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1. Introduction

Chiral Perturbation Theory,χPT [1], has become a standard tool for the phenomenological
description of QCD processes involving pseudo–Goldstone bosons at low–energy. However, when
pion scattering amplitudes are calculated in the isoscalar channel, a bad convergence is observed,
even at reasonably low–momenta. This has led some authors to resum certainclasses of diagrams,
using a number of unitarization techniques (see, for instance, [2, 3]). Most of these approaches
improve considerably the description of data with respect to standardχPT, and indicate that a
scalar isospin zero resonance at relatively low–mass, the sigma, exist. Infact the mass and width of
the sigma resonance are nowadays claimed to be known very accuratelymσ = 441+16

−8 MeV ,Γ/2=

272+9
−12.5MeV [4] (see also [5]). The relatively low–mass of the sigma resonance,with respect to

the chiral cutoff and its proximity to the value of the kaon mass suggests that it may be convenient to
introduce it as an explicit degree of freedom in an extension ofχPT. We implement this observation
here in a chiral effective theory framework that involves a dynamical singlet field together with the
lowest pseudo–Goldstone bosons.

2. Lagrangian and power counting

Our aim is to construct an effective field theory containing pions and a singlet scalar field as
a degrees of freedom, that holds for processes involving only low–energy pions as the asymptotic
states

p, mπ(∼ 140MeV) , mS(∼ 440MeV)≪ Λχ . (2.1)

beingp a typical momentum. More refined hierarchies, likemπ ≪ mS, p≪ Λχ may be interesting
to explore in the future.

Consider first the sector containing only the singlet scalar field. In the absence of any symme-
try hint we are forced to write the most general polynomial functional,

L
S=

1
2

∂µS∂ µS−
1
2

m̊2
SSS−λ1S−

λ3

3!
S3−

λ4

4!
S4+ · · · (2.2)

where the dots indicate terms suppressed by powers of 1/Λχ . At LO λ1 must be set to zero in
order to avoid mixing ofSwith the vacuum, and at higher orders it must be adjusted for the same
purpose. Their natural sizes forλ3 andλ4 areλ3 ∼ O(Λχ) andλ4 ∼ O(1). In that case, the scalar
sector becomes strongly coupled. However, strongly coupled scalar theories in four dimensions
are believed to be trivial [8, 9]. A practical way of taking this fact into account is just setting
λ3 = λ4 = 0, which we will do in the following. When the interactions of the scalar with the
pseudo–Goldstone bosons are taken into account, small ( ˚m2

S/Λ2
χ suppressed) but non–vanishing

values ofλ3 andλ4 are required to ensure perturbative renormalization.
The second contribution we are interested in is the lowest order Lagrangian describing the

interaction of the scalar field with the pseudo–Goldstone bosons.

L
(2) =

(

F2

4
+Fc1dS+c2dS2+ · · ·

)

〈DµUDµU†〉+

(

F2

4
+Fc1mS+c2mS2+ · · ·

)

〈χ†U + χU†〉 (2.3)

where the ellipsis stand for higher order terms involving more powers of the singlet field (or deriva-
tives on them), which are suppressed by powers of 1/Λχ . In computing loop graphs, we will
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encounter divergences. The counter–terms we will need to eliminate the divergences are

L
(4) =

ℓ3

16
〈χ†U + χU†〉2+

ℓ4

4
〈DµU†Dµ χ +Dµ χ†DµU〉+Z1m̊2

S〈χ†U + χU†〉+Z2m̊2
S〈DµUDµU†〉

+ f2p�S�S+d2m∂µS∂ µS〈χ†U + χU†〉+b2mS2〈χ†U + χU†〉2+a2mS2〈χ†χ〉+e2mS2ℜ[det(χ)] . (2.4)

Note thatB, F andℓi are equivalent to the correspondingχPT low–energy constants, but they do
not need to take same values as inχPT.

2.1 Chiral symmetry constraints

To envisage the effects of explicit chiral symmetry breaking on the dynamicsof the singlet
field we setU to the vacuum configuration (U = I ). The terms proportional to the quark masses in
(2.3) induce new terms in the Lagrangian ofS, that can be reshuffled into the coefficients of (2.2).
For the first two terms one finds explicitly

λ1 → λ1−8Fc1mBm̂, m̊2
S→ m2

S= m̊2
S−16c2mBm̂. (2.5)

As a consequence the singlet field is brought out of its minimum in the chiral limit by terms pro-
portional tom̂. Hence, the direct consequence of the inclusion of non–vanishing quark masses
results in a new contribution to the singlet–vacuum mixing. The new scalar field describing the
first excitation with respect to the vacuum may be obtained by carrying out the following shift

S→ S+FS0 with S0 = 8c1m
Bm̂

m2
S

−
λ1

m2
SF

. (2.6)

For generic values of the LECs the shift (2.6) breaks chiral symmetry. Namely, if the original scalar
field in (2.2) is a singlet under chiral symmetry, the scalar field after the shift(2.6) is not. This is

so for any value of the parameters, except for those that fulfillλ1 =
c1mm̊2

SF
2c2m

.
If we chooseλ1 as above, the shift becomes independent of the quark masses (S0=−c1m/2c2m),

and hence the scalar field after the shift is still a scalar under chiral symmetry. However, the La-
grangian resulting from this field redefinition ofS is equivalent to choosingλ1 = c1m = 0 in (2.2)
and (2.3) on the original Lagrangian. If we impose to our original scalar field to be a singlet under
chiral symmetry for any value of the external sources and not mix with the vacuum, then the only
solution at tree level isλ1 = c1m = 0. We shall adopt this option from now on.

3. Two–point functions

We are now in the position to perform a complete NLO analysis of the pion mass and decay
constant, including the radiative correction due to the singlet field. We denote bym2

PS andFPS the
pion mass and the pion decay constant respectively calculated at NLO, whereas we keepmπ = 2Bm̂
andF for the same quantities at LO.

m2
PS=2Bm̂−

4c2
1d

F2 J̄(m2
π ,m

2
S;m2

π)
(

m2
S−2m2

π
)2

+
4m4

π
F2

(

µS−µπ
∆πS

)

(

c2
1dm2

S−4c2mΓ1∆πS
)

+
m4

π
16π2F2 γ3ℓ̄3+

m2
πm̊2

S

8π2F2 Γ1Z̄1 ,

(3.1)

FPS=F

(

1+
2c2

1d

F2m2
π

J̄(m2
π ,m

2
S;m2

π)

(

2m2
π −m2

S

4m2
π −m2

S

)

(

14m4
π −15m2

πm2
S+3m4

S

)

+
c2

1d

8π2F2

(

m2
S−2m2

π
)2

4m2
π −m2

S

+
4m2

π
F2

(

µπ −µS

∆πS

)

(

c2
1d

(

m2
S−2m2

π
)2

(

4m2
π −m2

S

) +4c2mΓ2∆πS

)

+
m2

π
32π2F2 γ4ℓ̄4+

m̊2
S

8π2F2 Γ2Z̄2

)

,

(3.2)
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Figure 1: (a) χ2
d.o. f swept over a(c2d,c2m) grid corresponding to fits to NLO order expressions. (b) The best

fits of the LO (dashed line), NLOχPT (black solid line) andχPTS (red solid line) expressions. Note that
the LO expression is the same forχPT andχPTS.

J̄ andµa (a= π ,S) are the standard one loop functions;Γ1, Γ2, γ3 andγ4 are the coefficients of the
divergent terms of the LEC (see [10] for details). In addition we have used the scale independent
quantitiesℓ̄i andZ̄ j , which are related to the finite part of the conterterms in (2.4).

The scalar mass at NLO, defined as the pole of the scalar field two–point function, reads as
follows

m2
S,NLO = m2

S−
m4

S

32π2 Γ f f̄2p−
m4

π
32π2 ∆1d̄1m−

m2
πm2

S

4π2 ∆2d̄2m−
6c2

1d

F2 J̄(m2
π ,m

2
π ;m2

S)
(

m2
S−2m2

π
)2

, (3.3)

whereΓ f , ∆1 and∆2 are coefficients of the divergent terms of the LEC, andf̄2p, d̄1m andd̄2m are
scale independent quantities related to the counterterms [10].

The scalar decay width can be read from theJ̄ function

Γ
2
=

3c2
1d

8πF2mS

√

1−
4m2

π
m2

S

(

m2
S−2m2

π
)2

. (3.4)

Notice that it only depends on a single unknown LEC,c1d. Using the standard values forF ∼ Fπ

andmπ , and taking specific values for the mass and width of the sigma resonance from [4] we
obtain fromc2

1d = 0.457.

3.1 Matching with lattice data

Lattice QCD offers a new arena for determining the LEC. Unlike physical experiments, lattice
calculations use different unphysical quark masses, providing for each point what can be considered
as an uncorrelatedexperimentaldatum with Gaussian errors. We will use the lattice data based on
maximally nf = 2 twisted fermions to fit the LEC [6]. The fits are forced to reproduce the pion
decay constant, the mass of the sigma resonance and its width at the physicalpoint [10], c2

1d is
obtained from the previous section.

If we look at the contour level plot of theχ2
d.o. f corresponding to the(c2d,c2m) region scanned,

shown in Fig. 1, we can see regions of parameter sets withχ2
d.o. f smaller than one. Thus any

parameter set on those regions has to be considered a valid solution. Keeping this in mind, the
following are the results for the best fit obtained (χ2

d.o. f = 16.7/26), which have been used for Fig.
1.b .

B= 1680.5MeV, F = 101.2MeV, m̊S= 426MeV, (3.5)

c2d = 1.21, c2m =−0.083, ℓr
3 =−1.12×10−3 , ℓr

4 = 6.94×10−3 .
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4. S–waveπ–π scattering lengths

Let us next considerπ–π scattering. Due to the presence of a novel contribution coming with
a scalar particle in the intermediate state, we expect a LO correction to theχPT results. Let us now
turn to the evaluation of the scattering lengths. Their explicit expressions atLO are given by

a0
0 =

m2
π

πF2

(

7
32

−
3
2

m2
π

4m2
π −m2

S

c2
1d +

m2
π

m2
S

c2
1d

)

, a2
0 =−

m2
π

πF2

(

1
16

−
m2

π
m2

S

c2
1d

)

. (4.1)

In the decoupling limit (m̊2
S≫ m2

π , p2) we expect to recover theχPT expression. It can be shown
that the new contribution due to the scalar field gives a matching contribution to the l1 χPT coun-
terterm. Since the new contribution is LO and thel1 χPT counterterm is NLO, we expect this
matching contribution to be large. This indicates that a large negative value is expected forℓ1, and
consequently that NLO contributions toπ–π scattering are going to be large in order to reproduce
the standard values forl1 χPT counterterm in the decoupling limit [10].

4.1 Matching with lattice data

The available lattice results for the S–wave scattering lengths use relatively large pion masses,
which makes chiral extrapolations less reliable. In fact, until recently only calculations ofa2

0 were
available, and the only existing calculation of botha2

0 anda0
0 neglects the disconnected contribu-

tions to the latter [7]. Nevertheless we shall use lattice data of the last reference in order to get a
feeling on howχPTS performs with respect to the S–wave scattering lengths.

The S–wave scattering lengths ofχPTS at LO are fixed once we input the mass and the width
of the sigma resonance in addition to the pion mass and decay constant. Their evolution with the
light quark masses is given by that of the pion mass and the LECc2m. By making a combined fit to
a2

0 anda0
0 we obtain the dashed red line in Fig. 2. We observed that fora0

0 χPTS provides a better
description of data than LOχPT (dashed black line), but fora2

0 a much worse one. As argued in
section 4, large NLO corrections due toℓ1 are expected. We may estimated them by just adding
its contribution to LO expression. If we fitℓ1, we obtain the dashed red line in Fig. 2, and the
following numbers

a0
0 = 0.210 , a2

0 =−0.0296 , c2m =−0.443 , ℓ̄1 ≡ 96π2ℓ1 =−16.9. (4.2)

Note that we get a large negative number forℓ̄1, consistent with the expectations. We see that the
description of both scattering lengths improves considerably, the quality ofa0

0 being comparable to
that of NLO χPT (black solid line). The values of the LEC ofχPT delivered by the fit are quite
different from the standard values.

The results above encourage us to attempt an extraction of the sigma resonance parameters
from the lattice data.

c2m =−0.228 , ℓ̄1 =−10.9 , c2
1d = 0.304 , m̊S= 483MeV,

mS= 486MeV ,
Γ
2
= 236MeV , a0

0 = 0.177 , a2
0 =−0.0361.

(4.3)

The numbers above are quite reasonable for a LO approximation augmentedby ℓ1, even more if
one takes into account that the lattice data is at relatively large pion masses. It shows that our
approach may eventually allow for a precise extraction of the sigma resonance parameters from
lattice QCD.
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Figure 2: The best fits of the LOχPT (black dashed line), NLOχPT (black solid line), LOχPTS (red
dashed line) and LOχPTS augmented by the operator proportional toℓ1 (red solid line). Red dots are lattice
data from [7].

5. Conclusions

We have considered the possibility that the spectrum of QCD in the chiral limit contains an
isosinglet scalar with a mass much lower than the typical hadronic scaleΛχ , and have constructed
the corresponding effective theory that includes it together with the standard pseudo–Goldstone
bosons,χPTS. This has consequences concerning the dependence of physical observables on the
light quark masses, which have been shown to be compatible with current lattice data.
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