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1. Introduction

When jets are produced at colliders, they can be initiated either by a glumpnaquark. Be-
cause of the fact that these two partons carry different color change spin, it is expected that the
corresponding jets show different properties: typically a gluon jet isdeaand contains a larger
amount of hadrons. Jets with different parent partons can also begiistived and investigated
looking for the jet charge distribution as discussed in detail in Ref.[1] with mapb applications
for the LHC. The interactions between quarks and gluons are desdylepgantum chromodynam-
ics (QCD) and to understand the difference between a quark and ajglisrone of the strongest
test of this theory.

The typical way to depict the production of a jet from a parton is the followamginitial quark
(or gluon) start radiating gluons, which in turn can radiate further glumrsplit into secondary
quark-antiquark pairs. In this way the virtuality of the parent partonesses in a so called parton
showering process. Finally when the virtuality falls below a certain cutofctszade stops and
the final state partons hadronize into color neutral hadrons, a prosesdly described by phe-
nomenological models. This happens because the production of hasleotypical process where
non-perturbative phenomena are involved. However, for particdaeiwables, this problem can
be avoided. In particular the “counting” of hadrons in a jet which is initiatea eertain scal€?
belongs to that class of observables and in this case one can assumeiteithigjuaccuracy the
hypothesis of Local Parton-Hadron Duality (LPHD) which simply statesphaibn distributions
are just renormalized in the hadronization process without changing tiedeq2]. This would in
principle allow perturbative QCD at fixed order to make predictions withoeitriibed to consider
phenomenological models of hadronization. Nevertheless these amspescdominated by soft
gluon emissions and it is a well known fact that in such kinematic regions gitthse space fixed
order perturbation theory fails and resummation is neededggpdref.[3]) and this is the main
topic discussed in this talk.

The gluon and quark multiplicitiegnn(Q?))q and (n(Q?))s represent the avarage number
of hadrons in a jet initiated by a gluon or a quark respectively at Spaleln the past analytic
predictions have been achieved solving the equations for the generatictgphals in the modified
leading logarithmic approximation (MLLA) in Ref.[4] up to the so called8I®r in the expansion
parameter/as i.e. ad/?. However for the ratio = (nh)g/ (Mn)s the theoretical prediction is about
10% higher than the data at the scale of Efevector boson and the difference with the data
becomes even larger at lower scales even if the convergence of thebpdive series behaves very
well. An alternative approach was given in Ref. [5] where equationthi derivative of the ratio
of the multiplicities are obtained in the MLLA within the framework of the colour dipmledel.
There a constant of integration which is supposed to encode non{penercontributions is fixed
by the data. A constant offset to the quark and gluon multiplicities has alsoilkeeduced in [6].

Very recently a new formalism has been proposed and developed ifR&E where the
problem of the apparent good convergence of the perturbativesgersmlved and where arad
hoc offset is needed once one includes the effects coming from the full miébgden quarks
and gluon evolutions. The result looks like a generalization of the restdirau in Ref.[4]. In
the new approach the non-perturbative physics to the gluon-quark mutigdics parametrized
simply in the initial conditions of the evolution equations. Due to the good agreewiinthe
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data obtained in Ref.[8], at the time of the contribution to this conference we dhaene a study
where we have extended our analysis adding as a fit parameter alsooting cbupling constant.
Thanks to the new outstanding results in small-x timelike resummation obtained intf$§ MS
scheme, we were able to compute exact next-to-next-to-leading-logaiithiiol() contributions
to the evolution of the multiplicity with with approximated NNNLO normalization factors ia th
\/Os expansion. Previously published results where available up to the NLlrawc but in a
massive gluon scheme which in general is unfortunately not suitable to cemdggammation with
fixed higher order corrections which are naturally given inth®&scheme. See Refs.[10, 11] for a
general discussion about the scheme choice and scheme dependéigeantext.

In the following after reviewing the history which lead to the latest important ivgments in
“timelike” QCD of Refs.[12, 9] and sketching our formalism, we presentragipated, the result
of a slightly different global fit than in [8] where also the strong couplingtstant has been added
among the free parameters confirming the good quality of the fit.

2. Exiting times for “timelike” QCD

The important and fundamental results obtained in Refs.[12, 9] refrdeeheginning of the
happy end of a quite long story: In the 1972 it was realized in Ref.[13]athtite lowest order the
“timelike” splitting functions (occuring in Semi-Inclusive electron positron Amlation (SIA)) are
the same as their “spacelike” counterparts (occuring in Deep Inelastie8eg (DIS)). This prop-
erty goes under the name of Gribov-Lipatov relation. Then in the 1980 ib&eais shown by Curci,
Furmanski and Petronzio [14] that the Gribov-Lipatov relation is violatedth#tt period several
groups obtained the NLO contributions to the ‘timelike* splitting functions [14,1% 17, 18, 19].
In 2004 the NNLO “spacelike” splitting functions were published by Mocérivaseren and Vogt
in Ref.[20, 21]. In this last case the calculation could be performed viediat scattering ampli-
tudes, a fact that has allowed a direct calculation in terms of Feynman liagihis is however
not the case for the “timelike” splitting functions and different technique lieeen investigated.
Two of them have been the most successfull. The first one is due to RaksMarchesini and
Salam [22] who developed a formalism trying to rescue (at least at theafdevel) the Gribov-
Lipatov relation at higher orders. The approach of Ref.[22] shadbtldig many theoretical aspects
revealing (using their words) “intrinsic beauty of the perturbative gigdon dynamics”[23]. The
second one is based on the fact that the “timelike” and the “spacelike” splittimgions can be
related by the analytic continuation of the scaling variabte 1/x with x representing the fraction
of the parton longitudinal momentum. In particular, even if beyond the LO tmsaiabe done
directly from the splitting functions, it can be done for the correspondimgsizal evolution ker-
nels and this has been shown in Refs. [24, 25]. Formally, the evolutionstiiature function
is governed by a physical kernkl which depends on the coefficient functiGrand the splitting
functionP according to:

oF dC
27 = = _ -1
Q PIez K®F <B(as)das+C®P) ®C }@F, (2.2)
wheref is the QCD beta function for the running of the strong couplig
das(Q?)
2 S
B(as) = Q an ) (22)
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and wherex means the usual integral convolution with respect tBg.(2.1) also tells us that
F=C®D, (2.3)

whereD is what we call fragmentation function (the analog of the parton densities ifsplaee-
like” case) and that D
2

Vo
According to Eq.(2.1) and the discussion above it, we see that in principhedtimelike” splitting
functions can be obtained from the “timelike” physical kernels (obtainethéynalytic continua-
tion x — 1/x), once the “timelike” coefficient functionS are known. The “timelike” coefficients
functions are known at NNLO [26, 27, 28, 29, 30, 31, 32], while thalgit continuation of the
physical kernels from the NNLO “spacelike” ones has been obtaine@is.[83, 34] and finally
in Ref.[12]. Here we mention only that the analytic continuatior- 1/x becomes subdle (see
Ref.[25]) for the logarithmic terms singular in— 1 for which

—P®D. (2.4)

IN(1—x) — In(1—x) — Inx—+irm, (2.5)

and that additional constaints (see Ref.[12] and referencies them@mn}fie momentum sum rules,
the supersymmetric limitQa = Cg = n;) and from the relations found in Ref.[22] are needed to
close the problem in a satisfactory way.

Nevertheless the NNLO “timelike” splitting functions for the quark-singleteysobtained
in Ref.[12] are not the end of the story. Indeed they present singutaittithe thresholdx —
1) and in the large energy limix(— 0). Both kind of singularities are due to the radiation of
soft gluons and they make perturbation theory to fail. As already mentighedifficulty with
these singularities are overcome by resummation. For very recent denahdg in the large-x
resummation see.g. Refs.[35, 36]. Here we are mainly interested in the small-x resummation
because it is directly related to the computation of hadronic multiplicities as alreatiyed a long
time ago [3]. With respect to the multiplicity studies, the basic equation is the orezrgoyg the
evolution of fragmentation functiod for the gluon-singlet system Eq.(2.4), which in Mellin space
sees the convolutional produgtturn into an ordinary matrix product:

in Ds(w, Q%) _ Pya(@, Os) Pyqg(w, as) Ds(w, Q%) (2.6)
0Q? \ Dg(w,Q?) Pyg(®,as) Pyg(w, as) | \ Dg(w,Q?) | '

Herew = N — 1 with N the standard Mellin moments with respecitand whereR; are splitting
functions as introduced in Eq.(2.1). The standard definition for the nadrdtiplicity in terms of
the fragmentation function is given by (seq. Ref.[37]) the integral ovex of the fragmentation
function which is just the first Mellin momeniy= 0):

1

m(@)a= | [ doeDa )| ~Dilw=0.P) @)
o w=0

wherea = s for a quark jet anda = g for a gluon jet. It is clear from the definition in Eq.(2.7)

that eventual non-integrable singularitiexir 0 in the inegrand could not occur for the definition

to make sense. We remind that the singularitieg #a 0 are translated into singularities i =
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0. We have already mentioned that resummation which includes the singulantiesfrorders
according to a certain logarithmic accuracy is the standard way to solve thidepr. Indeed
after resummation, the singular behaviorxn- 0 (or equivalently inw ~ 0) disappears. The
generally better choice of thelS scheme for to perform resummation has been considered and
solved only quite recently. Firstly the NLL accuracy has been obtainedfs[R8, 39] and finally
the NNLL accuracy has been reached in Ref.[9]. Here thanks to theagpused by A. Vogt
in Ref.[38], the singularities of the splitting functions are iteratively extraeteabrding to the all
order factorization into the transition functidte) of thee = 0 poles in dimensional regularization
(d =4—2¢). Indeed, according to the factorization theorem [40, 14], we camitee\&q.2.3 in
Mellin space as

F=CD=C%¢)z"1(e)z(e)DO, (2.8)

whereC? andD? are the “bare” coefficient function and fragmentation functi@ne) is the tran-
sition function containing only poles ia= 0 that are factored out froi8°. Hence, substituting
Eq.(2.8) into Eq.(2.4) we get that the splitting functions can be directly relatdidetdransition
function in the following way:
0z 0Z

P=Q°-—Z'=p(as)=—2 % 2.9
Now it is shown in Ref.[38] how one can solve this equatioZ iabtaining at all orders the three
highest order poles ig knowing the NNLO corrections t® and 3. Additionally knowing the
higher order corrections t6 which is pole free one obtains from the NNLO computations the all
order structure of the three first highest singularities:in

Cog) =C(g)Z(¢). (2.10)

The key point of Ref.[38] is that they realized that for example for the cdishe gluon the small
w behavior of the bare coefficient function is

1 al "1 1

Co(e) = w Z g2n-1 I; 1-2(n—l)e/w

(Ain+€Bin+€°Cin +....). (2.11)

Finally comparing Eq.(2.11) with Eq.(2.10) one obtaines sytems of equatiotisf@oefficients

A B andC, which produce sequences up to arbitrary orderadmf the three highest powers in

1/w or equivalently (back ta-space) in Ix. Then the highly non trivial part of this approach is the
solution of these sequences that are obtained for the large logarithmdshdsteen successfully

obtained in Refs.[38, 9].

3. Plus-minus component evolution for the gluon-singlet stem

In Ref.[8] it has been shown that, by use of the results obtained in Rehf$cale dependence
on Q? of the gluon and quark multiplicities defined by Eq.(2.7) and governed by E).¢an be
computed analytically in a closed form. The approach that we used is aatjgaton of the
techniques used in Ref.[41] used to solve the evolution equation of thenpdettsities in the
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“spacelike” case. Our result can be written in the following way

(M(@))g = (M(QF))g T (Q%,QF).

Q@R [ e MPBe]: 22 @

—— =+
r(Q%) r(Q5)

wherng is an arbitrary reference scale (see below). The dependen@8 nalways inside the

running coupling constants(Q?). Indeed substituting the QCD values for the color factors and

choosingns = 5 in the formulae given in Ref.[8] we can write that at NNLL

(M(Q))s = (M(QF))g

2\ 701
+ (02 02) — as(Q )]
(QvQO) as(Q%)
~ 1 1
T.(Q% Q%) = exp{ d — +d< as(Q?) — orst)
(R {Z(WS(QZ) \/O’S(Q%)> 5 (/0s(Q2) —/as(@)
(XS(QZ)}(j4 3.2
(@) 52
where
dy —0.38647 dp— 265187 dz— —3.87674 dy—097771 (3.3)

The functionr  (Q?) in Eq.(3.1) has been computed in [42, 4, 43] up to the third order (NNNLO)
in the ,/as expansion and in QCD is given by:

r(Q%) =2.25-0.61567,/ as(Q?) — 2.19156a5(Q?) + 0.24348033/2(Q2) +0(a2), (3.4)

again withns = 5. The first term in Eq.(3.4) corresponds to the lowest order expectttidhe
ratio between the gluon and the quark multiplicities giverdayCr. According to Eq.(3.1), our
prediction for the multiplicity ratia is

r(QZ) — rJr(Qz) _ ) (35)
1+ re(Q <<”h(Q%)>sf+(Qg) B 1) T_(Q%Q))
r+(Q%) <nh(Qc2))>g T+(Q2,QS)

From this expression we can see that our result is a generalization afghk in Eq.(3.4) due to
the inclusion of the contribution proportional fo(Qz,Qg) in the denominator of Eq.(3.5).

Now we show that our results in Egs.(3.1,3.5) do not depend on the meteszaleQ? and
doing this also the meaning @(QZ,Q%) will become clear. We define the so called “plus” and
“minus” component in terms of the singlet and the gluon components defined.{8. ¥ in the
following way:

(M(Q))+ = (M(Q?))g,
(M(Q%))g

<nh(Q2)>f = <nh(Q2)>s—W- (3.6)
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With this definition we have that the system of Eqgs.(3.1) is equivalent to theviolipone

(M(Q%))+ = (M(Q))+ T+ (Q?, Q§). (3.7)

By noting that according to Eqs.(3.2),
To(Q? Q) T(Q5,Q)) = T (%, Q)), (38)

one can directly check that, after expressing(Q3))- in terms ofQ? using Egs.(3.7) and then
replacing them again into Egs.(3.7), one arrives at the same expressiorith Q3 replaced by
QZ. This shows the independence of the result on the reference @galéich is arbitrary and
that'fi(Qz,Q%) just represent the renormalization group exponents in a basis wherplitiag
function matrix of Eqg.(2.6) can be considered diagonal. To look for a halsexe the splitting
function matrix could be considered diagonal by a sufficient accuray twe main motivation
under the computation in Ref.[8].

4. Global fit to the avarage multiplicity data: determination of ag

Our result Egs.(3.1) depends on three quantities that should be fixea loptiparison with
the experiment. They ar@,(Q3))q, (Nn(Q3))s (representing the avarage multiplicity at the ref-
erence scalégg) and a reference value for the running coupling constant which isectimnally
chosen at the scale of the mass of #laveak bosongs(Mz). In Ref.[8], as(Mz) has been fixed
as an input parameter to be equal to the world avarage value [44]. Stk tleat we obtained was

(nn(Q))g = 24.0240.36, (nn(Q}))g=1583+0.37, 90% CL.,
as(Mz) = 0.118 input parameter 4.2)

where the arbitrary scale has been chosen ©Qde 50 GeV. We have checked that théremains
unchanged changing the value@§ as expected from the considerations done above.

Due to the quite good agreement with the data obtained in Ref.[8], we tried ta®4,) as
an additional fit parameter. The result that we obtained for such aviiaal forQy = 50 GeV) is:

(n(Q))g = 24.1840.32, (nn(Q}))g=1586+0.37, 90% CL.,
as(Mz) = 0.124+0.005 90% CL., (4.2)

which is in agreement with Eq.(4.1) and with the experimental values for the gind quark mul-
tiplicities at 50 GeV. The? per degree of freedom is improved in this fit fron73 (corresponding

to Egs.(4.1)) down to .84 (corresponding to Eqgs.(4.2)). The predicted valuexfdMz) is higher

than the world avarage value [44], however such a higher value isavoimhadronic final states

of electron-positron annihilation [45]. However how much it would makesseim compare our
result with o@"is is still under investigation. For the determination of the result in Egs.4.2 we have
used the same data selection we used in Ref.[8], which is also the one atgpgtezl DELPHI
colaboration in Ref.[46]. In Fig.1 we plot the result of our new fir acaogdo Eq.(4.2) together
with the uncertainties and the data, which are taken from the Tables in Ref.[47
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Figure 1: Gluon and quark multiplicities fits according to Eq.(4.2)rquared to the data.

5. Conclusions

In this talk we have sketched the history and the various techniques culmimating very
important new results from the theoretical side (see Refs.[12, 9] aederefies therein for the
most recent developments), which have already made possible new impanpaovement in the
descriprion of the data in hadronic final states processes in the “timelilse’ (s@e Ref.[8]). Mo-
tivited by the well description of the data obtained in Ref.[8] for the avaragkiplicities in jets
initiated by gluon and quarks, we have extended our previous analysiggnde value of the
strong coupling constant at the reference scale of the mass @°theson a parameter for the
fit. In this way we have still obtained numbers in agreement with observatioribd value of the
multiplicities at the reference scal@ = 50 GeV and in addition we got a significant improvement
in the x2 per degree of freedom and, as a byproduct, a predictiondiviz).
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