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In this talk we discuss the results obtained in the new approach that we recently introduced to

consider and include both the perturbative and nonperturbative contributions to the evolution of

the gluon and quark avarage multiplicities. We report on ourprogresses in solving a longstanding

puzzle of QCD. The new formalism is motivated by recent important theoretical developments in

timelike small-x resummation which are also discussed mostly from an historical point of view.

We have extended our global analysis to fit the available dataadding the strong coupling constant

as a fit parameter. In this way our best fit givesαs(Mz) = 0.124±0.005 and for the corresponding

χ2 we have obtained a further improvement.
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1. Introduction

When jets are produced at colliders, they can be initiated either by a gluon orby a quark. Be-
cause of the fact that these two partons carry different color charges and spin, it is expected that the
corresponding jets show different properties: typically a gluon jet is braoder and contains a larger
amount of hadrons. Jets with different parent partons can also be distinguished and investigated
looking for the jet charge distribution as discussed in detail in Ref.[1] with important applications
for the LHC. The interactions between quarks and gluons are describedby quantum chromodynam-
ics (QCD) and to understand the difference between a quark and a gluonjet is one of the strongest
test of this theory.

The typical way to depict the production of a jet from a parton is the following: an initial quark
(or gluon) start radiating gluons, which in turn can radiate further gluonsor split into secondary
quark-antiquark pairs. In this way the virtuality of the parent parton decreases in a so called parton
showering process. Finally when the virtuality falls below a certain cutoff thecascade stops and
the final state partons hadronize into color neutral hadrons, a processusually described by phe-
nomenological models. This happens because the production of hadronsis a typical process where
non-perturbative phenomena are involved. However, for particular observables, this problem can
be avoided. In particular the “counting” of hadrons in a jet which is initiated at a certain scaleQ2

belongs to that class of observables and in this case one can assume with quite high accuracy the
hypothesis of Local Parton-Hadron Duality (LPHD) which simply states thatparton distributions
are just renormalized in the hadronization process without changing their shape [2]. This would in
principle allow perturbative QCD at fixed order to make predictions without the need to consider
phenomenological models of hadronization. Nevertheless these are processes dominated by soft
gluon emissions and it is a well known fact that in such kinematic regions of thephase space fixed
order perturbation theory fails and resummation is needed (seee.g. Ref.[3]) and this is the main
topic discussed in this talk.

The gluon and quark multiplicities〈nh(Q2)〉g and 〈nh(Q2)〉s represent the avarage number
of hadrons in a jet initiated by a gluon or a quark respectively at scaleQ2. In the past analytic
predictions have been achieved solving the equations for the generating functionals in the modified
leading logarithmic approximation (MLLA) in Ref.[4] up to the so called N3LOr in the expansion
parameter

√
αs i.e. α3/2

s . However for the ratior = 〈nh〉g/〈nh〉s the theoretical prediction is about
10% higher than the data at the scale of theZ0 vector boson and the difference with the data
becomes even larger at lower scales even if the convergence of the perturbative series behaves very
well. An alternative approach was given in Ref. [5] where equations for the derivative of the ratio
of the multiplicities are obtained in the MLLA within the framework of the colour dipolemodel.
There a constant of integration which is supposed to encode non-perturbative contributions is fixed
by the data. A constant offset to the quark and gluon multiplicities has also been introduced in [6].

Very recently a new formalism has been proposed and developed in Refs.[7, 8], where the
problem of the apparent good convergence of the perturbative series is solved and where anyad
hoc offset is needed once one includes the effects coming from the full mixing between quarks
and gluon evolutions. The result looks like a generalization of the result obtained in Ref.[4]. In
the new approach the non-perturbative physics to the gluon-quark multiplicities is parametrized
simply in the initial conditions of the evolution equations. Due to the good agreement with the
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data obtained in Ref.[8], at the time of the contribution to this conference we have done a study
where we have extended our analysis adding as a fit parameter also the strong coupling constant.
Thanks to the new outstanding results in small-x timelike resummation obtained in [9] intheMS
scheme, we were able to compute exact next-to-next-to-leading-logarithm (NNLL) contributions
to the evolution of the multiplicity with with approximated NNNLO normalization factors in the√

αs expansion. Previously published results where available up to the NLL accuracy but in a
massive gluon scheme which in general is unfortunately not suitable to combine resummation with
fixed higher order corrections which are naturally given in theMSscheme. See Refs.[10, 11] for a
general discussion about the scheme choice and scheme dependence inthis context.

In the following after reviewing the history which lead to the latest important improvements in
“timelike” QCD of Refs.[12, 9] and sketching our formalism, we present, as anticipated, the result
of a slightly different global fit than in [8] where also the strong coupling contstant has been added
among the free parameters confirming the good quality of the fit.

2. Exiting times for “timelike” QCD

The important and fundamental results obtained in Refs.[12, 9] represent the beginning of the
happy end of a quite long story: In the 1972 it was realized in Ref.[13] thatat the lowest order the
“timelike” splitting functions (occuring in Semi-Inclusive electron positron Annihilation (SIA)) are
the same as their “spacelike” counterparts (occuring in Deep Inelastic Scattering (DIS)). This prop-
erty goes under the name of Gribov-Lipatov relation. Then in the 1980 it hasbeen shown by Curci,
Furmanski and Petronzio [14] that the Gribov-Lipatov relation is violated. Inthat period several
groups obtained the NLO contributions to the ‘timelike‘ splitting functions [14, 15, 16, 17, 18, 19].
In 2004 the NNLO “spacelike” splitting functions were published by Moch, Vermaseren and Vogt
in Ref.[20, 21]. In this last case the calculation could be performed via forward scattering ampli-
tudes, a fact that has allowed a direct calculation in terms of Feynman diagrams. This is however
not the case for the “timelike” splitting functions and different techniques have been investigated.
Two of them have been the most successfull. The first one is due to Dokshitzer, Marchesini and
Salam [22] who developed a formalism trying to rescue (at least at the formal level) the Gribov-
Lipatov relation at higher orders. The approach of Ref.[22] shaded light on many theoretical aspects
revealing (using their words) “intrinsic beauty of the perturbative quark-gluon dynamics”[23]. The
second one is based on the fact that the “timelike” and the “spacelike” splittingfunctions can be
related by the analytic continuation of the scaling variablex→ 1/x with x representing the fraction
of the parton longitudinal momentum. In particular, even if beyond the LO this cannot be done
directly from the splitting functions, it can be done for the corresponding physical evolution ker-
nels and this has been shown in Refs. [24, 25]. Formally, the evolution of astructure function
is governed by a physical kernelK which depends on the coefficient functionC and the splitting
functionP according to:

Q2 ∂F
∂Q2 = K⊗F =

[(

β (αs)
dC
dαs

+C⊗P

)

⊗C−1
]

⊗F, (2.1)

whereβ is the QCD beta function for the running of the strong couplingαs

β (αs) = Q2 ∂αs(Q2)

∂Q2 , (2.2)
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and where⊗ means the usual integral convolution with respect tox. Eq.(2.1) also tells us that

F = C⊗D, (2.3)

whereD is what we call fragmentation function (the analog of the parton densities in the“space-
like” case) and that

Q2 ∂D
∂Q2 = P⊗D. (2.4)

According to Eq.(2.1) and the discussion above it, we see that in principle allthe “timelike” splitting
functions can be obtained from the “timelike” physical kernels (obtained bythe analytic continua-
tion x→ 1/x), once the “timelike” coefficient functionsC are known. The “timelike” coefficients
functions are known at NNLO [26, 27, 28, 29, 30, 31, 32], while the analytic continuation of the
physical kernels from the NNLO “spacelike” ones has been obtained in Refs.[33, 34] and finally
in Ref.[12]. Here we mention only that the analytic continuationx → 1/x becomes subdle (see
Ref.[25]) for the logarithmic terms singular inx→ 1 for which

ln(1−x) → ln(1−x)− lnx+ iπ, (2.5)

and that additional constaints (see Ref.[12] and referencies therein) from the momentum sum rules,
the supersymmetric limit (CA = CF = nf ) and from the relations found in Ref.[22] are needed to
close the problem in a satisfactory way.

Nevertheless the NNLO “timelike” splitting functions for the quark-singlet system obtained
in Ref.[12] are not the end of the story. Indeed they present singularities in the threshold (x →
1) and in the large energy limit (x → 0). Both kind of singularities are due to the radiation of
soft gluons and they make perturbation theory to fail. As already mentioned,the difficulty with
these singularities are overcome by resummation. For very recent developments in the large-x
resummation seee.g. Refs.[35, 36]. Here we are mainly interested in the small-x resummation
because it is directly related to the computation of hadronic multiplicities as alreadyrealized a long
time ago [3]. With respect to the multiplicity studies, the basic equation is the one governing the
evolution of fragmentation functionD for the gluon-singlet system Eq.(2.4), which in Mellin space
sees the convolutional product⊗ turn into an ordinary matrix product:

Q2 ∂
∂Q2

(

Ds(ω ,Q2)

Dg(ω ,Q2)

)

=

(

Pqq(ω ,αs) Pgq(ω ,αs)

Pqg(ω ,αs) Pgg(ω ,αs)

)(

Ds(ω ,Q2)

Dg(ω ,Q2)

)

. (2.6)

Hereω = N−1 with N the standard Mellin moments with respect tox and wherePi j are splitting
functions as introduced in Eq.(2.1). The standard definition for the hadron multiplicity in terms of
the fragmentation function is given by (seee.g. Ref.[37]) the integral overx of the fragmentation
function which is just the first Mellin moment (ω = 0):

〈nh(Q
2)〉a ≡

[

∫ 1

o
dxxω Da(x,Q

2)

]

ω=0
= Da(ω = 0,Q2), (2.7)

wherea = s for a quark jet anda = g for a gluon jet. It is clear from the definition in Eq.(2.7)
that eventual non-integrable singularities inx∼ 0 in the inegrand could not occur for the definition
to make sense. We remind that the singularities inx = 0 are translated into singularities inω =

4
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0. We have already mentioned that resummation which includes the singularities from all orders
according to a certain logarithmic accuracy is the standard way to solve this problem. Indeed
after resummation, the singular behavior inx ∼ 0 (or equivalently inω ∼ 0) disappears. The
generally better choice of theMS scheme for to perform resummation has been considered and
solved only quite recently. Firstly the NLL accuracy has been obtained in Refs.[38, 39] and finally
the NNLL accuracy has been reached in Ref.[9]. Here thanks to the approach used by A. Vogt
in Ref.[38], the singularities of the splitting functions are iteratively extractedaccording to the all
order factorization into the transition functionZ(ε) of theε = 0 poles in dimensional regularization
(d = 4− 2ε). Indeed, according to the factorization theorem [40, 14], we can rewrite Eq.2.3 in
Mellin space as

F = CD = C0(ε)Z−1(ε)Z(ε)D0, (2.8)

whereC0 andD0 are the “bare” coefficient function and fragmentation function.Z(ε) is the tran-
sition function containing only poles inε = 0 that are factored out fromC0. Hence, substituting
Eq.(2.8) into Eq.(2.4) we get that the splitting functions can be directly related tothe transition
function in the following way:

P = Q2 ∂Z
∂Q2Z−1 = β (αs)

∂Z
∂αs

Z−1. (2.9)

Now it is shown in Ref.[38] how one can solve this equation inZ obtaining at all orders the three
highest order poles inε knowing the NNLO corrections toP andβ . Additionally knowing the
higher order corrections toC which is pole free one obtains from the NNLO computations the all
order structure of the three first highest singularities inε:

C0(ε) = C(ε)Z(ε). (2.10)

The key point of Ref.[38] is that they realized that for example for the case of the gluon the small
ω behavior of the bare coefficient function is

C0(ε) =
1
ω ∑

n

αn
s

ε2n−1

n−1

∑
l=0

1
1−2(n− l)ε/ω

(Aln + εBln + ε2Cln + . . .). (2.11)

Finally comparing Eq.(2.11) with Eq.(2.10) one obtaines sytems of equations for the coefficients
A,B andC, which produce sequences up to arbitrary orders inαs of the three highest powers in
1/ω or equivalently (back tox-space) in lnx. Then the highly non trivial part of this approach is the
solution of these sequences that are obtained for the large logarithms and this has been successfully
obtained in Refs.[38, 9].

3. Plus-minus component evolution for the gluon-singlet system

In Ref.[8] it has been shown that, by use of the results obtained in Ref.[9], the scale dependence
on Q2 of the gluon and quark multiplicities defined by Eq.(2.7) and governed by Eq.(2.6) can be
computed analytically in a closed form. The approach that we used is a generalization of the
techniques used in Ref.[41] used to solve the evolution equation of the parton densities in the
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“spacelike” case. Our result can be written in the following way

〈nh(Q
2)〉g = 〈nh(Q

2
0)〉gT̂+(Q2,Q2

0),

〈nh(Q
2)〉s = 〈nh(Q

2
0)〉g

T̂+(Q2,Q2
0)

r+(Q2)
+

[

〈nh(Q
2
0)〉s−

〈nh(Q2
0)〉g

r+(Q2
0)

]

T̂−(Q2,Q2
0), (3.1)

whereQ2
0 is an arbitrary reference scale (see below). The dependence onQ2 is always inside the

running coupling constantαs(Q2). Indeed substituting the QCD values for the color factors and
choosingnf = 5 in the formulae given in Ref.[8] we can write that at NNLL

T̂−(Q2,Q2
0) =

[

αs(Q2)

αs(Q2
0)

]d1

T̂+(Q2,Q2
0) = exp







d2





1
√

αs(Q2)
− 1
√

αs(Q2
0)



+d3

(

√

αs(Q2)−
√

αs(Q2
0)

)







×
[

αs(Q2)

αs(Q2
0)

]d4

, (3.2)

where

d1 = 0.38647, d2 = 2.65187, d3 = −3.87674, d4 = 0.97771. (3.3)

The functionr+(Q2) in Eq.(3.1) has been computed in [42, 4, 43] up to the third order (NNNLO)
in the

√
αs expansion and in QCD is given by:

r+(Q2) = 2.25−0.61567
√

αs(Q2)−2.19156αs(Q
2)+0.24348α3/2

s (Q2)+O(α2
s ), (3.4)

again withnf = 5. The first term in Eq.(3.4) corresponds to the lowest order expectationfor the
ratio between the gluon and the quark multiplicities given byCA/CF . According to Eq.(3.1), our
prediction for the multiplicity ratior is

r(Q2) =
r+(Q2)

1+ r+(Q2)

r+(Q2
0)

(

〈nh(Q2
0)〉sr+(Q2

0)

〈nh(Q2
0)〉g

−1
)

T̂−(Q2,Q2
0)

T̂+(Q2,Q2
0)

. (3.5)

From this expression we can see that our result is a generalization of the result in Eq.(3.4) due to
the inclusion of the contribution proportional tôT−(Q2,Q2

0) in the denominator of Eq.(3.5).
Now we show that our results in Eqs.(3.1,3.5) do not depend on the reference scaleQ2

0 and
doing this also the meaning of̂T±(Q2,Q2

0) will become clear. We define the so called “plus” and
“minus” component in terms of the singlet and the gluon components defined in Eq.(2.7) in the
following way:

〈nh(Q
2)〉+ ≡ 〈nh(Q

2)〉g,

〈nh(Q
2)〉− ≡ 〈nh(Q

2)〉s−
〈nh(Q2)〉g

r+(Q2)
. (3.6)

6
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With this definition we have that the system of Eqs.(3.1) is equivalent to the following one

〈nh(Q
2)〉± = 〈nh(Q

2
0)〉±T̂±(Q2,Q2

0). (3.7)

By noting that according to Eqs.(3.2),

T̂±(Q2,Q2
0)T̂±(Q2

0,Q
2
1) = T̂±(Q2,Q2

1), (3.8)

one can directly check that, after expressing〈nh(Q2
0)〉± in terms ofQ2

1 using Eqs.(3.7) and then
replacing them again into Eqs.(3.7), one arrives at the same expression but with Q2

0 replaced by
Q2

1. This shows the independence of the result on the reference scaleQ2
0 which is arbitrary and

that T̂±(Q2,Q2
0) just represent the renormalization group exponents in a basis where the splitting

function matrix of Eq.(2.6) can be considered diagonal. To look for a basiswhere the splitting
function matrix could be considered diagonal by a sufficient accuracy was the main motivation
under the computation in Ref.[8].

4. Global fit to the avarage multiplicity data: determination of αs

Our result Eqs.(3.1) depends on three quantities that should be fixed by the comparison with
the experiment. They are〈nh(Q2

0)〉g, 〈nh(Q2
0)〉s (representing the avarage multiplicity at the ref-

erence scaleQ2
0) and a reference value for the running coupling constant which is conventionally

chosen at the scale of the mass of theZ0 weak boson,αs(MZ). In Ref.[8], αs(MZ) has been fixed
as an input parameter to be equal to the world avarage value [44]. The result that we obtained was

〈nh(Q
2
0)〉g = 24.02±0.36, 〈nh(Q

2
0)〉g = 15.83±0.37, 90% C.L.,

αs(MZ) = 0.118, input parameter, (4.1)

where the arbitrary scale has been chosen to beQ0 = 50 GeV. We have checked that theχ2 remains
unchanged changing the value ofQ2

0 as expected from the considerations done above.

Due to the quite good agreement with the data obtained in Ref.[8], we tried to treat αs(MZ) as
an additional fit parameter. The result that we obtained for such a fit (always forQ0 = 50 GeV) is:

〈nh(Q
2
0)〉g = 24.18±0.32, 〈nh(Q

2
0)〉g = 15.86±0.37, 90% C.L.,

αs(MZ) = 0.124±0.005, 90% C.L., (4.2)

which is in agreement with Eq.(4.1) and with the experimental values for the gluon and quark mul-
tiplicities at 50 GeV. Theχ2 per degree of freedom is improved in this fit from 3.71 (corresponding
to Eqs.(4.1)) down to 2.84 (corresponding to Eqs.(4.2)). The predicted value forαs(MZ) is higher
than the world avarage value [44], however such a higher value is not new in hadronic final states
of electron-positron annihilation [45]. However how much it would make sense to compare our
result withαMS

s is still under investigation. For the determination of the result in Eqs.4.2 we have
used the same data selection we used in Ref.[8], which is also the one adoptedby the DELPHI
colaboration in Ref.[46]. In Fig.1 we plot the result of our new fir according to Eq.(4.2) together
with the uncertainties and the data, which are taken from the Tables in Ref.[47].
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Figure 1: Gluon and quark multiplicities fits according to Eq.(4.2) compared to the data.

5. Conclusions

In this talk we have sketched the history and the various techniques culminatingin the very
important new results from the theoretical side (see Refs.[12, 9] and referencies therein for the
most recent developments), which have already made possible new important improvement in the
descriprion of the data in hadronic final states processes in the “timelike” case (see Ref.[8]). Mo-
tivited by the well description of the data obtained in Ref.[8] for the avaragemultiplicities in jets
initiated by gluon and quarks, we have extended our previous analysis making the value of the
strong coupling constant at the reference scale of the mass of theZ0 boson a parameter for the
fit. In this way we have still obtained numbers in agreement with observations for the value of the
multiplicities at the reference scaleQ0 = 50 GeV and in addition we got a significant improvement
in theχ2 per degree of freedom and, as a byproduct, a prediction forαs(MZ).
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