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1. Introduction

The covariant quark model with infrared confinement developed iniassef papers (see
Refs. [1]-[5]) is a successful tools for a unified description of the mudtiy states: mesons,
baryons, tetraquarks, etc. The covariant quark model is an effegtiantum field approach to
hadronic interactions based on the interaction Lagrangian betweemkaaind their constituent
qguarks. Knowing a corresponding interpolating quark current allaisutating the matrix ele-
ment of physical processes in a consistent way. A distinctive featutt@soapproach is that the
multiquark states, such as baryons (three quarks), tetraquarksg(fatks), etc., can be consid-
ered and described as rigorously as the simplest quark-antiquarknsy@teesons). The coupling
constants between hadrons and their interpolating quark currentstarmoted from the connec-
tion conditionZy = 0 proposed in Refs. [6, 7] and used further in numerous subfieldarttie
physics (for a review, see Refs. [8, 9, 10]). H&g¢is a renormalization constant of the hadron
wave function. The matrix elements of physical processes are determjreeddd of associated
quark diagrams, which are constructed according t¢. 2 expansion. In the covariant quark model
an infrared cutoff is effectively introduced in the space of Fock—Seher parameters, which are
integrated out in the expressions for the matrix elements. Such a pro@ldws one to eliminate
all the threshold singularities associated with quark production and therefyes quark confine-
ment. The model has no ultraviolet divergences due to vertex hadrark-fprm factors, which
describe a nonlocal structure of hadrons. The covariant quarklrhade few free parameters: a
mass of constituent quarks, an infrared cutoff parameter that charasteonfinement region, and
parameters that describe an effective size of hadrons.

We review here the last applications of the covariant quark model foyisigdhe prop-
erties of theBs—meson, the light baryons and tetraquarks. The form factors oB{Bg) —
P(V)—transitions are evaluated in the full kinematical region of momentum transfiered. As
an application of the obtained results the widths ofBgenonleptonic decays are calculated. The
modesD; D¢, D&~ DZ + D3 D" andD:~D:* give the largest contribution #I for the Bs — Bs
system. The modé/(e is suppressed by the color factor but it is interesting for the search of
CP-violating New-Physics possible effects in - Bs mixing.

The static properties of the proton and neutron, and\tHg/peron (magnetic moments and
charge radii) and the behavior of the nucleon form factors at low momeiramsfers are de-
scribed. The conservation of gauge invariance of the electromagneisitiva matrix elements in
the presence of a nonlocal coupling of the baryons to the three constiuek fields is discussed.

The consequences of treating the X(3872) meson as a tetraquarkdtatendre explored. The
decay widths of the observed chann¥lss J/ + 2m(3mm) andX — D+ DO + 71° via the inter-
mediate off-shell state$ — J/y + p(w) andX — D + D* are calculated. Its one-photon decay
X — y+J/y is also analyzed. The matrix element of the transitfor> y+ J/ is calculated
and its gauge invariance is proved. For reasonable values of the stagiar\x of the X(3872)
consistency with the available experimental data is found. The possible iofiihet X(3872) in a
s-channel dominance description of th&p dissociation cross section is discussed.
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2. Covariant quark model

The coupling of a hadroHl to its constituent quarks is described by the Lagrangian:

Znt =01 -H(X) - I (X) (2.1)

where the quark currents are defined as

Im(x) = /dxl dxeFu (X, x1,%2) - OF, (x1) Tm df,(x2) ~ Meson

Js(X) = /dX]_/dXZ/dX3 Fa (X, X1,X2,X3)

x T10f(x) (q?§ (x)CT20 (X3)> -g%%  Baryon

Jr(x) = /dxl.../dx4Fr(x,x1,...,x4)
X <q?i(x1)CF1q?§(xz)) . (d?g(X3) FZCQ?j(m)) .gdledaC  Tetraquark

wherel is a Dirac matrix or a string of Dirac matrices which projects onto the spin quantum
number of the hadrohl (x). The matrixC = yPy? is the usual charge conjugation matrix and the
g (i=1,2,3) are color indices. The functiof, is related to the scalar part of the Bethe-Salpeter
amplitude and characterizes the finite size of the hadron. To satisfy tranalativariance the
function Ry has to fulfil the identityFy (X+a,x1 +@,..., X, +a) = Fy (X, X1, ..., Xn) for any four-
vector “a”. In the following we use a specific form for the scalar vertexction

Fo(X, X1, ..., %) = O <x— iwixi> by (Z((Xi —Xj)z) , (2.2)
i= i<j

where®y is the correlation function of the constituent quarks with masse§ = 1,...,n) and
n

the mass ratios; =m/ 5 m;.
j=1

The coupling constérgH in Eqg. (2.1) is determined by the so-callesimpositeness condition
originally proposed in Refs. [6, 7] and extensively used in Refs. [80). The compositeness
condition requires that the renormalization constant of the elementaryrhéidicoH (x) is set to
zero

Zn = 1- g4 Ny(mg) =0 (2.3)

wherel}, is the derivative of the hadron mass operator. To clarify the physicahimgaf the
compositeness condition in Eq. (2.3), we first want to remind the readethihatnormalization
constantz,i/ 2 can also interpreted as the matrix element between the physical and trspooiding

bare state. The conditiofi; = 0 implies that the physical state does not contain the bare state
and is appropriately described as a bound state. The interaction Lagrafd=q. (2.1) and the
corresponding free parts of the Lagrangian describe both the conssitigeiarks) and the physical
particles (hadrons) which are viewed as the bound states of the g@ar&sesult of the interaction,

the physical particle is dressed, i.e. its mass and wave function have tmdrenadized. The
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conditionZy = 0 also effectively excludes the constituent degrees of freedom frersghce of
physical states. It thereby guarantees that there is no double coumtitigefphysical observable
under consideration. The constituents exist only in virtual states. Onesafdiollaries of the
compositeness condition is the absence of a direct interaction of the dlissged particle with
the electromagnetic field. Taking into account both the tree-level diagrdanthendiagrams with
the self-energy insertions into the external legs (i.e. the tree-level diaymaesZy — 1) yields a
common factoZy which is equal to zero.
We have used free fermion propagators for the quarks given by

S0 =—— (2.4)

with an effective constituent quark mass

For calculational convenience we will choose a simple Gaussian formdaoretiex function
CI_JH(—kZ). The minus sign in the argument of this function is chosen to emphasize thaewe a
working in Minkowski space. One has

P (— k%) = exp(K?/AZ) (2.5)

where the parametéky characterizes the size of the hadidn Sincek? turns into— k2 in Eu-
clidean space the form (2.5) has the appropriate fall-off behavior in tiloidean region. We
emphasize that any choice foy is appropriate as long as it falls off sufficiently fast in the ultra-
violet region of Euclidean space to render the corresponding Feyniagraths ultraviolet finite.
As mentioned before we shall choose a Gaussian forrpfpfor calculational convenience.

We have included the confinement of quarks to our model in Ref. [1].ak done, first, by
introducing the scale integration in the spacexeparameters, and, second, by cutting this scale
integration on the upper limit which corresponds to an infrared cutoff.ignmtanner one removes
all possible thresholds presented in the initial quark diagram. The cutddfeder is taken to
be the same for all physical processes. We have adjusted other modeigbars by fitting the
calculated quantities of the basic physical processes to available expiiicheta.

Let us give the basic features of the infrared confinement in our modeph&Bical matrix
elements are described by the Feynman diagrams which are the convolutioa foée quark
propagators and vertex functions. Let/ andm be the number of the propagators, loops and
vertices, respectively. In Minkowski space thop diagram will be represented as

n

n(pla"wpm) :/d4k I_l cD|1+n KI21+n) |_| Ss(kz +Vi3)>

Il 1 I3:l

z<ls1+n+ V)2 (2.6)

where the vectork are linear combinations of the loop momektaThey; are linear combinations
of the external momentg, to be specified in the following. The strings of Dirac matrices appearing
in the calculation need not concern us since they do not depend on the taonidre external

m
momentap; are all chosen to be ingoing such that one lyag; =0
i=1
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Using the Schwinger representation of the local quark propagatorame h
SK) = (m+ K) / dBe P (12 < nP).
0

For the vertex functions one takes the Gaussian form. One has
®in (—K?) = exp[BiinK?] i=1,..,m, (2.7)

where the parametefs, , = § = 1//A? are related to the size parameters. The integrand in Eq. (2.6)
has a Gaussian form with the exponenkiak+ 2kr + R wherea is ¢ x ¢ matrix depending on the
parametei;, r is the ¢-vector composed from the external momenta, Rrid a quadratic form
of the external momenta. Tensor loop integrals are calculated with the helg dfiffarential
representation
190

ye2kr I e2kr
We have written a FORM [11] program that achieves the necessary cotionataf the differential
operators in a very efficient way. After doing the loop integrations ottaind

I'I:/d”BF(Bl,...,Bn),
0

whereF stands for the whole structure of a given diagram. The set of Schwirrgameterg; can
be turned into a simplex by introducing an additiorahtegration via the identity

1:0/wdt6(t—iiﬁi)

leading to
1

n
M= /dtt”’l d'as(1- Zai) F(tau,... tan). 2.8)
0 0 =
There are altogethernumerical integrationgin— 1) a—parameter integrations and the integration
over the scale parameterThe very largé-region corresponds to the region where the singularities
of the diagram with its local quark propagators start appearing. Hayneeveescribed in [1], if one
introduces an infrared cut-off on the upper limit of the t-integration, alldimgties vanish because
the integral is now convergent for any value of the set of kinematic Vi@sabVe cut off the upper
integration at ¥A2 and obtain

2
1/A 1 N

ne — O/dttnlo dna5(1_i;ai> F(tay,...,tan).

By introducing the infrared cut-off one has removed all potential thieshim the quark loop
diagram, i.e. the quarks are never on-shell and are thus effectivefined. We take the cut-off
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paramete to be the same in all physical processes. The numerical evaluations é@velbne
by a numerical program written in the FORTRAN code.

As a further illustration of the infrared confinement effect relevant taajhy@ications in this
paper we consider the case of a scalar one—loop two—point functiah&mn

-~ d4kE eﬁs%
Ma(F) = | S o e T A e

where we have collected all the nonlocal Gaussian vertex form facttive irumerator factaS<.
Note that the momente:, pg are Euclidean momenta. Doing the loop integration one obtains

0 1
2y _ ;/ _ st
) _O/dt(5+t)20 da exp[ tz|oc+s+tzl}7

Zoe =M —a(l—a)p?, zn= (a—%)zpz. (2.9)

The integrall,(p?) can be seen to have a branch poinipat= 4n? becauseq. is zero when
a =1/2. By introducing a cut-off on theintegration one obtains

1/A2 o
/dt /da exp| ~tzoct = z). (2.10)

The one-loop two-point functiol$(p?) Eq.(2.10) can be seen to have no branch poipt at 4n?.

The gauging of the nonlocal Lagrangian in Eq. (2.1) proceeds in a ugnested in Refs. [12,
13] and used before by us (see, for instance, Refs. [14, 15¢rder to guarantee local invariance
of the nonlocal Lagrangian in Eqg. (2.1) one multiplies each quark €iétd with a gauge field
exponential:

0 (%) — €% P g () (2.11)
where

(X, x,P) = /dz“A“(z). (2.12)

The pathP connects the end-points of the path integral. One then expands the gaqogeetial

up to the requisite power @A, needed in the perturbative series. We need to know only the
derivatives of the path integral expressions when calculating the pative series. Therefore, we
use the formalism suggested in [12, 13] which is based on the path-irsEmeatefinition of the
derivative ofl (x,y, P):

lim dxﬂ7|(x yv ) - d!(iurgo[l (X—l—dX,y, P,)_I(vav P)] (213)

dxt—0

where the patl? is obtained fronP by shifting the end-point by dx. The definition (2.13) leads
to the key rule

T (%,Y,P) = Au(x) (2.14)
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which in turn states that the derivative of the path integfaly, P) does not depend on the pah
originally used in the definition.

As a result of this rule we are getting the part of the Lagrangian whictridesche nonlocal
interaction of the hadron, quark and electromagnetic fields to the first iortiee electromagnetic
charge.

3. Bs-meson

We give below the necessary definitions of the leptonic decay constaragaint form factors
and helicity amplitudes.
The leptonic decay constants of the pseudoscalar and vector mesaiediaee by

d*k
Nch/(Zn.)4| Op(— k2)tr[0“81(k+W1|0 VS (k— sz)] = fppH, 0% = md,
4 ~
Ncg\// d*k (—k?) tl’|:0”81(k+W1p) A So(k— sz)] mfvel,  pP=ni, (3.1)

whereN; = 3 is the number of colors.
Herein our primary subjects are the following matrix elements, which can bhessed via
dimensionless form factors:

(Pigs (P2) | G2 O 1 |Rgq) (P1)) =
d*k ~
NchgP/( 2 qJP( (k—|—w13p1)2) ®p (— (k+w23p2)2)

‘< tr [o“sl<k+ o1) VP Sa(K) VP Salk pz>] CF@PF (@Y, (3.2)

(Pqe (P2) [G2 (0 av) 1 [Py (P1)) =
d*k ~
= Nchgp’/<2n_)4icDP( (k+wa13p1) ) b’ ( (K+Wa3p2) )

X tr[o“”qul(k+ p1) V" Ss(K) V° S(K+ p2 } (PPH—q-Pg*) Fr(d?), (3.3)

(V (P2, €2)dugs] | G2 OF a1 | P (P1)) =
d*k ~ ~
= Ncgpgv/(2n)4i q’P(— (k+ W13p1)2> Oy ( - (k+w23p2)2)

X

tr [o~ Skt py) Y Ss(K) £ Solk + p2>] (3.4)

el

= M (~9"P-aro(c?) +PHPY AL () + g PYA(¢P) +i" P Py g V(cP) )
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(V (P2, &) gqs | G2 (" A (1+¥?)) 1 | Py (P)) =
4
= Ncgpgv/(;_[;i cT’P(— (k+w13p1)2) Dy ( - (k+w23p2)2>

X

1|0 Q1+ ) Sk P09 & Selk po)| 5)
= &l (0" ~a"a" /) P-az(@®) + (PP’ ~a* P'P-q/q?) a. (6P) +i "™ Py g g(c?) ).

Here,P = p1+ p2, 4= p1— P2, sg- p2 =0, p? = ?. Since there are three sorts of quarks involved
in these processes, we introduce the notation with two subsevipts my,/(mg +my;) (i, =
1,2,3) so thatw;; +wj;i = 1. The form factors defined in Eq. (3.5) satisfy the physical requiremen
ap(0) = a, (0), which ensures that no kinematic singularity appears in the matrix elemgtad.

For reference it is useful to relate the form factors we have definesdsethsed, e.g., in Ref. [16],
which are denoted by a superscrigh the following formulae:

F, = f°, F_z—m%*m%(fg—fg), Fr = f&,

q2
m-+nm . c 2mp (Mg +mp) o c c
— , :A7 A_:— A — 5 V:V B
Ao m—mmy & A P (As—Ag)
q2
ap=T;, 9=T, a,=T3+ 5 T3, (3.6)
m; —mj

We note in addition that the form factof§(qg?) satisfy the constraint$§(0) = AS(0) and
2meAS(0F) = (M +Mp) AT(G7) — (my — M) AS(0).

It is convenient to express all physical observables through the hdlcityfactorsHy,. The
helicity form factorsH,, can be expressed in terms of the invariant form factors in the following
way (see Refs. [17, 18, 19]):

(a) SpinS=0:
He = \;@{("ﬁ—mﬁ)ﬂwzﬁ},
=0 (3.7)
Ho 2n\1;£z| F,.
(b) SpinS=1:
1 mypyl B B X
N m1+mzmz\/@{( g —mB) (AL —Ao) +PA_ L,
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H, = mlimz [ (8 — m8) Ag+£2my o]V}, (3.8)
1 1

where|p,| = AY/2(mé, m2, ¢?) /(2my) is the momentum of the outgoing particles in the rest frame

of ingoing particle.
The effective Hamiltonian describing tlBz-nonleptonic decays is given by (see, Ref. [20])

~Gr

Mg = vcbvjs Zq Q.
Q1 = (Caba, )v—A(Sa,Cay )V-a, Q2 = (Cay bay )V—A, (Sa, Cay)V-A,
Q3 = (Sayba; )v—A(CayCay)v—A, Qs = (Sa,Pa, )v—A(CayCay v -a,
Q5 — (S_albal)va(C_agcaz)V+Aa Q4 — (galbaz)va(@\gcal)V+Aa (39)

where the subscript — A refers to the usual left—chiral curre®t' = y#(1— y°) andV + A to the
usual right—chiral on®". = y#(1+ y®). Thea denote the color indices.

We consider the nonleptonic decays of Baemeson intdg Dg, Dg D", D&~ Dg, DE~ Dg*
andJ/y . The calculation of the matrix elements is straightforward. It directly leads to the
representation correspondingrtaivefactorization.

The widths can be conveniently expressed in terms of the helicity form faatat leptonic
decay constants. In the case of the color-allowed decays one has

G 2
r(BstD;)—lgT’j;'[A 12 (C5"mo, fo, HEC+(mB,) + 2CE" FESFEP:(n,) ),

(B0 05) = SE LB (cotimy, 1o, M (g, ) + 205" M2 ppoeei g )’
S T TsTs 16mmg_ Mp; ¥

*— G q2 sDs 2
M(Bs—Dg Dg) = 16Fn’mz’[ I ( " mp; ngHoBD(mZDs*>> ;

M(Bs— D DT = %Tff[ 912 (C5" o, fo:)° _gi (HiBSDg(m%;))Z. (3.10)

Here, AY = |VeuV4y and|qy| is the momentum of the second outgoing particle in the rest frame
of Bs—meson. The Wilson coefficients are combinedC§8 = C, + & C; +Cy + £ C3 andCE =
Cs+ & Cs. where a color factof = 1/N; will be suppressed in the numerical calculations according
to 1/N.—expansion. Also we do not take into account the annihilation channels atedvailable
for the color-allowed decays.

The width of the color-suppress&d — J/ ¢ decay is written as

rBs—J/Yop) = 166F71|r?122|[/\ ]Z(CfﬁJngﬁ)z(mJ/wfJ/w)z__%i(HiBsJ/"’(nﬁ/w))zﬁ-ll)

where the Wilson coefficients are combinec@é =C1+ECy+C3+ ECandCE™ = C5 + £ Cs..
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The first application of our relativistic quark model with infrared confinetrie the descrip-
tion of the physical observables was done in our paper [1]. We haw fittemodel parameters to
the leptonic and radiative decay constants of both pseudoscalar aod wesons. Then we have
calculated transition form factors and the widths of the Dalitz decays andarechphe results
with available experimental data. Here we calculate the form factors degctiie transitions of
the heavyB(Bs)—mesons into the light ones, em.K, p,K*, ¢. These quantities are of great inter-
est due to their applications to semileptonic, nonleptonic and rare decaysBatidBs—mesons.
Basically, they are calculated within the light-cone sum rules (LCSR) in thenrex large recoils
(small transfer momentum squared). Our approach allows one to evaledtatifactors in the
full kinematical regions including zero recoil. First, we update the modelpaters by fitting them
to the leptonic decay constants, see Table 1, and the widths of the radietiagsd see, Table 2.
The results of the fit for the values of quark masses, the infrared andfthe size parameters are
givenin Egs. (3.12), (3.13) and (3.14), respectively.

m ms m my A

(3.12)
0.235 0424 216 509 0181 GeV
A A Ao Ao, As As. As. Ao
(3.13)
0.87 104 147 157 188 195 242 061 GeV
(3.14)

047 088 148 072 116 117 172 171 GeV

In Figs. 1-4 we plot our calculated form factors in the entire kinematicabre@< q? < 02,5
For comporison we also show the results obtained in the light-cone sum BélpsThe figures
highlight the wide range of phenomena accessible within our approach.

As was suggested in Ref. [27], one can check how well the form fastisfy the low recoil
relations among them. In Fig. 5 we plot the ratios

_ (@) _ () R, & Ta(@)
V() MA@ mB AP

which in the symmetry limit should be all of order1(2as/(3m)In(u/my), i.e. near one. One can
see that similar to the LCSR form factors, it works reasonably welRfcaindR, but not forRs.

It is interesting to compare the behavior of the form factor calculated frentriZingle loop-
diagram with those from vector-dominance model (VDM). In the case dBther—transition, one
has

R . (3.15)

~—

I:\/B|5[|\/| (qz) = n% _ q2'
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Table 1: Leptonic decay constanfs (MeV) used in the least-squares fit for our model parameters.

This work Other Ref. This work Other Ref.

f 1287  1304+02 [21,22]| f, 1985  198t2 [21]
f  156.1  1561+08 [21,22]|| f, 2282  227+2 [21]
fo 2059  2067+89 [21,22]| fy, 4150  415:7 [21]
fo, 2575 2575+61 [21,22]|| f«. 2137 21747 [21]
fg  191.1  1928+99 [23] || for 2433 245520 [25]
234.9 238+95 [23] || for 2720 272:26 [25]

S

fs,  489.0 489+ 5 [24] || fs  196.0 19644 [25]

f, 2211 221+ 1 [21] || fs:  229.0 229+ 46 [25]

S

Table 2: Electromagnetic decay widths (keV) used in the least-sguiitrfor our model parameters.

Process This work Data [21]
™ — yy 5.06x10°%  (7.7+£0.4)x10°3
Ne — Yy 1.61 1.8+ 0.8

pt — Ty 76.0 67+ 7

w— 1y 672 703+ 25
K — Kty 55.1 50+ 5

K0 — KOy 116 116+ 10
D — D*y 1.22 1.5+ 0.5
/Y — ncy 1.43 1.58+ 0.37

The curves are plotted in Fig. 6. One can see that they agree with quitegoacy. That means
the quark loop in some sense contains an information oBtHmole.

As an application of the obtained results we evaluate the widths @#nhenleptonic decays.
The modesD;DJ, D; D¢ + D D" and D D:* give the largest contribution tar" for the
Bs— Bs system. The modé&/ (¢ is suppressed by the color factor but it is interesting for the search
of CP-violating New-Physics possible effects in B Bs mixing.

11
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B-t F(q) B-K: F,(@)

10 : ! . ————

. . . . .
.
~ | ’
-- LCSR] | -- LCSR|
i

25
qz (Ge\/z) q2 (Ge\;)

d BK: F(d)

5 . . . T : T

20

15— /

10— i [ /
/

25

Figure 1. Our results for the form factors appearing in Egs. (3.2) &)3-Left pane] B— m—transition;
andright pane| B— K—transition. For comporison we plot the curves given by LC8R1Ref. [26].

For the CKM-matrix elements we use the values from [21]

’Vud’ ‘VUS‘ ‘Vub’ ’Vcd’ ‘Vcs, ‘Vcb‘
(3.16)
0.974 Q0225 Q00389 0230 Q975 Q0406
For the Wilson coefficients we take [28]
C1 C Cs Cy Cs Cs
(3.17)

—-0.257 1009 -0.005 -0.078 Q000 Q001

evaluated to next-to-next-to leading logarithmic accuradylB(NDR) renormalization scheme at

the scaleu = 4.8 GeV [29].
We also need the values of tlg — ¢@—transition evaluated a® = nﬁ/w. We give them in

Table 3 and compare with results of Ref. [30].
Finally, we give our results for the branching ratios in Table 4. One caihsd there is good

agreement with available experimental data.

12
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B-p: A B-p: V()

0.6 ! ! | ! | ! r . . . . . . —

Figure 2. Our results for the form factors appearing in Egs. (3.4) &)3Jor B — p—transition. For
comporison we plot the curves given by LCSR from Ref. [26].

Table 3: The relevanBs — p—form factors aig? = mﬁ/w calculated in our work. For comparison we give
the results of Ref. [30].

Thiswork  Ref. [30]

Au(mE,) 037 042006
(m? 0.48  0.38-0.06

0.56 0.82£0.12

<

(s

~
<
~—

13
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B-K* A,@) B-K* V(q?)

L L L L L L L L
0 5 10 15 20 0 5 10 15 20

Figure 3: Our results for the form factors appearing in Egs. (3.4) &)3or B — K*—transition. For
comporison we plot the curves given by LCSR from Ref. [26].

Table 4: Branching ratios (%) of thBs-nonleptonic decays calculated in our approach.

Process This work Data [21]
Bs — D3 DY 1.65 104122
Bs — D;Dit +D; D¢ 2.40 28+1.0
Bs— D Di* 3.18 31+14
Bs— J/Yo 0.14 014+0.05
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. 2 . 2
Bso A(Q) Bsor V(d)

0 5 10 15 0 5 10 15 20

Figure 4. Our results for the form factors appearing in Egs. (3.4) &)3or Bs — ¢—transition. For
comporison we plot the curves given by LCSR from Ref. [26].

B-K*: the ratios R (i=1,2,3) LCSR B-K*: the ratios R(i:1,2,3)
2 ! ! ! ! ! | ! 2 ! ! ! ! ! | !
|- - R] F - Rl -
- R2 - R2
LB I _ 15 -5 -
1 1
0.5— L 0.5— .7
0 . | . | . | . | . | . 0 . | . | . | . | . | .
13 14 15 16 17 18 13 14 15 16 17 18 19
q (Ge\/z) q (Ge\/z)

Figure5: Our results for the ratios of the form factors appearing in(Bd4.5) forB — K*—transition.
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Figure 6: The comparison of the results for tlBe— 7— form factor obtained

quark-loop diagram and on the another hand from the VDM-mote
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4. Light baryons

Let us begin our discussion with the proton. The coupling of a proton toitstitoent quarks
is described by the Lagrangian

L) = gn Px) - Jp(x) + I Jp(X) - P(X) (4.1)

where we make use of the same interpolating three-quark Cl.ir,{(a}_alj as in Ref. [14]

Jp(x) = /dxlfde/anFN(x;xl,Xz,Xe,)JéS)(xl,Xz,Xe,),

38 0, %, %) = TAYP A% (x0) - [7%5 U2 (x5) CT AU (3]

(4.2)
B0 = [ [ fars P17, 36) B 0.3 %),
T8 (0, Xa) = €375 T (x3) TACT2 xp)] - o (x0) T

The matrixC = y°y? is the usual charge conjugation matrix andahé = 1,2, 3) are color indices.
There are two possible kinds of nonderivative three-quark currBAts ' = y* @ y, (vector cur-
rent) and A @ s = 3 09 @ g, (tensor current) witlo? = 1(y2y# — yPy?). The interpolating
current of the neutron and the corresponding Lagrangian are obithiom the proton case via
p — nandu <« d. As will become apparent later on, one has to consider a general lingan®-
sition of the vector and tensor currents according to

IN=xJ +(1-xI, N=pn (4.3)

The electromagnetic vertex functidv (p, p) of the proton consists of four pieces represented
by the four two-loop quark diagrams in Fig. 7.

Let us briefly describe a check on the gauge invariance of our calaulatiithout gauge in-
variance there are three independent Lorentz structures in the elegtreticgoroton vertex which
can be chosen to be

, igHd
N3 (P, P) = VFE(Q) = 5 FR(O) + o Ri(@), (4.4)

wheregHd = ‘?(y“y" —y'y")qy. The form factorF,\ﬁ’G(qZ) characterizes the non—gauge invariant
piece and must therefore vanish for agfyin a calculation which respects gauge invariance. For
the four contributions of Fig. 2a-2d we found that

Flca(@) =0,  Flgu(@) =0,  Flgp (@) =-Flge@ v  (45)

It means that the non—gauge invariant contributions of the two vertexadiemare zero while they
vanish for the sum of the two bubble diagrams.

The electromagnetic vertex function of the neutron is obtained from thateoptbton by
replacingm, < my, &, <> g andmp, — m,. FN(g?) andFN(g?) are the Dirac and Pauli nucleon
form factors which are normalized to the electric chaggeand anomalous magnetic momégt
(kn is given in units of the nuclear magnetey2my), respectively, i.e. one ha&g'(0) = ey and
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Figure7: Electromagnetic vertex function of the proton: (a) verteagdam with the e.m. current attached
to d-quark; (b) vertex diagram with the e.m. current attacteeu-quark; (c) bubble diagram with the e.m.
current attached to the initial state vertex; (d) the bubldgram with e.m. current attached to the final state
vertex.

FN(0) = ky. In particular, one can analytically check by using the integration-byigeantity that
the Dirac form factor of the neutron is equal to zerg%t= 0.
The nucleon magnetic moments = FN(0) + F}¥(0) are known experimentally with high

accuracy [21]
pg®=279  pyPl=-191. (4.6)

We will use these values to fit the value of the nucleon size parameter. Wa obta

vector current—=- Ay = 0.36GeV =279 pn=—-170, 4.7)

tensor current=- Ay =0.61GeV up =279 u,=—-169. (4.8)

It is convenient to introduce the Sachs electromagnetic form factorsotéamns
P
GE () = F{'(0?) + szN(qz) ; G () = F'(0®) + R (). (4.9)
N
The slopes of these form factors are related to the well-known electratiagadii of nucleons:

dGR(a?)
dq2 q2:0’
We would like to emphasize that reproducing data on the neutron chariges (ag)" is a

nontrivial task (see e.g. discussion in Ref.[31]). As well-known theeainrelativistic quark
model based on SU(6) spin-flavor symmetry implie$)" = 0. The dynamical breaking of the

6 dGy(d?)

"G AT oo (4.10)

2N =6
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SU(6) symmetry based on the inclusion of the quark spin-spin interacti@raes a nonvanishing
value of(r2)". From this point of view the dominant contribution to tfié)" comes from the Pauli
term: 5
2\n n
re)" ~ —-FJ(0).
(8" 22 F(0)

The experimental data on the nucleon Sachs form factors in the spacegi@aQ? = —g> >0
can be approximately described by the dipole approximation

_Gh(@?) _ Gly(g?) _ 4mE GR(g?) 1
~ 2

Tl4py T q -

=Dn(dP).
B (1-¢2/071GeV?)? e

GE(a’)

According to present data the dipole approximation works well up to 1°Gualth an accuracy
of up to 25%). For higher values @J° the deviation of the nucleon form factors from the dipole
approximation becomes more pronounced. In particular, the best destapmagnetic moments,
electromagnetic radii and form factors is achieved when we considgresgssition of thé/— and
T—currents of nucleons according to Eq. (4.3) wita 0.8. For the size parameter of the nucleon
we takeAy = 0.5 GeV.

In Table 5 we present the results for the magnetic moments and electromagdétiorrthis
set of model parameters. In Fig. 8 we present our results faptdependence of electromagnetic
form factors in the regioi®? < [0,1]GeV2. Fig. 8 also shows plots of the dipole approximation
to the form factors. The agreement of our results with the dipole approximetisatisfactory.
Inclusion of chiral corrections as, for example, developed and dscum [32] may lead to a
further improvement in the loW@? description.

Table5: Electromagnetic properties of nucleons.

Quantity | Our results Data [21]
Hp (inn.m.) 2.96 2.793
Uy (in n.m.) -1.83 -1.913
rg (fm) 0.805 0.8768+ 0.0069
(r2)n (fm?) -0.121 -0.1161+ 0.0022
riy (fm) 0.688 | 0.777+0.013+0.010
rhy (fm) 0.685 0.8620.9%
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Figure8: Sachs nucleon form factors in comparions with the dipoleesgntation in the space—-like region
Q<1Ge’
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5. The X(3872)-meson as a tetraquark

A narrow charmonium-like stat¢(3872 was observed in 2003 in the exclusive decay process
B* — K*m"m J/y [33]. TheX (3872 decays intat" m-J/ and has a mass afiy = 38720+
0.6(stap £ 0.5(sys} very close to théVipo + Mp.0 = 387181+ 0.25 mass threshold [21]. Its width
was found to be less than 2.3 MeV at 90% confidence level. The state wisred in B-decays
by the BaBar experiment [34] and pp production by the Tevatron experiments [35].

From the observation of the decXy3872 — J/yy reported by [36], it was shown that the
only quantum numbers compatible with the datafie= 1"+ or 2-*. However, the observation
of the decays int@°D° 0 by the Belle and BaBar collaborations [37] allows one to exclude the
choice 2 because the near-threshold deXay DD’ is expected to be strongly suppressed
forJ=2.

The Belle collaboration has reported evidence for the decay oderr m °J/ g with a
strong three-pion peak between 750 MeV and the kinematic limit of 775 Me)y$86gesting that
the process is dominated by the sub-threshold d&cay wJ/y. It was found that the branching
ratio of this mode is almost the same as that of the mode " J/:

B(X — I/t m )
B(X = J/Prhm)

These observations imply strong isospin violation because the three-piay geoceeds via an
intermediateco-meson with isospin 0 whereas the two-pion decay proceeds via the intetenedia
p-meson with isospin 1. Also the two-pion decay via the intermedhateeson is very difficult to
explain by using an interpretation of tiXé 3872 as a simplec charmonium state with isospin 0.

There are several different interpretations of K872 in the literature: a molecule bound
state 005*0) with small binding energy, a tetraquark state composed of a diquark géidtjaark,
threshold cusps, hybrids and glueballs. A description of the curreatdtieal and experimental
situation for the new charmonium states may be found in the reviews [38].

We provided in Ref. [2] an independent analysis of the properties of {8872 meson which
we interpret as a tetraquark state as in [39]. The authors of [39] stegy® consider th¥(3872)
meson as a8°° = 17 tetraquark state with a symmetric spin distributifag]s_o [C[s—1 + [cqs—1 [Cq]s-0,
(g=u,d). The nonlocal version of the four-quark interpolating current reads

4
J)‘Zq(x) = /dxl.../dx45 <x— leixi> qu(z(xi _Xj)Z)
i= i<]
1 _ _

Xy anctiec] [0(Xa)CY () [GaX0) VCEOR) + (¥ 2 ¥4}, (62)
wherew; =W, = mg/2(my + M) andws = Wg = mMq/2(mMg+Mc). The matrixC = y°y? is the charge
conjugation matrix. The effective interaction Lagrangian describing thelow of the mesorx,
to its constituent quarks is written in the form

=0 Xu(x)- 39, (a=ud). (5.3)

The stateX, breaks isospin symmetry maximally so the authors of [39] take the physicad sbate
be a linear superposition of thg andXy states according to

X = Xow = Xy €0SO + XqSing,

= 1.0+ 0.4(staph + 0.3(sysb. (5.1)
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Xn = Xnigh = —Xu Sin6 + Xy cos6. (5.4)

The mixing angled can be determined from fitting the ratio of branching ratios Eq. (5.1).
The coupling constargy in Eq. (5.3) will be determined from the compositeness condition:

Zx = 1— Ty (mg) =0,

wherely (p?) is the scalar part of the vector-meson mass operator. The corresgdhuie-loop
diagram describing the X-meson mass operator is shown in Fig. 9.

C
U
Xu
u
C

Figure 9: Diagram describing thi,-meson mass operator.

Xy

Next we evaluate the matrix elements of the transitins J/y + p(w) andX — D+ D*.
The relevant Feynman diagrams are shown in Fig. 10.

J /9

p(w)

Figure10: Feynman diagrams describing the dec¥ys> J/( + p(w) andX — D + D*.

Since the X(3872) is very close to the respective thresholds in both, ¢heastermediat®,
w andD* mesons have to be treated as off-shell particles. Using the calculated nhextmirgs for
the decayX — J/¢ + p(w) one can evaluate the decay widks— J/y + 2m(3m). We employ
the narrow width approximation for this purpose.

There are two new free parameters: the mixing afgleEq. (5.4) and the size parametgs.
We have varied the paramety in a large interval and found that the ratio

rXy—J/Y+3m)
M Xy —J/P+2m)

is very stable under variations @fx. Hence, by using this result and the central value of the
experimental data given in Eq. (5.14), one firtds +18.4° for X, ("+") and X, ("-"), respectively.
This is in agreement with the results obtained in both [} +-20° and [40]: 6 ~ +235°. The

~0.25
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decay width is quite sensitive to the change of the size paramgtef natural choice is to take a
value close td\;,, andA,, which are both around 3 GeV. We have varied the size paramgter
from 2.4 up to 4 GeV and found that the decay wibtiX — J/@ + n ) decreases from 0.25 MeV
monotonously. This result is in accordance with the experimental bbX{@3872) < 2.3 MeV
and the result obtained in [39]: 1.6 MeV.

In a similar way we calculate the width of the decay D°Dm® which was observed by the
Belle Coll. and reported in [37]. As in the previous case we have vayjeffom 2.5 up to 4 GeV
and found that the decay widfh(X, — D°D°r%) decreases from 1.1 MeV monotonously. We plot
the dependence of the calculated decay widths on the size parakgeteFig. 11.

15

— IxX-> p°+D° +n°), MeV
— — (X ->JAp +nm), MeV

A (GeV)

Figure 11: The dependence of the decay widfh&, — D°D°r) and (X — J/@ + nm) on the size
parametey.

Using the results of [21], one calculates the experimental rate ratio

(X — D°D°m0)

r(X_”/WWT):10.5j:4.7 (5.5)

The theoretical value for this rate ratio depends only weakly on the siaengder/\x

(X — D°DOm0)
(X — J/Yrtm) ltheor

=45+0.2, (5.6)

The theoretical error reflects tig dependence of the ratio. The ratio lies within the experimental
uncertainties given by Eg. (5.5).

The matrix element of the deca§(3872 — J/{ + y can be calculated from the Feynman
diagrams shown in Fig. 12.

The invariant matrix element for the decay is given by

M(Xq(P) = I/W(0h) +¥(dR)) = i(2m)*3™W (p—ch — o) & &y €] Tupv (A1, @)~ (5.7)
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J /4 J /1

(a) (b)

q

(c) (d)
Figure12: Feynman diagrams describing the de®ay» J/ @ + .

We have analytically checked on the gauge invariance of the unintegratesition matrix
element by contraction with the photon momentggwhich yieldsd, T,y (01, 02) = O using the
identities

S(k) 2 S(kz + d2) = S(kz2 +02) — S(kz) ,

1
/dr &'(—ta— (1-1)b)(a—b) = B(—b) — B(-a).
0

If one takes the on-mass shell conditions
&Pu=0  &),0w=0  gdp=0 (5.8)
into account one can write down five seemingly independent LorentzZistesc
Tupv (01, 02) = EquuvpTiWa + Eg,00vp 01 Wo + Eqyopip oy W + Eqyqopav Olap Wa + Eqyuvp .02 We
Further, using the gauge invariance condition
0 Tupv = U102Eqpuv (Wa +We) = 0
one hasd\V, = —\Ws which reduces the set of independent covariants to four:

Tupv (01, 02) = EquuvpTi WA + Eqyqpvp O Wo + Egyppp v Wa + <5q1qzuvq1p — 0102&q, uvp W4> .

The gauge invariance conditidd, = —\Ws provides for a numerical check on the gauge invariance
of our calculation as described further on.
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However, there are two nontrivial relations among the four covarianishvdan be derived by
noting [46] that the tensor

Tu[v1v2v3v4v5] = Ouv,Evovzvaus + cycl.(v1v2V3VaVs) (5.9)

vanishes in four dimensions since it is totally antisymmetric in the five indiegs,, v, V4, Vs).
Upon contraction W|thq1 q1 q2 andq2 q1 q2 one finds

2
U1€quvp + Equgevp iy + <5q1qzqu11p - Q1Q2€q1uvp> =0

O102€q,uvp — Eqapvp Uiy — EqgeupYey = 0.

It reduces the set of independent covariants to two. This is the ajpg@pumber of independent
covariants since the photon transition is described by two independent adeplds e.g. by thel
andM2 transition amplitudes.

The quantitie®\ are represented by the four-fold integrals

[ 1
_ 3
W= O/ dt 0/ &BF(t, B, B, Ba) (5.10)

where we have suppressed the additional dependence of the intégramdhe set of variables
P2, 2,03, My, Me, Sx,Sy/y With sy = 1/Ng ands;;y = 1/AJ/w The integrals in Eq. (5.10) have
branch points ap? = 4(my -+ m)? (diagram in Fig. 12-a) and af = 4n¢ (diagrams in Figs. 12-
b,c,d). At these points the integrals become divergent in the conventsd sdrert — co. Under
numerical check on gauge invariance of the amplitliglg (1, 02), we assume that the X-meson
momentum squared is below the nearest unitarity thresholdp?.e; 4m2. The gauge invariance
condition is independent of the overall couplirggsandg;,y, and thus the numerical check can be
done irrelevant of their values.

In the next step we introduce an infrared cutofiA? on the upper limit of the t-integration
in Eq. (5.10). In this manner one removes all possible singularities andthguarantees quark
confinement. However, the contributions coming from the bubble diagranigsn 22-b,c,d blow
up atp? = mg compare with the contribution from the diagram in Fig. 12-a. The bubble afiagr
are needed only to guarantee the gauge invariance of the matrix elemephyBmal applications
one should take into account only the gauge invariant part of the diagrkig. 12-a.

It is convenient to present the decay width via helicity or multipole amplitudes.las

FX = 3/ = o B (2 ) = 9 (a2 s a?) ()

121 g 12 me

where the helicity amplituddd, andHrt are expressed in terms of the Lorentz amplitudes as

HL = imxmy; /2] [W1+mzﬁ!(12\W3—W4] :

Iy
My
o g (1258 .
Mm%~ My
|G| = o (5.12)
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N — — F(X-> I+ 21, MeV
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Figure 13: The dependence of the decay widfhe{ — J/@ +y) andl (X — J/@ + 2m) on the size
parametery.

Proceeding in a such way one will get the dependence of the decay wigths+ J/ + y) and
(X — J/Y+2mn) plotted in Fig. 13.

Note that the radiative decay width fi&f, = —X,sin@ + X4 cos6 is almost an order of mag-
nitude less than foK;, = X, cos0 + X4sin6. If one takesA\x € (3,4) GeV with the middle point
NAx = 3.5 GeV then the ratio of the widths is equal to

FrX—=J/¢g+y)

(X — J/W+ 2m) Itheor
which fits very well the experimental data from the BELLE collaboration writlewn in their
Eq. (5.14).

—0.15+0.03 (5.13)

FX—J/g+y) 0.14+0.05 BELLE[41]

_ (5.14)
FX=J/Y+2m | 0224006 BABAR[42]

The last topic which we would like to discuss is the impact of the intermediate otaese
on the value of thd/-dissociation cross section, see [43]-[44]. The relevant s-chaliegram
is shown in Fig. 14.

We takel x = 1 MeV in the Breit-Wigner propagator and ggt = 3.5 GeV when calculating
the matrix elements. We plot the behavior of the relevant cross sections itB-i@ne can see that
in the case of charged D-mesons (left panel in Fig. 15) the maximum valhe ofoss section is
about 0.32 mb dE = 3.88 GeV. This result should be compared with the result of the cross section
o(J/Y+m— D+D*) ~ 0.9 mb atE = 4.0 GeV, see, [45] and the result of the cross section
ocJ/y+p—D+ 5*) ~ 2.9 mb atE = 3.9 GeV, see, [43]. Thus the X-resonance gives a sizable
contribution to thel / -dissociation cross section. It would be interesting to do a complete analysis
of the J/y dissociation cross section in view of our new results on the s-channtlmgdgion of
the X(3872) tetraquark state.
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p(w)

o]

J/p D*

Figure 14: Diagram describing the X-resonance contribution toXhg-dissociation process.
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Figure 15: The cross sections of the procesdgg +\° — X — D +D*. Charged D-mesons— left panel,
neutral D-mesons—right panel.
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6. Summary

e We have presented a refined covariant quark model which includesadfconfinement of
quarks.

e We have calculated the transition form factors of the hé&wymeson to light pseudoscalar
and vector mesons, which are needed as ingredients for the calculattoa sgmileptonic,
nonleptonic, and rare decays. Our form factor results hold in the fullrkatical range of
momentum transfer.

e We have made use of the calculated form factors to calculate the nonlepéemaigsBs —
DsDs, ... andBs — J/ @@, which have been widely discussed recently in the conteB ef
Bs—mixing and CP violation.

e We have applied our approach to baryon physics by using the same véthesconstituent
quark masses and infrared cutoff as in meson sector.

e \We have calculated the nucleon magnetic moments and charge radii and ctismedgnetic
form factors at low energies.

e The properties of th&X (3872 as a tetraquark have been studied in the framework of a co-
variant quark model with infrared confinement.

e The matrix elements of the off-shell transitioks— J/ + p(w) andX — D + D* were
calculated.

e The obtained results were then used to evaluate the widths of the experimebtdiywed
decaysX — J/y + 2m(3m) andX — D%+ DO+ r°.

e The possible impact of th¥(3872 on theJ/-dissociation process was disscussed.

e We have calculated the matrix element of the transi¥or> y+ J/( and have shown its
gauge invariance. We have evaluatedXhe> y+ J/( decay width and the polarization of
theJ/y in the decay.

e The comparison with available experimental data allows one to conclude th4{38&2
can be a tetraquark state.
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