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1. Introduction

The inhomogeneous Bethe-Salpeter (BS) equation in Minkowski sphpeoiides a covari-
ant four-dimensional description of two-body scattering states. In theafascalar particles it has
the form:

o d4 / K , /,P F /7 ,P
F(p,ps;P):K(p,ps;P)—u/(2754 - . (P.PiP) (E’ Ps )2 _ (1.1)
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The kerneK for the one-boson exchange model is given by:
gz
K(p,p;P) =~ (1.2)

(P=P)2—H2+ie
We introduce the coupling constamtrelated tog by:

o = 16mmla

and use the partial wave decomposition according to [2]:
F(0) =16m %(ZI +1)RRA(cosv)
|=

In the center of mass framé,= 0, Po=+/S=2¢ep, = 2,/m? + p2 and for a given incident momen-
tum ps, the partial wave off-mass shell amplituBiedepends on two scalar variablpsand|p|. It
will be hereafter denoted iy (po, p; ps) settingp = ||, ps = | Ps|- We consider for simplicity the
S-wave equation which reads:
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The on-shell amplitud&®" = R (po = 0, p = ps; Ps) determines the phase shift according to:

_1 2iPs _on
5= |og(1+ . ) (1.5)
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The knowledge of this function in the entire domain of its arguments —i.e. thgheff-amplitude —
is mandatory for some interesting physical applications, like for instance utimyghe transition
e.m. form factory*d — np or solving the BS-Faddeev equations. This quantity has not been
obtained until now.

The numerical solution of the BS equation in Minkowski space is complicatéoeogxistence
of singularities in the amplitude as well as in the integrand of (1.1). Theselaiitgs are inte-
grable in the mathematical sense, duistim the denominators of propagators, but their integration
is a quite delicate task and requires the use of appropriate analytical essvireimerical methods.

To avoid these singularities, the BS equation was first solved in Euclidese s hese so-
lutions provided on-shell quantities like binding energies and phase sBjiftsipwever we have
shown [4] that the Euclidean BS amplitude cannot be used to calculate etaginetic form fac-
tors, since the corresponding integral does not allow the Wick rotatioe ti@amefore needs the BS
amplitude in Minkowski space.

This amplitude has been computed for a separable kernel (see [5]farehies therein). For
a kernel given by field theory rules — ladder and cross ladder — thedVisiki BS amplitude was
first obtained in our preceding works [6, 7] in the bound state problenthi$aim, we developed
an original method based on the Nakanishi integral representation ofitpitide. A similar
method for the scattering states has been proposed in [8] although theicalrselutions are not
yet available.

We present in this paper some details of a new method [9] providing a doktios of the
original BS equation. It is based on a carefull treatment of the singulaaitidsllows to compute
the corresponding off-shell scattering amplitude in Minkowski spacewilgive the low energy
parameters in the case of spinless particles and ladder kernel.

2. Method

There are four sources of singularities in the r.h.-side of the BS equadtid \Which are
detailed below.
(i) The constituent propagators in (1.3) y§.have two poles, each of them represented as:

pg—la—is = p6l_a+in5(pga)

wherePV means the principal value. In the product of four pole terms, the only aoisking
contributions come from the product of fol's without delta-functions, from the terms with
threePV'’s and one delta-function and from the term with tR%’s and two delta’s. After partial
wave decomposition the 4D integral BS equation (1.1) is reduced to a 2@n@,.3). Integrating
in (1.3) overpy, we obtain in addition to the 2D part, a 1D integral opérand a non integrated
term. The singularities due to ti/’s are eliminated by subtractions according to the identity:

PV/°°f podpg I ( ‘p/fz(f)az>d%
0

The integrand in r.h.-side is not singular.
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(i) The propagator of the exchanged particle has the pole singularities \aftethpartial wave
decomposition, turn into logarithmic ones, eq. (1.4). Their positions arelfanalytically and the
numerical integration ovep;, variable is split into intervals between two consecutive singularities,
namely:

00 sing sing
/ . ddoz/ Ldit [ L ]dph
0 0 sing
Each of these integrals is made regular with an appropriate change dflgariéle proceed in a
similar way for thep’ integration.

(i) The inhomogeneous (Born) term is given by the ladder kernel and isialgolar in both
variables. The positions of these singularities are analytically known.

(iv) The amplituddr itself has many singularities, among which the strongest ones is resulted
from the Born ternKo(po, p; ps)- This makes difficult its representation on a basis of regular func-
tions as well as its numerical integration. To circumvent this difficulties we masesilacement
Fo(po, P; Ps) = Ko(po, P; Ps) fo( Po, P; Ps), Where fg is a smooth function. After that, the singular-
ities of the inhomogeneous term are canceled. We obtain in this way a nanesieguation for
fo which we solve by standard methods. Then we restore the BS off-mdbsamsipditude Fy in
Minkowski space.

3. Numerical results

We first applied this method to solve the bound state problem by dropping theogeneous
term in (1.1). The binding energies coincide, within four-digit accuragtfy the ones calculated
in our previous work [6] and with the Euclidean space results.

Solving eq. (1.3), the S-wave off-shell scattering amplitbglis calculated and the phase shifts
are extracted by means of eq. (1.5). Above the first inelastic threshuiige) = /mu + p2/4,
this phase shifts have an imaginary part, which is also found. By perforaiWick rotation in
(1.3) and taking into account the contributions of singularities — which, inrasnto the bound
state case, are crossed by the rotation contour — we derived an Endjosee equation similar to
one obtained in [3]. The phase shifts found by these two methods — i.e.,gelyin(1.3) and the
Euclidean space equation — coincide with each other within 3-4 digits. Fortiheythe imaginary
part of the phase shifts vanishes with high accuracy below threshold.ufiitarity condition is
not automatically fulfilled in our approach, but appears as a conseguérn@andling the correct
solution. It thus provides a stringent test of the numerical method. Quitsesproduce the phase
shifts given in [3] within the accuracy allowed by extracting numerical valirem published
figures.

Figure 1 (left panel) shows the phase shifts calculated via BS equatilich ¢sove) and via
the Schrodinger one with the Yukawa potential (dashed curve) for thstitgent massn = 1,
exchange masg = 0.5 and coupling constart = 0.5. Right panel shows the same results for
a = 1.2. For this value ofo, there exists a bound state. Therefore, according to the Levinson
theorem, the phase shift starts at 180 degrees. One can see thatdrenddfbetween relativistic
and non-relativistic results is considerably large, specially for small intidementum. This
difference increases wittn.
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Figure 1. Left panel: phase shift calculated via BS equation (solidrz€lcompared to non-relativistic
results (dashed curve) for= 0.5 anda = 0.5. Right panel: the same as for the left panel butdfee 1.2
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Figure2: Left panel: imaginary part of the phase shift (solid) andesgd modulus of the S-matrix (dashed).

Right panel: scattering length vsa for u = 0.5 calculated via BS (solid) and Schrodinger equations
(dashed).

Fig. 2 (left panel) shows the imaginary part of the phase shift fer 1.2) which auto-
matically appears when the incident momentum exceeds the threshold vakredton of the
exchange meson. Fon= 1, u = 0.5 this valuep™sh= 0.75. Simultaneously, the modulas of
two-body S-matrix differs from 1. Fgos = 1.118 the second threshold, for creation of two mesons,
is open. It also contributes in this curve.

Fig. 2 (right panel) shows the scattering lengthas a function of the coupling constant
o obtained with BS and non-relativsitc Schrodinger equation. In the vicinitg ef 0.8 (for
Schrédinger) andr ~ 1 (for BS) the coupling constant crosses the critical value correspgnd
to the appearance of a bound state. At this point the scattering length teadinige and then
changes the sign.

We have displayed in Fig. 3 the real (left panel) and imaginary (rightlpaaets of the off-
shell scattering amplitud&(po, p; ps) VS. Po andp calculated fops = u = 0.5. Its real part shows
a non trivial structure with a ridge and a gap resulting from the singularitidg®eanhomogeneous
term. Its on-shell valu€$" = Fy(po = 0, p = ps; ps), determining the phase shift calculated previ-



Scattering states in Bethe-Salpeter equation V.A. Karmanov

ously, corresponds to a single poipg = 0, p = ps on theses surfaces. Our calculation, shown in
Fig. 3, provides the full amplitudBy( po, p; ps) in a two-dimensional domain. It cannot be found
from the Euclidean equation. Computing this quantity is the main result of this. work

Figure 3: Real (left) and imaginary (right) parts of the off-shell dinyzle F (po, p; ps) for ps= 0.5, 1 = 0.5.

4. Conclusion

We solved the BS equation for the scattering states in Minkowski spacesftadder kernel.
The off-mass-shell amplitude is found for the first time. Coming on mass shelbbtain the
phase shifts which coincide with ones calculated by other methods. Theideaably differ, even
at low energy, from the non-relativisttic phase shifts calculated by the8titger equation. Above
the meson creation threshold the inelasticity appears which is also calculétedffimass-shell
amplitude can be used to calculate the transition form factor and as an inpw@ thréde-body
BS-Faddeev equations.
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