see also [5]). The relatively low—mass of the sigma resonanitk,respect to
the chiral cutoff and its proximity to the value of the kaon mass suggests that hie@nvenient to
introduce it as an explicit degree of freedom in an extensigyRaf. We implement this observation
here in a chiral effective theory framework that involves a dynamicalsirield together with the
lowest pseudo—Goldstone bosons.

2. Lagrangian and power counting

Our aim is to construct an effective field theory containing pions and desiagalar field as
a degrees of freedom, that holds for processes involving only lowggméons as the asymptotic
states
P, My(~ 140MeV), mg(~ 440MeV) < Ay. (2.1)

beingp a typical momentum. More refined hierarchies, likg < ms, p < Ay may be interesting

to explore in the future.
Consider first the sector containing only the singlet scalar field. In thenalesof any symme-
try hint we are forced to write the most general polynomial functional,
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where the dots indicate terms suppressed by powergAf.1At LO A1 must be set to zero in
order to avoid mixing oS with the vacuum, and at higher orders it must be adjusted for the same
purpose. Their natural sizes fag andA4 areAz ~ &(\y) andA4 ~ 0(1). In that case, the scalar
sector becomes strongly coupled. However, strongly coupled scataratén four dimensions
are believed to be trivial [8, 9]. A practical way of taking this fact into@aat is just setting
Az = A4 = 0, which we will do in the following. When the interactions of the scalar with the
pseudo—Goldstone bosons are taken into account, sn@iy\ﬁ"suppressed) but non—vanishing
values ofAz andA4 are required to ensure perturbative renormalization.

The second contribution we are interested in is the lowest order Lagradgiribing the
interaction of the scalar field with the pseudo—Goldstone bosons.

2
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where the ellipsis stand for higher order terms involving more powers ofrigiesfield (or deriva-
tives on them), which are suppressed by powers /@1 In computing loop graphs, we will
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encounter divergences. The counter—terms we will need to eliminate #rgelnces are
l3 ly . .
LW = 16<x*u +xuh24 2 “(D*Uu'D,x + DHx'DLU) + ZaB(x U + xUT) + Zo7é(D,UDHFUT)
+ fop0SIS+ domdu SOHS(X TU + XU T) + bamS* (X TU + xUT)2 + aomS (X TX) + eSO [det X)) . (2.4)

Note thatB, F and/; are equivalent to the correspondig®T low—energy constants, but they do
not need to take same values axmPT.

2.1 Chiral symmetry constraints

To envisage the effects of explicit chiral symmetry breaking on the dynamifitee singlet
field we seU to the vacuum configuratiotJ(= ). The terms proportional to the quark masses in
(2.3) induce new terms in the LagrangianS$that can be reshuffled into the coefficients of (2.2).
For the first two terms one finds explicitly

A1 — A1 —8FcimBrh, 1 — m2 = hé — 16c,,Brh. (2.5)

As a consequence the singlet field is brought out of its minimum in the chiral [yrtgdns pro-
portional tomi. Hence, the direct consequence of the inclusion of non—vanishings quasses
results in a new contribution to the singlet—-vacuum mixing. The new scalar &sickiding the
first excitation with respect to the vacuum may be obtained by carrying ediotowing shift

S—S+FS with S= 8c1mi:2n r:;F (2.6)
For generic values of the LECs the shift (2.6) breaks chiral symmetmyndNaif the original scalar
field in (2.2) is a singlet under chiral symmetry, the scalar field after the (€6} is not. This is
so for any value of the parameters, except for those that falfit ClmmgF.

If we choosel; as above, the shift becomes independent of the quark M&5seSsCim/2Com),
and hence the scalar field after the shift is still a scalar under chiral symnk&dwever, the La-
grangian resulting from this field redefinition 8fis equivalent to choosing; = ¢, = 0in (2.2)
and (2.3) on the original Lagrangian. If we impose to our original scad&d fo be a singlet under
chiral symmetry for any value of the external sources and not mix with tbewn, then the only
solution at tree level id; = c1m = 0. We shall adopt this option from now on.

3. Two—point functions

We are now in the position to perform a complete NLO analysis of the pion masdemay
constant, including the radiative correction due to the singlet field. Wetddayonis andFps the
pion mass and the pion decay constant respectively calculated at Nlebeaghwe keem,; = 2Bh
andF for the same quantities at LO.

28— lea 2, m& ) (m — 2m2)2 + <“3Ans “") (4B — Aol 1)
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Figure 1: (a) Xg_o_f swept over dCyq, Com) grid corresponding to fits to NLO order expressions. (b) Tést b
fits of the LO (dashed line), NLQYPT (black solid line) ang(PTs (red solid line) expressions. Note that
the LO expression is the same fpPT andyPTs.

Jandpu, (a= 1,9 are the standard one loop functiofis; I'», y5 andys are the coefficients of the
divergent t_erms_of the LEC (see [10] for details). In addition we haesl tise scale independent
quantities/; andZ;, which are related to the finite part of the conterterms in (2.4).

The scalar mass at NLO, defined as the pole of the scalar field two—patittdn, reads as
follows

— nh M2ma 6c? 2
m%moﬁﬂ%—%ﬁfzp 3o o Ay dim — a TS Nothom — 1dJ m2, mé; mg) (mé—2ma)“~,  (3.3)
wherel ¢, A; andA; are coefficients of the divergent terms of the LEC, d_m d_lm andd_zm are

scale independent quantities related to the counterterms [10].
The scalar decay width can be read from dHanction

r 3 4me, 2
2 8nF2ms) - (s — 2" (3.4

Notice that it only depends on a single unknown LEg, Using the standard values fBr~ F
and my, and taking specific values for the mass and width of the sigma resonamed4t we
obtain fromc3, = 0.457.

3.1 Matching with lattice data

Lattice QCD offers a new arena for determining the LEC. Unlike physiga¢ements, lattice
calculations use different unphysical quark masses, providing ébr@aint what can be considered
as an uncorrelateglxperimentatlatum with Gaussian errors. We will use the lattice data based on
maximally n; = 2 twisted fermions to fit the LEC [6]. The fits are forced to reproduce tha pio
decay constant, the mass of the sigma resonance and its width at the pppaitdlLO], cld is

obtained from the previous section.
If we look at the contour level plot of th}f)&o_f corresponding to théczg, Com) region scanned,

shown in Fig. 1, we can see regions of parameter setsx@ghr smaller than one. Thus any
parameter set on those regions has to be considered a valid solutioninglé@p in mind, the
following are the results for the best fit obtaingg ¢ ; = 16.7/26), which have been used for Fig.
1b.

B=16805MeV, F =1012MeV, rhs=426MeV, (3.5)
Cog =121, Com=-0.083, (4=-112x10"2, (,=694x1073.
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4. S—waverrTt scattering lengths

Let us next considern—rt scattering. Due to the presence of a novel contribution coming with
a scalar particle in the intermediate state, we expect a LO correction fdtheesults. Let us now
turn to the evaluation of the scattering lengths. Their explicit expressidi3 ate given by

m (7 3 e m m /1 m
o_""m (°* =2 "m _n 2___'m (= _'m2
%~ 72 (32 24m$[—mgci“L mgcid> T T or2 (16 mgcld) ' 1)

In the decoupling Iimitl(r% > m2, p?) we expect to recover thgPT expression. It can be shown
that the new contribution due to the scalar field gives a matching contributioe to ¥PT coun-
terterm. Since the new contribution is LO and thexPT counterterm is NLO, we expect this
matching contribution to be large. This indicates that a large negative valypédsted for/;, and
consequently that NLO contributions te-1T scattering are going to be large in order to reproduce
the standard values fér xPT counterterm in the decoupling limit [10].

4.1 Matching with lattice data

The available lattice results for the S—wave scattering lengths use relatingdyp@n masses,
which makes chiral extrapolations less reliable. In fact, until recently aalyutations ofag were
available, and the only existing calculation of b(aﬁmndag neglects the disconnected contribu-
tions to the latter [7]. Nevertheless we shall use lattice data of the lastmeéeie order to get a

feeling on howyPTs performs with respect to the S—wave scattering lengths.

The S—wave scattering lengths P Ts at LO are fixed once we input the mass and the width
of the sigma resonance in addition to the pion mass and decay constant. vidhatioa with the
light quark masses is given by that of the pion mass and thed,gFBy making a combined fit to
a3 anda3 we obtain the dashed red line in Fig. 2. We observed thaaJo{PTs provides a better
description of data than LQPT (dashed black line), but fca% a much worse one. As argued in
section 4, large NLO corrections due #pare expected. We may estimated them by just adding
its contribution to LO expression. If we fth, we obtain the dashed red line in Fig. 2, and the
following numbers

a3=0210 , a3=-00296 , Com=—0443 , (1=96m(;=—169. (4.2)

Note that we get a large negative number#grconsistent with the expectations. We see that the
description of both scattering lengths improves considerably, the quaﬁ@/hﬁing comparable to
that of NLO xPT (black solid line). The values of the LEC gPT delivered by the fit are quite

different from the standard values.
The results above encourage us to attempt an extraction of the sigmanesqamameters
from the lattice data.

Com=-0228 |, (,=-109 , c%=0304 , rhs=483MeV,

r (4.3)
ms=486MeV , - =236MeV | a3=0.177 , a=-0.0361

The numbers above are quite reasonable for a LO approximation augnbgntgdeven more if
one takes into account that the lattice data is at relatively large pion mass&sowls that our
approach may eventually allow for a precise extraction of the sigma resemeamameters from
lattice QCD.



Chiral Perturbation Theory with a scalar field Jaume Tarrus Castella

a5
0.00

-0.0sf >
-0.10f A

-0.15} ~-.
-0.20f

1 2 3 4 5 m,/| My phys B

0.25-

Figure 2: The best fits of the LQYPT (black dashed line), NLYPT (black solid line), LOxPTs (red
dashed line) and LYPTs augmented by the operator proportionalidgred solid line). Red dots are lattice
data from [7].

5. Conclusions

We have considered the possibility that the spectrum of QCD in the chiral limtaios an
isosinglet scalar with a mass much lower than the typical hadronic Agalend have constructed
the corresponding effective theory that includes it together with the atdrmuseudo—Goldstone
bosons xPTs. This has consequences concerning the dependence of physealatilies on the
light quark masses, which have been shown to be compatible with currere etia.
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