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1. Introduction

The experimental data from HERA on the deep-inelastic sgag (DIS) structure function
(SF)F2 [1]-[3], its derivativedInF,/dIn(1/x) [4]-[6] and the heavy quark parss® and F° [7]-
[11] enable us to enter into a very interesting kinematieaige for testing the theoretical ideas
on the behavior of quarks and gluons carrying a very low fosmcbf momentum of the proton,
the so-called smabl-region. In this limit one expects that the conventionaltireent based on the
Dokshitzer-Gribov—-Lipatov—Altarelli—Parisi (DGLAP) egtions [12] does not account for contri-
butions to the cross section which are leadingriin(1/x) and, moreover, the parton distribution
function (PDFs), in particular the gluon ones, are becontange and need to develop a high den-
sity formulation of QCD.

However, the reasonable agreement between HERA data anethéo-leading-order (NLO)
approximation of perturbative QCD has been observed)or 2 Ge\? (see reviews in [13] and
references therein) and, thus, perturbative QCD couldriesthe evolution of, and its deriva-
tives up to very lonQ? values, traditionally explained by soft processes.

The standard program to study tkéehavior of quarks and gluons is carried out by compar-
ison of data with the numerical solution of the DGLAP equatip2]* by fitting the parameters of
the PDFx-profile at some initian and the QCD energy scafe[?]-[18]. However, for analyzing
exclusively the lowx region, there is the alternative of doing a simpler analpsgisising some of
the existing analytical solutions of DGLAP evolution in tlesv-x limit [19]-[22]. This was done
so in [19] where it was pointed out that the HERA smatlata can be interpreted in terms of the
so-called doubled asymptotic scaling (DAS) phenomenatedlto the asymptotic behavior of the
DGLAP evolution discovered many years ago [23].

The study of [19] was extended in [20, 21, 22] to include thidiparts of anomalous dimen-
sions of Wilson operator$. This has led to predictions [21, 22] of the smalksymptotic PDF
form in the framework of the DGLAP dynamics starting at so@ewith the flat function

fa(Qf) = Aa (hereaftera=q,g), (1.1)

where f, are the parton distributions multiplied lyand A, are unknown parameters to be deter-
mined from the data.

We refer to the approach of [20, 21, 22] gsneralizedDAS approximation. In that approach
the flat initial conditions in Eq. (1.1) determine the basiterof the singular parts of anomalous
dimensions, as in the standard DAS case, while the coriibdtom finite parts of anomalous
dimensions and from Wilson coefficients can be consideredoagctions which are, however,
important for better agreement with experimental datahigresent paper, similary to [19]-[22],
we neglect the contribution from the non-singlet quark congnt.

The use of the flat initial condition given in Eq. (1.1) is sopged by the actual experimental
situation: lowQ? data [24, 1, 25, 4] are well described Q¢ < 0.4 Ge\? by Regge theory with
Pomeron interceptrp(0) = Ap+ 1 = 1.08, closed to the standardg(0) = 1) one. The small rise

1At smallx there is another approach based on the Balitsky—Fadin-eiutapatov (BFKL) equation [14], whose
application will be dicussed below in Appendix A.
2|n the standard DAS approximation [23] only the singulatpaf the anomalous dimensions were used.
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of HERA data [1, 4, 25, 26] at lov@? can be explained, for example, by contributions of higher
twist operators (see [22]).

The purpose of this paper is to demostrate a good agreememédae the predictions from
the generalized DAS approach and the HERA experimental[la®] and [7]-[11] for SFF, and
F;¢ and also to compare the predictions for the sldpeF,/d In(1/x) with the H1 and ZEUS data
[5, 4, 6] (see Figs. 1-8). Looking at the H1 data points [1]vamdn Figs. 5, 6 and 7 one can
conclude thai (Q?) is independent ok within the experimental uncertainties for fix&f in the
rangex < 0.01. Indeed, the data are well described by the power behavior

Fa(x, Q) = Cx @), (1.2)

whereA (Q?) = aIn(Q?/A?) with C ~ 0.18,4 ~ 0.048 andA\ = 292 MeV [5]. The linear rise of the
exponent (Q?) with InQ? is also explicitly shown in Figs. 5, 6 and 7 by the dashed line.

The rise ofA (Q?) linearly with InQ? can be tracted in strong nonperturbative way (see [27] and
references therein), i.eA,(Q?) ~ 1/as(Q?). The previous analysis [28], however, demonstrated
that the rise can be explained naturally in the frameworkestyrbative QCD.

The ZEUS and H1 Collaborations have also presented [4, 6]aneliminary data forA (Q?)
at quite low values ofQ?. As it is possible to see in Fig. 8 of [4], the ZEUS value #o(Q?)
is consistent with a constant 0.1 at Q%> < 0.6 Ge\?, as it is expected under the assumption of
single soft Pomeron exchange within the framework of Redgenpmenology. These points lie
slightly below the corresponding ZEUS data but all the rissate in agreement within modern
experimental errors.

It is important to extend the analysis of [21, 22, 28] to |Q@& range with the help of well-
known infrared modifications of the strong coupling constdndeed, in Ref. [29], we have used
the “frozen” and analytic versions (see, [35] and [36], extjvely).

This contribution is organized as follows. Sections 2 andi&ain basic formulae, which are
needed for the present study and were previously obtaing2ilin22, 28, 29, 30]. In Sections 4
and 5 we compare our calculations with H1 and ZEUS experiatelata and present the obtained
results. Some discussions can be found in the conclusiomsie $reliminary results accounting
for BFKL corrections in our analysis can be found in Appendixit is hoped that the inclusion
of these corrections will improve the agreement with theegixpantal data foF, and its slope at
Q> ~1+2GeV.

2. Generalized DAS approach

The flat initial condition (1.1) corresponds to the case wparion density tend to some con-
stant value ak — 0 and at some initial valuégg. The main ingredients of the results [21, 22],
are:

e Both, the gluon and quark singlet densities are presentéztnms of two components §”
and "—”) which are obtained from the analyt{@g’>-dependent expressions of the correspond-
ing (" +” and " —") PDF moments?3

3Such an approach has been developed [31] recently alsodfdrapmentation function, whose first moments (ie
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e The twist-two part of the - ” component is constant at smalat any values of)?, whereas
the one of the 2-” component grows a@? > Q3 as

e a:z\/[|0|;|s_ <d‘+++|ci+|%> p} m(%), =i @D

whereo andp are the generalized Ball-Forte variables,

(2.2)

_ o (3s(QF) o L. 12 ar
s_|n<as(Q2)>, P = as(Qg) —as(Q%), d+__m d**‘ﬁ'

Hereafter we use the notatieg= as/(4m). The first two coefficients of the QCP-function in the
MS-scheme ar@y = 11— (2/3)f andB; = 102— (114/9) f with f is being the number of active
quark flavors.

Note here that the perturbative coupling consta®?) is different at the leading-order (LO)
and NLO approximations. Indeed, from the renormalizatiooug equation we can obtain the
following equations for the coupling constant

1 Q2
o) ~ " (@ > 2.3)
at the LO approximation and
1 B M} _ <32>
as(Q?) * Bo In [Bo—l—ﬁlas(Qz) = Boln A2 (2.4)

at the NLO approximation. Usually at the NLO lewdlS-scheme is used, so we apply= Ays
below.

2.1 Parton distributions and the structure function F,
The results for parton densities aRglare following:
e The structure functiotf has the form:
F2ro(x Q%) = e fy.Lo(x,Q%),
faro(x Q) = f 0% Q)+ fro(x Q) (2.5)

at the LO approximation, where
f

ezqef)/f (2.6)
is the average charge square, and
Rl QP) = o (x @)+ 5T @) o0 ).
fa(x. Q%) = fif (x Q)+ fx (%, Q7) (2.7)

at the NLO approximation.

mean multiplicities of quarks and gluons) were analyzed.[3Re results are in good agreement with the experimental
data (see contribution [33] by Paolo Bolzoni to this Prodegs).



Small x behavior of parton distributions Anatoly Kotikov

e The smallx asymptotic results for the LO parton densitikﬁo are

o @) = <Ag+gAq) (oi0) 7% + O(pro), @8
fao(x Q%) = (Ag+ gAq> profi(0io) e 9% + O(p), (2.9)
folo(x Q%) = —gAqe’d*SLO + O(x), (2.10)
fao(X Q%) = Age %0 + O(x), (2.11)
where
d, = 1+20f/(27080), d_ = 16f/(278) (2.12)

are the regular parts of the anomalous dimensehr(®) andd_(n), respectively, in the limit
n— 14. Herenis the variable in Mellin space. The functiofs(v = 0,1) are related to the
modified Bessel functioh, and to the Bessel functiak by:

~ ) (o), if s>0
v(o) = { i~vJ,(io), i2=—1, ifs<0’ 2.13)

At the LO, the variable®) o andp, o are given by Eq. (2.1) whep=0, i.e.

B ° 1 0o

and the variable o is given by Eq. (2.2) wittai®(Q?) as in Eq. (2.3).

e The smallx asymptotic results for the NLO parton densitigs are

f5(x, Q%) = AF(Q% Q})io(0) e 4+5P+P 1 O(p), (2.15)
Q) = A¢ [(1-a (Q2)> pii(0) +208s(@)lo(0)| &4 H=DP + O(p) (2.16)
fy (%, Q%) = Ay (Q%Q4)e - sP-P 1 O(x), (2.17)
fy (X, Q) = Aje s PP 4 O(x), (2.18)
where

D.=dy,— %di (2.19)

and similar forD, andD_.,

A = (1- e ) gt § (14 (34 ;)@ - G (@) Aq
Ag (Q*,Q0) = Ag— A (Q5, Q). (2.20)

“4We denote the singular and regular parts of a given quakityin the limitn — 1 byk/(n— 1) andk, respectively.
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The coupling constards(Q?) is introduced in Eq. (2.4). The variableh, cf++ d, andd_
are diven in Egs. (2.2) and (2.12), respectively. The véeggth, ., d__ and df‘r_ have the

form
— 8 1643 2f |68 13f
dyy = E (36(3‘1'33(2—?4'3 [3—4ZZ—EJ> )
16 13 23 13f q 13f
d = gp (203 D tfae- 24 30 ) @t —2-120- e

with 3 and{, are Eller functions?

2.2 Effective dopes

Contrary to the approach in [19]-[22] various groups haverbable to fit the available data
using a hard input at small x *, A > 0 with differentA values at low and higp? (see [37]-[43]).
Such results are well-known at I0@? values [38]. At largeQ? values, for the modern HERA data
itis also not very surprising, because they cannot distsigbhetween the behavior based on a steep
input parton parameterization, at quite laiQé and the steep form acquired after the dynamical
evolution from a flat initial condition at quite lo@? values.

As it has been mentioned above and shown in [21, 22], the bmhafvparton densities ané,
given in the Bessel-like form by generalized DAS approaah rcémic a power law shape over a
limited region ofx andQ?

fa(%, Q%) ~ x A"%@) and Fy(x, Q?) ~ x M2 %),

The effective slopeag" (x, Q%) andAg" (x,Q?) have the form:

e f+(X, Qz) |~ (O')

)\gﬁ(X,Qz) %(X,Qz) p I"’O(O_)a

2etx @) — 40D [ Ta(0)(1 - 200(7)) +208(Q)Pa(0) /o
v fa( @) " T1(0)(1— 2085(Q?)) + 20as(Q?)io(0) /p’

B )\C?ff(x’ Q?) fJ(X7Q2)+(2f)/385(Q2))\geff(Xa Q) fg (x Q%) (2.22)
= (2f) |

fa(x, Q%) + (2f)/3as(Q?) fg(x, Q?) ’

where the exact form of parton densities can be found in [2]., 2

The results (2.22) (and also (2.23)—(2.25) below) are gaethe NLO approximation. To
obtain the LO one, it is necessary to cancel the teras(Q?) and to use Egs. (2.8)—(2.11) for
parton densitied,(x, Q?).

The effective sloped™ and AZ" depend on the magnitudés, of the initial PDFs and also
on the chosen input values Qﬁ and/\. To compare with the experimental data it is necessary the
exact expressions (2.22), but for qualitative analysis litatter to use an approximation.

SNote that evaluation of the results (2.8)-(2.21) need thewmedge of the analytic continuation of the anomalous
dimansions and coefficient functions. The analytic coratimn can be found in Refs. [34]. It was used also for the fits
[17, 18].
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2.3 Asymptotic form of the effective slopes

At quite large values 0€)?, where the “-” component is negligible, the dependence on the
initial PD disappears, having in this case for the asymptagihavior the following expressidhs

1(0

1

~—

A = P F P G (229
st ) — 2001 20(QP)) + 20l P0)
|1(0)(1 20a5(Q?)) + 20a5(Q?)lo(0) /p
N 3 10as(Q?)
“P T Anwx) T en(x)’ (2.24)
eff,as . I~2(0) rO(a)r (0)

) = oy 2@ (1T

M P A Tonx AT Q) + toman @

where the symbok marks the approximation obtained in the expansion of thalteud modified
Bessel functions in (2.13). These approximations are atewnly at very larger values (i.e. at
very largeQ? and/or very smalk).

As one can see from Eqgs. (2.23) and (2.24), the gluon efEesiivpe)\geff is larger than the
quark slope\ &, which is in excellent agreement with MRS [44] and GRV [453lyses.

We would like to note that at the NLO approximation the sld@g’as(x, Q?) lies between
quark and gluon ones but closely to quark slag&®5(x,Q?). Indeed,

AT Q) = AR Q) ~

+ 6as(Q2)> (2.26)

1
(p 4In(1/%) 20 (1/%)’

eff,as 2\ _ yeffas 2\ o (Qz)
)\Fz (XvQ ) )‘q (X7Q ) ~ pln(l/X) (227)
Both slopesi£ff(x, Q%) decrease with increasing(see Fig. 5). Ax-dependence of the slope
should not appear for PDFs within a Regge type asymptetit)(and precise measurement of the

slope A£(x,Q%) may lead to the possibility to verify the type of smalasymptotics of parton
distributions.

3. F§¢and FP structure functions

Recently the H1 [7, 8] and ZEUS [9, 10] Collaborations at HE;EIAsented new dataMore-
over, the preliminary combine H1 and ZEUS dataF§f(x, Q%) andF P(x,Q?) has been demon-
strated recently (see [11]).

The asymptotic formulae given in Egs. (2.23)—(2.25) workeywell at anyQ? > Q3 values, because & = Q3
the values oﬂaeff and)\,?sz are equal zero. The use of approximations in Eqgs. (2.235)2nstead of the exact results
given in Eq. (2.22) underestimates (overestimates) oigisy the gluon (quark) slope &2 > Q%.

"The papers [7]-[10] contain also the references on the pusvilata on deep-inelastic (DIS) structure functions
(SFs)FSC andF£P at smallx values.
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In the framework of DGLAP dynamics [12], there are two basietinods to study heavy-
flavour physics. One of them [46] is based on the massless R@&tien of parton and the other
one on the photon-gluon fusion (PGF) process [47]. Thereab® some interpolating schemes
(see Ref. [48] and references cited therein).

Here we present the results of Ref. [49] were we applied catlpa-x approximation formu-
lae for the SFEJ (x,Q?), with hereafteri = c,b, observed [30] in the framework of PGF process
at the first two orders of perturbation theory to these new HWERperimental data [7]-[11]. We
show a good agreement between experimental data and theaappivhich found without addi-
tional free parameters. All PDF parameters have been fitidibe[22, 29] fromF,(x,Q?) HERA
experimental data.

In the framework of the generalized DAS approach, the Bféx, Q) and Ff°(x, Q%) have
the following form

F3 (x, Q%) ~ Mjg(L, Q% ?) fg(x, p%), (i = c,b) 31

whereM‘Z’g(l, Q?, u?) is the first Mellin moment of the so-called gluon coeﬁicianﬁcttionciz.g(x, Q?, u?).
Through NLOM, 4(1, Q?, u?) exhibits the structure

2
(LG 12) = Pax() {Mzglc.>+as<u> MY (1,6) + M2 (1,6)In m}m ). (32)
where
ci:g, u? = Q% +4n? .. (3.3)
3.1 LOresults

The LO coefficient function of PGF can be obtained from the Qf&Be [59] by adjusting
coupling constants and colour factors, and they read [6], 61

Coa(x,C) = —2x{[1—4x(2—c)(1—X)]B — [1—2x(1 - 2¢) + (1~ 6c—4A)|L(B)}, (3.4)
where
B =110 L= g (3.5)

Performing the Mellin transformation

Mag(n,c) = /0 ’ d—):‘czg(x,c) (3.6)
we find atn = 1 (see [30]f
M(1,0) = §[1+2(1—C)J(c)] (3.7)
with
J(c) = —Vblnt, t:%\\;_g, b:ﬁc. (3.8)

8Note that similar formulas work well for (see [62]) for higmergy neutrino-nucleo scattering where the effective
value of the Bjorken variablris very small.
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3.2 NLO results

The NLO coefficient functions of PGF are rather lengthy antpublished in print; they are
only available as computer codes [63]. For the purpose eflétier, it is sufficient to work in the
high-energy regime, defined by 1, where they assume the compact form [64]

Céfg),(x, )= BR(zfé,(L c), (3.9)
with

(1,0), (3.10)

R(1,¢) = gcA[5+(13— 100)J(0)+6(1-c)I(c)],  RA(1,0) = —A4CaMy,

whereCa = N for the colour gauge group SU(NJ(c) is defined by Eq. (3.8), and

I(c)=—vb|[Z(2)+ % In?t —In(bc)Int + 2Lix(—t) |, (3.11)
wheret is given in (3.8) and Li(x) = —fol(dy/y) In(1— xy) is the dilogarithmic function.

As already mentioned above (see the end of Section 2), thénMelnsforms ofClﬁfg)(x, C)
exhibit singularities in the limidL. — 0, which lead to modifications in Eq. (3.1). As was shown
in Refs. [40, 21, 22], the terms involving/&; correspond to singularities of the Mellin moments
szg(n) atn — 1 and depend on the exact form of the subasymptoticidehaviour encoded in
f}(x,uZ). The modification is simple:

1 -
CHNE T %/ Wi 12, (3.12)

wherex'= x/b. In the generalized DAS regime, theand— components of the gluon PDF exhibit
the lowx behaviour (2.15)-(2.21). We thus have [21, 22]

1 1 I(o®) 1 1
~—%—,\7A, ~—%|n7, 313
5 “bp®ioo®) 5 "% (349
whereo andp are given in (2.1).

Because the ratiyy (x, Q%)/ " (x,Q?) is rather small at th@? values considered, Eq. (3.1) is
modified to become
F3 (X, Q%) ~ Mg (L, 42, i) fg (X, 112), (3.14)

whereM, 4(1, p?) is obtained fromM, g(n, u?) by taking the limitn — 1 and replacing A(n—1) —
1/4,. Consequently, one needs to substitute

MII(LE) =My (Lo) (j=12) (3.15)

in the NLO part of Eq. (3.2). Using the identity

1 ldy_/x 1 (o)
A (9) lo(0(y) = &= In(be) — == (3.16)
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Figure 1. F»(x,Q?) as a function ok for differentQ? bins. The experimental points are from H1 [1] (open
points) and ZEUS [2] (solid points) & > 1.5 Ge\2. The solid curve represents the NLO fit. The dashed
curve (hardly distinguishable from the solid one) repreésdme LO fit.

we find the Mellin transform of Eq. (3.9) to Se

~ (i 1 J(c - .
Lo~ | 5 ~inbg - 72 | Ry (1-12), (317
with R(zfé(l, a) (j=1,2) aregivenin (3.10). The rise of the NLO termsxas- O is in agreement
with earlier investigations [65].

4. Comparison with experimental data for SF F, and the slope Ar,

9Note, thatd, getermines the behavior of the slope of gluon density (s@2)Rand also mostly the slope of &
The form (3.13) ofd.. is in full agreement with the results (2.22) for the asymigtédrm of the effective slope of gluon
density.

10
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Figure 2: F»(x,Q?) as a function ok for differentQ? bins. The experimental points are same as on Fig. 1.
The solid curve represents the NLO fit. The dash-dotted crepeesents the BFKL-motivated estimation
for higher-twist corrections t&»(x, Q%) (see [22]). The dashed curve is obtained from the fits at th© NL
when the renormalon contributions of higher-twist termgehlaeen incorporated.

Using the results of previous section we have analyzed HERt®@ fbr F, and the slope
dInF;/d1In(1/x) at smallx from the H1 and ZEUS Collaborations [1]-[6].

In order to keep the analysis as simple as possible, wé fix4 andaS(Mg) =0.1166 (i.e.,
A@ =284 MeV) in agreement with the more recent ZEUS results [2].

As it is possible to see in Fig. 1 (see also [21, 22]), the tivist approximation is reasonable
atQ? > 2 Ge\A. At smallerQ?, some modification of the approximation should be consitlere
In Ref. [22] we have added the higher twist corrections. Eoilormalon model of higher twists,
we have found a good agreement with experimental data attesgelower Q? values:Q? > 0.5
GeV? (see Figs. 2 and 3), but we have added 4 additional parameteysiitudes of twist-4 and
twist-6 corrections to quark and gluon densities.

Moreover, the results of fits in [22] have an important prayethey are very similar in LO and

11
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curve is from the fits at the NLO with the renormalon contribos of higher-twist terms incorporated. The
dash-dotted curve (hardly distinguishable from the dasire) represents the LO fit with the renormalon
contributions of higher-twist terms incorporated.

NLO approximations of perturbation theory. The similangyrelated to the fact that the smaill-
asymptotics of the NLO corrections are usually large anchtieg (see, for exampl&-corrections
[50, 51] to BFKL kernel [141%). Then, the LO form~ as(Q?) for some observable and the NLO
one ~ as(Q?)(1— Kas(Q?)) with a large value oK are similar, becausA > A o'* and, thus,
as(Q?) at LO is considerably smaller then(Q?) at NLO for HERAQ? values.

In other words, performing some resummation procedure(asdsrunberg’s effective-charge
method [52]), one can see that the results up to NLO apprdiomanay be represented as

101t seems that it is a property of any processes in which gluouisnot quarks play a basic role.
The equality ofas(M2) at LO and NLO approximations, wheid; is the Z-boson mass, relates and A o:
A& =284 MeV (as in [2]) corresponds . o = 112 MeV (see [22]).

12
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(solid points) are compared with the NLO fits f@¢ > 0.5 Ge\? implemented with the canonical (solid
lines), frozen (dot-dashed lines), and analytic (dashaek)i versions of the strong-coupling constant. For
comparison, also the results obtained in Ref. [22] throufiftb@sed on the renormalon model of higher-twist
terms are shown (dotted lines).

as(Q%), whereQ%; > Q2. Indeed, from different studies [53, 54, 55], it is well knothat at
smallx values the effective argument of the coupling constantghér thenQ?.

Here, to improve the agreement at sm@fl values without additional parameters, we mod-
ify the QCD coupling constant. We consider two modificatiomhich effectively increase the
argument of the coupling constant at sn@flvalues (in agreement with [53, 54, 55]).

In one case, which is more phenomenological, we introdusezing of the coupling constant
by changing its argumern®® — Q? + Mg, whereM, is the p-meson mass (see [35]). Thus, in the
formulae of the Section 2 we should do the following replaeatn

as(Q?) — ar (Q?) = as(Q®+ M) (4.1)

13
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Table 1: The result of the LO and NLO fits to H1 and ZEUS data for diffédew Q2 cuts. In the fitsf is
fixed to 4 flavors.

| [ Ay [ Ay [ Q§[GeV] [ x*/nop. |
Q% > 1.5GeV?

LO 0.7844+-.016 | 0.801E£.019| 0.3044.003 754/609
LO&an. 0.932:-.017 | 0.7074.020| 0.339+.003 632/609
LO&(fr. 1.022+.018 | 0.650+.020| 0.356+.003 547/609
NLO -0.200+.011 | 0.903+.021 | 0.495+.006 798/609
NLO&an. 0.310+.013 | 0.640+.022 | 0.702+.008 655/609
NLO&fr. 0.180+.012 | 0.780+.022 | 0.661+.007 669/609
QZZO.SGe\/2

LO 0.641+.010 | 0.937A.012| 0.295+.003| 1090/662
LO&an. 0.846+.010 | 0.771£.013| 0.328+.003 803/662
LO&fr. 1.1274.011 | 0.534+.015| 0.358+.003 679/662
NLO -0.192+.006| 1.084.012| 0.478+.006| 1229/662
NLO&an. 0.2814-.008 | 0.634+-.016| 0.680+.007 633/662
NLO&fr. 0.205+.007 | 0.650+.016 | 0.589+.006 670/662

The second possibility incorporates the Shirkov—Solovidea [36, 56, 57] about analyticity
of the coupling constant that leads to the additional itsgrosependence. Then, in the formulae
of the previous section the coupling constagQ?) should be replaced as follows:

A0(QP) = (@)~ ~ Mo 4.2)
" Bo Q> — N
at the LO approximation and
1 A?
2an(Q) = as(Q) ~ 5oz (4.3)

at the NLO approximation, where the symbol stands for terms which have negligible contribu-
tions atQ > 1 GeV [36]2.

Figure 4 and Table 1 show a strong improvement of the agreewignexperimental data for
F, (almost 2 times!). Similar results can be seen also in Figmd6 for the experimental data for
)\Fezﬁ(x, Q?) atx ~ 103, which represents an average of thealues of HERA experimental data.
The top dashed line represents the aforementioned lineaofi (Q?) with In(Q?).

So, Figures 5-7 demonstrate that the theoretical desmmigti the smallQ? ZEUS data for
)\Esz(x, Q?) by NLO QCD is significantly improved by implementing the “fen” and analytic
coupling constantsi, (Q?) and aan(Q?), respectively, which in turn lead to very close results (see
also [58, 18]).

12Note that in [56, 57] more accurate, but essentially more nsome approximations @n(Q?) have been
proposed. We limit ourselves by above simple form (4.2)3)4nd plan to add the other modifications in our future
investigations.
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Figure5: The values of effective slopk,?zff as a function of)? for x = 102, The experimental points are
from H1 [5, 6] (open points) and ZEUS [4] (solid points). Thalid curve represents the NLO fit. The
dash-dotted and lower dashed curves represent the NLO fhs'frdzen” and analytic coupling constants,
respectively. The top dashed line represents the fit from [5]

Indeed, the fits foF(x, Q?) in [22] yieldedQ3 ~ 0.5-0.8 Ge\~. So, initially we had\&"(x, QF) =
0, as suggested by Eqg. (1.1). The replacements of Egs. (4.2),and (4.3) modify the value of
A& (x,Q3). For the “frozen” and analytic coupling constamts(Q®) and aan(Q?), the value of
)\,?Zﬁ(x, Q3) is nonzero and the slopes are quite close to the experiméatalatQ? ~ 0.5 Ge\2.
Nevertheless, foQ2 < 0.5 Ge\?, there is still some disagreement with the data, which needs
additional investigation. Note that &% > 0.5 Ge\2 our results are even better the results of
phenomenological models [42, 66].

Figure 7 shows the-dependence of the slopézﬁ(x, Q?). One observes good agreement
between the experimental data and the generalized DAS aqiprior a broad range of smadl-
values. The absence of a variation witlof )\Esz(x, Q?) at smallQ? values is related to the small
values of the variable there.

At large Q? values, thex-dependence dfﬁz”(x, Q?) is rather strong. However, it is well known
that the boundaries and mean values of the experimgméaiges [5] increase proportionally with
Q?, which is related to the kinematical restrictions in the HE&perimentsx ~ 104 x Q? (see
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Figure 6: Q? dependence ok (x,Q?) for an average smakt-value ofx = 10-3. The experimental data
from H1 (open points) and ZEUS (solid points) are comparet tie NLO fits forQ? > 0.5 Ge\? imple-
mented with the canonical (solid line), frozen (dot-daslhieg)), and analytic (dashed line) versions of the
strong-coupling constant. The linear ris@(égf(x, Q?) with InQ? as described by Eq. (2) is indicated by the
straight dashed line. For comparison, also the resultsradaidn the phenomenological models by Capella
et al. [42] (dash-dash-dotted line) and by Donnachie andihoff [66] (dot-dot-dashed line) are shown.

[1, 2, 28] and, for example, Fig. 1 of [4]). We show only the eagth the “frozen” coupling
constant because at lar@g values all results are very similar.

From Fig. 7, one can see that HERA experimental data are tcbo&;gf(x, Q%) atx~ 1074+
102 for Q% = 4 Ge\? and atx ~ 102 for Q% = 100 Ge\. Indeed, the correlations betwerand
Q? in the formxer = ax 104 x Q% with a= 0.1 and 1 lead to a modification of ti@? evolution
which starts to resemble @7, rather than Inli®? as is standard [28].

5. Comparison with experimental data for SF F;°

We are now in a position to explore the phenomenological itapbns of our results for SF
F5¢. As for our input parameters, we choosg = 1.25 GeV in agreement with Particle Data
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Figure 7: The values of effective slop/leFezff as a function ofQ?. The experimental points are same as on
Fig. 4. The dashed line represents the fit from [5]. The salid/es represent the NLO fits with “frozen”
coupling constant at= 102 andx = 10~°.

Group [67]. While the LO result Eq. (3.7) is independent @& tmphysical mass scgle the NLO
formula (3.2) does depend on it, due to an incomplete congpiensof thep dependence ads(u)

by the terms proportional to {u?/Q?), the residualu dependence being formally beyond NLO.
In order to fix the theoretical uncertainty resulting fronisthwe putu? = Q? + 4m¢ (see (3.3)),
which is the standart scale in heavy quark production.

The PDF parameteusg, Aq andAg shown in (1.1), have been fixed in the fitsFefexperimen-
tal data (see the previous section). Their values dependmditions chosen in the fits: the order
of perturbation theory and the numbgpf active quarks.

Below b-quark threshold, the scheme with= 4 has been used [22, 29] in the fitsiefdata.
Note, that theF, structure function contains;® as a part. In the fits, the NLO gluon density and
the LO and NLO quark ones contributefg, as the part of té. Then, now in PGF scattering the
LO coefficient function (3.4) corresponds mm— O limit to the standart NLO Wilson coefficient
(together with the product of the LO anomalous dimengigrand InmZ/Q?). Itis a general situa-
tion, i.e. the coefficient funstion of PGF scattering at samtker of perturbation theory corresponds
to the standart DIS Wilson coefficient with the one step higitder. The reason is following: the
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NLO ones and with the factorization/renormalization sgae= Q2+ 4n¢ (solid lines). The black points and
red squares correspond to the the combine H1ZEUS prelimatetta [11] and H1 data [7, 8], respectively.

standart DIS analysis starts with handbag diagram of phqt@mk scattering and photon-gluon
interaction begins at one-loop level.

Thus, in ourF;¢ analysis in the LO approximation of PGF process we should fak, Q%)
extracted from fits oF, data atf =4 and NLO approximation. In practice, in [49] we have applied
our f =4 NLO twist-two fit [22] of H1 data foi, with Q? cut: Q% > 1.5 Ge\?, which produces
Q3 =0.523 Ge\?, Ay = 0.060 andA, = 0.844.

Correspondingly, the NLO approximation of PGF process adhd gluon density exracted
from fits of F, data at NNLO approximation, which is not yet knot#in generalized DAS regime.
However, we see from the modern global fits [69], that theediffice between NLO and NNLO
gluon densities is not so large. So, we can apply the NLO f@rhl( of f5(x,Q?) for our NLO
PGF analysis, too.

The results folF5© are prsented in Fig.8. We can see a good agreement betweeonropact

13The difficulty to extend the analysis [21, 22] to NNLO levetédated with an appearence of the peld/(n—1)?
in the three-loop corrections to the anomalous dimengigrisee [50, 68]). The pole- 1/(n— 1)? violates the Bessel-
like solution (2.11) of DGLAP equation for PDFs at lowwalues with the flat initial condition (1.1).
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formulas (3.1), (3.2), (3.7) and (3.17) an the modern expental data [7]-[11] forF£%(x, Q?)
structure function. To keep place on Fig.8, we show only tle[H 8] data and the combine
H1ZEUS preliminary [11] one.

The good agreement between generalized double-asymptating DAS approach used here
andF, andF;°¢ data demonstrates an equal importance of the both partaitidsn(gluon one and
sea quark one) at low. It is due to the fact thaf, relates mostly to the sea quark distribution,
while theF;° relates mostly to the gluon one. Dropping sea quarks in ardidas to the different
gluon densities extracted frof of from F5° (see, for example, [70]).

6. Conclusions

We have shown th€?-dependence of the structure functiofsand F7¢ and of the slope
AT = 0InF,/dIn(1/x) at smallx values in the framework of perturbative QCD. Our twist-two
results are in very good agreement with precise HERA da@’at 2 Ge\?, where perturbative
theory can be applicable. The application of the “frozend analytic coupling constants; (Q?)
and aan(Q?) improves the agreement with the recent HERA data [4, 5, Gﬂrferslope)\,?sz(x, Q?)
for smallQ? values,Q? > 0.5 Ge\2.

We presented a compact formula for the heavy-flavour carttdhs to the proton structure
functionsF, valid through NLO at small values of Bjorkenssvariable. Our results agree with
modern experimental data [7]-[11] well within errors witltoa free additional parameters. In
the Q? range probed by the HERA data, our NLO predictions agree wety with the LO ones.
Since we worked in the fixed-flavour-number scheme, our t&suk bound to break down for
Q? > 4, which manifests itself by appreciable QCD correction degtand scale dependences.
As is well known, this problem is conveniently solved by atitog the variable-flavour-number
scheme, which not considered here.

As a next step of investigations, we plan to perform combifitscbf theH1&ZEU Sdata [3]
of Fa(x,Q?), theH1&ZEU Sdata [71] ofF$°(x,Q?) and the HERA data [7, 9] dFP°(x, @), using
the “frozen” and analytic coupling constants in both the L@l &NLO approximations, in order
to improve the agreement with HERA data at sn@dlvalues. Several versions of the analytical
coupling constant will be used.
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7. Appendix A

Here we give a short introduction of possible accounfing flBKB corrections to our analysis.
As it was shown in Ref. [21] for the first two orders of the peéptation theory, it is conveninet to
start with Mellin moment reprentation.

7.1 Mdlin moment form

In the following we resume the steps we have followed to rehehsmallx approximate
solution of DGLAP shown above (see also [211)

e Use then-space exact solution for”-components

(@) . ye(n &)
Afexp|— / dag 228 | o ptede(n)s Al
a p[ (@) B(4s) 2 (A1)
with 0
n
di(n) = — Viﬁg ) (A2)

e Expand the perturbatively calculated parts (of anomaloogedsions and coefficient func-
tions) in the vicinity of the poinh = 1.

1470 work with BFKL formulas in the most symmetric way, in thippendix we will use the normalization of the
anomalous dimensions deviated by the factel/2” from the DIS standard notation.
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e The singular part of the{"-component with the form (hereafter= 1+ w)
Aqciedso/® (A3)

leads to modified Bessel functions in tkespace in the form

Inx

de (kHD/2 _
Aa<—> lki1 (2\/dslnx> (A4)

e The regular parB(n)exp(—d(n)s) leads to the additional coefficient (see Ref. [21] and

Appendix there)
B(1)e s+ O(y/ds/Inx)

behind of the modified Bessel function (A4) in tkepace. Because the accurac@is/ cLs/ Inx),

itis necessary to use only the basic term of Eq. (A4), i.eteathscwK in front of exp(—cL/w),
with the exception of one with the smallewalue, can be neglected.

e If the singular part ah — 1 is absent (as in the case of the™component), i.ed =0in
(A3), the result in thex-space is determined B(1)exp—d(1)s) with accuracyO(x).

7.2 BFKL corrections

We would like to stress that the applicability of the aboveipe (to constract the smail-
solution which was shown in the previous subsection) is imoited by the order in perturbation
theory but by the form of the singular part of the anomaloumseatisions. At the first two orders of
perturbation theory the singular part is proportionakt@o— but this behaviour does not remain
at higher orders. The most singular terms have been catdcllat[14]. For example, the singular
part of the “+"-component of the anomalous dimension matrix has thevatig form

Vi (w,85) = y(w, &) +O<as<%>k> (A5)

where the terms. O(as(as/w)k) have been evaluated in Ref. [50].
The BFKL anomalous dimensigriw, a) is obtained by solving the implicit equation

4Cpas
w

1 =

x(v(w, as)>,

where the characteristic function(y) has the following expression in terms of the Eulef

function:
X0 = 29(1)-wiy) - wia-y), iy - L)
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7.2.1 Expansions

The expansion of (n, y) in powers ofy gives:
1 00
(=423 {(2k+ 3)y? (A6)
K=1
that can be rewritten as the following exact relation yfatself

4Chas
W

V=10 [14+2 22k 3%, o (A7)
k=1

)

where is the singular part of the LO gluon-gluon anomalous dimesi®olwing above eqution
by interations, we have

y=y+ 5 Cys™
K=3
where the new coefficients are

Cs=27(3), C4 =0, Cs = 2 (5), C = 1272(3), C; = 2{(7), ... (A8)

Incorporating the BFKL term to the renormalization expdreads to the following replace-

ment
5(Q%) 5(Q%)
exp{——/ day+ / da
Bo w

The contribution of the additional ter@g;Sckng in the r.h.s. of (A8) has the following
form

Nk PRIGRCEE= PRt (A9)

and, thus, it has additional factkin the denominator. So, it gives a hopeness that in the for@) (A
the BFKL contributions will be not so large as usual.

7.2.2 Exact contribution

Now we considere the BFKL contribution to the r.h.s. of (A9)heut any axpansions. Using
integration by parts procedure, we obtain the followingresgion

da 1 da dy( dy
where the inverse coupling constant is proportioanl to treacteristic functior (y) in (A6)
1 4Ca
2 ?X(V)’
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Thus, the last integral in (A10) can be evaluated exactly as

ra-y
d =2¥(1)y+In
/ yx(y) Dy 50
So, the needed contribution in the r.h.s. of (A9) can be sapried in the following form
1 /3@ da R(Q)
exps —— —v@) ;= , (Al11)
{ Bo Jas(@p) & ( )} R(Q3)
where theR value is (see also Ref. [72])
ry) 1°
2\ _ _
RQ?) = [m_y)} exp{ ~doy(W(v) + W(1- 1)) | (A12)
with the new parametet
o B *

C Bow  w W

Whenas — 0 (i.e. in the considered cage— 0) we recover the singular part of the LO
contributions (see the previous section)

R(Qz)—>y‘d°—>as‘d°

The transform of the Mellin moments in the form (A11l) and (Ai@ the Bjorkenx-space, it
is not a trivial problem. Author plans to return to this prefsl in his future work.
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