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1. Interaction

Bound state formation and description in the framework of the relativistic quantum field
theory (QFT) is not yet a well-stated problem (see ref. [1, 2, 3]). TheQFT describes elastic
and inelastic scattering of free relativistic particles that are in a plane wave state when they are at a
large distance from each other. The QFT formulation is based on the perturbation theory, i.e. on the
coupling constant expansion series, where, in principal, any bound state cannot appear. Therefore,
the bound state problem requires one to go beyond the framework of the perturbation theory, where
the existing methods are not yet well-developed.

On the other hand, it is well known that the bound state energy spectrum can be determined
with a good accuracy in the framework of nonrelativistic quantum mechanics(NQM) when an
appropriate interaction potential is chosen. Nevertheless, the nonrelativistic Schrodinger equation
(SE), which mathematically correctly describes the bound states, is no longersufficient since for
the description of modern experimental results, obtained in both atomic [4] andhadronic physics
[5], it is necessary to take into account relativistic corrections.

Therefore, the real physics requires a creation of some mathematical solution of the bound
state problem which is based on the QFT. All the efforts made in this direction could be divided
into two directions.

The initial step of one direction is based on the statement that if there is a two-particle bound
state with the corresponding quantum numbers, then the elastic scattering amplitude of these two-
particles has a simple pole on the energy at a bound state mass point. On the basis of this idea the
Bethe-Salpeter [3, 6, 7] and the so-called quasi-potential equations [8]were formulated.

The other direction is based on the statement that the nonrelativistic SE is an efficient tool for
the bound state energy spectrum investigation and determination. The real relativistic corrections
are small, so the theoretical problem reduces to an obtaining of the relativisticcorrections to the
nonrelativistic interaction potential based on the QFT formalism. This idea underlies the Breit po-
tential [9] and the effective nonrelativistic quantum field theory of Caswell and Lepage [10]. Both
these approaches use the scattering matrix as a source of required corrections. In [10,11], the non-
relativistic QED method (NRQED) for the Coulomb bound state energy spectrum determination by
taking into account relativistic corrections was formulated. In hadronic physics, the hadron mass
spectrum description of the orbital and radial excited states is one the fundamental problems. At
the present stage, there are phenomenological quark potential models [12, 13] that well describe
the hadron mass spectrum. However, most of these models consist of many parameters most of
which are not physically justified or are applicable only for some particular cases.

There is another approach in the framework of the latter direction which is based on the Fock-
Feynman-Schwinger representation suggested in [14]. Later, this methodwas improved [15, 16]
and successfully applied [17] for the description of the hadron and glueball mass spectra. The
present work is a direct continuation of these works. The exact quantum-field Green functions
can be formally represented in the functional integral form. This functional integral evaluation
technique is still in its infancy; however, the existing representations can beused for obtaining the
nonrelativistic SE solution in the Feynman functional integral form with the potential consisting
of necessary relativistic corrections. Our investigations continue these efforts. In [18], the energy
spectrum evaluation technique is suggested which is based on the investigation of the asymptotic
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behavior of the vacuum averaging (of Green’s functions) of the scalar charged particle currents in
the external gauge field. In defining the correlation function asymptotic behavior the functional
integral form representation is used so that the averaging over the external gauge field can be done
precisely. The obtained representation is similar to the Feynman path integral [19] in nonrelativistic
quantum mechanics. In this case, the nonlocal interaction functional (potential), which appears due
to the gauge field (gluon) exchange, is defined by the Feynman diagram and contains a contribution
to both self-energy of the particles and the bound state formation. Thus, theinteraction potential is
defined by the every possible type Feynman diagrams with exchange of gauge fields.

The paper is organized as follows. In section 2,we describe in detail the determination of
the mass and constituent mass bound state system. In section 3, the mass spectrum of mesons
consisting ofc andb quarks, with the orbital and radial excitations is defined. The dependenceof
the constituent mass of the constituent particles on the mass of the initial state, aswell as radial
and orbital quantum numbers is determind. The obtained results are in satisfactory agreement with
the available experimental data. Finally, the main results of the calculations are summarized. In
Appendices the details of calculation of the energy spectrum bound state in the framework of the
oscillator representation are given.

2. Determining the mass of the relativistic bound state

We now briefly discuss the details of our approach. Let us denoteJ(x) = Φ+(x)Φ(x) as the
current of scalar charged particles. If we neglect the annihilation channel, then it is convenient to
represent the considered correlators as the averaging over the gauge fieldAα(x) of a product of the
Green functionsGm(x,y|A) of the scalar charged particles in the external gauge field:

Π(x−y) = 〈J(x)J(y)〉= 〈Φ+(x)Φ(x)Φ+(y)Φ(y)〉 (2.1)

= 〈Gm1(x,y|A)Gm2(y,x|A)〉A .

The Green functionGm(y,x|A) for the scalar particle in the external gauge field is determined from
the equation

[(
i

∂
∂xα

+
g
ch̄

Aα(x)

)2

+
c2m2

h̄2

]
Gm(x,y|A) = δ (x−y). (2.2)

The solution of (2.2) can be represented as a functional integral in the following way (for details
see [20]):

Gm(x,y|A) =
∞∫

0

ds
(4sπ)2 exp

{
−sm2− (x−y)2

4s

}∫
dσβ exp



ig

1∫

0

dξ
∂Zα(ξ )

∂ξ
Aα(ξ )



 . (2.3)

Here the following notation is used:

Zα(ξ ) = (x−y)αξ +yα −2
√

sBα(ξ ); (2.4)

dσβ = NδBβ exp



−1

2

1∫

0

dξ Ḃ2(ξ )



 ,

3
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with the normalization
Bβ (0) = Bβ (1) = 0 ;

∫
dσβ = 1,

whereN is the normalization constant. In averaged over the external gauge fieldAα(x) we limit
ourselves to the lowest order, i.e. we take into account only the two-point Gaussian correlator:

〈
exp

{
i
∫

dxAα(x)Jα(x)

}〉

A
= exp

{
−1

2

∫ ∫
dx dyJα(x)Dαβ (x−y)Jβ (y)

}
. (2.5)

HereJα(x) is the real current. The propagator of the gauge field has the following form:

Dαβ (x−y) = 〈Aα(x)Aβ (y)〉A = δα,β D(x−y)+
∂ 2

∂xα∂xβ
Dd(x−y), (2.6)

where

D(x) =
∫

dq
(2π)4

exp{iqx}
q2 , Dd(x) =

∫
dq

(2π)4

exp{iqx}
q2

d(q2)

q2 . (2.7)

So the external field exists only in a virtual state. The mass of the bound state isusually defined
through the correlation function in the following way:

M =− lim
|x−y|→∞

lnΠ(x−y)
|x−y| . (2.8)

Thus, if we know the correlation function, then we can determine the bound state mass.
From (2.8) one can see that for determination of the massM one needs to calculate correlation

function Π(x) in the asymptotics|x| → ∞. Substituting (2.3) into (2.1) and averaging over the
external gauge field we obtain:

Π(x) =
∫ ∞∫

0

dµ1 dµ2

(8π2x)2 J(µ1,µ2)exp

{
−|x|

2

(
m2

1

µ1
+µ1

)
− |x|

2

(
m2

2

µ2
+µ2

)}
. (2.9)

Here

J(µ1,µ2) = N1N2

∫∫
δ r1 δ r2exp



−1

2

x∫

0

dτ
[
µ1ṙ2

1(τ)+µ2ṙ2
2(τ)

]


exp{−W},

W =W1,1+W2,2−2W1,2, (2.10)

and following notation is used:

Wi, j =
g2

2
(−1)i+ j

x∫

0

x∫

0

dτ1 dτ2Z′(i)
α(τ1)Dαβ

(
Z(i)(τ1)−Z( j)(τ2)

)
Z′( j)

β (τ2). (2.11)

Representation (2.10) is analogous to the quantum Green function in the Feynman functional inte-
gral, when two particles with massesµ1 ĺ µ2 interacts via the nonlocal potentialWi, j . Therefore, we
call massm1 andm2 the current, and parametersµ1 andµ2 constituent masses. We emphasize that
in (2.10) the functional integration is made over the four-vectorsr1 = (~r1, r

(4)
1 ), r2 = (~r2andr(4)2 ).

4



P
o
S
(
B
a
l
d
i
n
 
I
S
H
E
P
P
 
X
X
I
)
0
6
0

Properties of mesons with beauty and charm in the relativistic Hamiltonian approach M.Dineykhan

The termWi, j , in this case, is defined by all kinds of Feynman diagrams. There are two types of
interactions: the first is the interaction of the constituent particle via the gaugefield the contribution
of which is defined by the termWi, j ,(i 6= j); the second is the interaction of the constituent particles
with each other, i.e. the self-energy diagram the contribution of which is defined by the termsW1,1

andW2,2. In the nonrelativistic limit the termsWi, j correspond to the potential interactions, whereas
the termsWj, j correspond to the nonpotential interactions which define the renormalizationmass
contribution.

In the asymptotics|x| → ∞ the integral (2.10) behaves like:

lim
|x|→∞

J(µ1,µ2) =⇒ exp{−xE(µ1,µ2)}, (2.12)

where the functionE(µ1,µ2) depends on the coupling constantg and parametersµ1, µ2, and is
independent of the massesm1, m2. If |x| → ∞ the integral (2.9) is calculated by the saddle point
method. The bound state mass is determined by the saddle -point:

M =
1
2

min
µ1,µ2

{
m2

1

µ1
+µ1+

m2
2

µ2
+µ2+2E(µ1,µ2)

}
. (2.13)

Thus, the problem reduced to calculation of the functional integral in (2.10). However, this integral
cannot be evaluated in a general form and is defined in various framework approaches. At present,
there are no exact mathematical methods for the evaluation of this integral. Therefore, we have to
apply some physical assumptions or approaches in order to somehow perform the integration over
the fourth components ofr(4)j . The integration over the fourth components effectively corresponds
to the transition to the nonrelativistic limit. In other words, we define the interactionpotential
with the corrections connected with the nonperturbative, relativistic and nonlocal characters of the
interaction. In particular, if we neglect the dependence of the functionalWi, j in (2.11) onr(4)1 and

r(4)2 , then the system (2.10) is reduced to the Feynman path integral of the scalarparticles with
the massesµ1 andµ2 in NRQM [19] with the local potential. In this approximation, according to
(2.10), the interaction Hamiltonian of the scalar particles with the massesµ1 andµ2 reads:

H =
1

2µ1
P2

1+
1

2µ2
P2

2+V(r1− r2), (2.14)

whereV(r1− r2) interaction potential, which is expressed in terms ofWi, j , thenE(µ1,µ2) is the
eigenvalue of the interaction Hamiltonian (2.14), i.ě.

HΨ(r1,r2) = E(µ1,µ2)Ψ(r1,r2). (2.15)

Then, from the minimum condition of (2.13) one obtains the equation forµ j :

µ j −
m2

j

µ j
+2µ j

dE(µ1,µ2)

dµ j
= 0 ; j = 1, 2. (2.16)

The parametersµ1, µ2 have the dimension of mass. In further calculations we introduce a new
parameter

1
µ

=
1
µ1

+
1
µ2

. (2.17)
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Then equation (2.13)takes the form:

M = µ1+µ2+µ
dE
dµ

+E(µ) ; E(µ1,µ2) = E(µ), (2.18)

where

µ1 =

√
m2

1−2µ2dE
dµ

; µ2 =

√
m2

2−2µ2dE
dµ

. (2.19)

In our approach, the energy spectrum and the wave function bound state are determined by the SE
with the constituent massµ1 andµ2. The corrections connected with the relativistic character of
the interaction are taken into account not only by the corrections to the interaction potential, but
also by the parametersµ1 andµ2 (constituent masses), which are defined in (2.16). Therefore, from
the SE with the constituent mass, we will determine the energy spectrum and wave function of the
atomic and hadronic bound states system by taking into account the relativisticcorrection.

Now we apply our approach for determining the mass and energy spectrum,as well as to de-
termine the decay width of mesons consisting ofb andc quarks with orbital and radial excitations.

3. Mess spectrum of mesons with orbital excitations
3.1 The Hamiltonian of the interaction.

Let us, we determine the mass spectrum of charmonium, bottom andBc mesons with spin-
spin and spin-orbit interactions is determined from the SE with the constituent mass. The total
interaction Hamiltonian of quarks is represented as:

H = Hc+Hspin, (3.1)

whereHc is the central Hamiltonian

Hc =
1

2µ
~P2+σ · r − 4

3
αs

r
. (3.2)

The second part of the Hamiltonian describes the spin-orbit interaction andis written in the standard
form (for details see [21, 22]):

Hspin= HSS+HLS+HTT. (3.3)

HereHSSis the spin-spin interaction Hamiltonian:

HSS=
2

3µ1 µ2
(S1S2) ∆Vv =

32 π αs (S1S2)

9µ1µ2
·δ (r) , (3.4)

alsoHLS is the describing the spin-orbital interaction:

HLS =
1

4 µ2
1µ2

2

1
r

{[(
(µ1+µ2)

2+2µ1µ2
)
(L ·S+)+(µ2

1 −µ2
2)(L ·S−)

] ∂
∂ r

Vv

−
[
(µ2

1 +µ2
2)(L ·S+)+(µ2

1 −µ2
2)(L ·S−)

] ∂
∂ r

Vs

}
, (3.5)

6
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and finally the tensor Hamiltonian of the interaction is

HTT =
1

12µ1µ2

[
1
r

∂
∂ r

Vv −
∂ 2

∂ r2Vv

]
S12 . (3.6)

HereVv is the vector potential corresponding to the one-gluon exchange:

Vv =−4αs

3
1
r

; (3.7)

andVs is the confinement potential

Vs = rσ ; (3.8)

and we introduced the following notation:

S+ = S1 +S2 ; S− = S1 −S2 ; (3.9)

S12 =
4

(2ℓ+3)(2ℓ−1)

[
L2S2− 3

2
(LS)−3(LS)2

]
.

Using expressions (3.1-3.9) for the interaction Hamiltonian we calculate the mass spectrum of
mesons.

3.2 The energy spectrum of quarkonium

Now, using the explicit form of the total Hamiltonian let us determine the energy spectrum of
quarkonium. We determine the energy spectrum and wave functions from the SE

HΨ = EΨ . (3.10)

we will apply the oscillator-representation (OR) method [23] for determinationof eigenvalues and
the wave functions(WF) from the SE (3.10). Before determining the energy spectrum and WF of
the SE by means of the OR method [23] it should be recalled that this method is based on the ideas
and techniques of quantum field theory. One of the essential differences of QFT from quantum
mechanics is that quantized fields, which represent an assembly of an infinite number of oscillators
for the ground state (or vacuum), keep their oscillatory nature in the quantum-field interaction.
In QM eigenfunctions of most potentials differ from the Gauss behaviour of the oscillatory wave
function. Therefore, the variables in the original SE must be changed sothat the modified equation
should have solutions with the oscillator behavior at large distances. Since this transformation is
not a canonical one, after the transformation we have a new system with another set of quantum
numbers and wave functions which contains, however, a subset of the original wave functions. The
transformation of variables leading to the Gaussian asymptotic behavior in the expanded space is
one of the basic elements of the ORM. Let us note that a similar idea was discussed by Fock in
the solution of the problem about the hydrogen spectrum using the transformation into the four-
dimensional momentum space [24]. According to the statements above, let us change the variables
in the following way (see details in refs.[23, 25]):

r = q2ρ , Ψ ⇒ Ψ(q2) = q2ρℓΦ(q2). (3.11)

7
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Using the atomic system of units(h̄ = c = 1), considering (3.1)-(3.9) and after some standard
simplifications from (3.10) obtain for the modified Schrodinger equation:

{
− 1

2

(
∂ 2

∂q2 +
d−1

q
∂
∂q

)
−4ρ2 µE q2(2ρ−1)+4ρ2 µ σ q2(3ρ−1)− (3.12)

− 16 ρ2 µ αs

3
·q2(ρ−1)+

64αsµρ2

9πµ1µ2
· (~S1~S2) lim

Λ→∞

∫ Λ

0
dt q2(ρ−1)t sin(tq2ρ)−

− σρ2µ
µ2

1 µ2
2

q2(ρ−1) [((µ2
1 +µ2

2)
)
(L ·S+)+(µ2

1 −µ2
2)(L ·S−)

]
+

4µρ2αs

3µ1µ2
· S12

q2(ρ+1)
+

+
4µρ2αs

3 µ2
1µ2

2q2(ρ+1)

[(
(µ1+µ2)

2+2µ1µ2
)
(L ·S+)+(µ2

1 −µ2
2)(L ·S−)

]
}

Φ(q2) = 0 ,

whered is the dimension of the auxiliary space:

d = 2+2ρ +4ρℓ. (3.13)

As a result of the change of variables, we get the modified SE in thed-dimensional auxiliary
spaceRd. From (3.12) and (3.13) it follows that the orbital quantum numberℓ has entered into the
dimensiond of the space. This technique allows us to determine all characteristics we areinterested
in the spectrum and WF by solving the modified SE only for the ground state in thed-space. The
wave functionΨm(q2) of the ground state depends only on theq2 variable. Thus, the operator

∂ 2

∂q2 +
d−1

q
∂
∂q

≡△q, (3.14)

can be identified with the Laplacian in theRd space which acts on the ground state wave function
depending only on the radiusq. The modified SE written as

HΦ(q) = ε(E) Φ(q), (3.15)

can be seen, according to (3.12),ε(E) is to be equal to zero inRd

ε(E) = 0. (3.16)

We will consider this equation as the condition for determination of the energy spectrumE of the
initial system. Following the OR method, let us represent the canonical variables in terms of the
creation(a+) and annihilation(a) operators in theRd space

q j =
a j +a+j√

2ω
, Pj =

√
ω
2
·
a j −a+j

i
, j = 1, ...,d, [ai ,a

+
j ] = δi, j , (3.17)

whereω is the oscillator frequency which has been unknown yet. Substituting (3.17)into (3.15)
and carrying out ordering by the creation and annihilation operators we obtain

H = H0+ ε0(E)+HI . (3.18)

HereH0 is the Hamiltonian of the free oscillators:

H0 = ω(a+j a j) (3.19)

8
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andε0 is the energy of the ground state in the zero approximation of OR:

ε0(E) =
dω
4

− 4ρ2E µ
ω2ρ−1

Γ(d/2+2ρ −1)
Γ(d/2)

− 16αsµρ2

3ωρ−1

Γ(d/2+ρ −1)
Γ(d/2)

+

+
4ρ2σ µ
ω3ρ−1 · Γ(d/2+3ρ −1)

Γ(d/2)
+

32αsµρ
9µ1µ2

· (
~S1~S2) ωd/2

Γ(d/2)
·δℓ,0−

− ρ2σ µ
M2

1 ωρ−1
· Γ(d/2+ρ −1)

Γ(d/2)
+

4αsµρ2S12

3 µ1µ2
· ωρ+1Γ(d/2−ρ −1)

Γ(d/2)
+

+
4αsµρ2

3 M2
2

· ωρ+1Γ(d/2−ρ −1)
Γ(d/2)

. (3.20)

Here the following notation is used:

1

M2
1

=
1

µ2
1 µ2

2

[
(µ2

1 +µ2
2)(L ·S+)+(µ2

1 −µ2
2)(L ·S−)

]
;

1

M2
2

=
1

µ2
1 µ2

2

[(
(µ1+µ2)

2+2µ1µ2
)
(L ·S+)+(µ2

1 −µ2
2)(L ·S−)

]
. (3.21)

The interaction HamiltonianHI can be represented in the normal form of the creationa+ anda
operators and it does not contain the quadratic terms of the canonical variables

HI =

∞∫

0

dx
∫ (

dη√
π

)d

exp
{
−η2(1+x)

}
: e−i

√
xω(qη)

2 : (3.22)

[
− 4ρ2µ

ω2ρ−1

Ex−2ρ

Γ(1−2ρ)
+

4ρ2µ
ω3ρ−1

σx−3ρ

Γ(1−3ρ)
− 16αsµρ2

3ωρ−1

x−ρ

Γ(1−ρ)
−

− σρ2µ
M2

1ωρ−1

x−ρ

Γ(1−ρ)
+

4ρ2µαsS12

3µ1µ2

ωρ+1xρ

Γ(1+ρ)
+

4ρ2µαs

3M2
2

ωρ+1xρ

Γ(1+ρ)
+

+
16ρ2µαs(~S1~S2)

9πµ1µ2
lim

Λ→∞

∞

∑
j=0

(−1) j

(2 j +1)!
Λ2 j+3

2 j +3
x−2ρ−2ρ j

ω2ρ+2ρ j−1Γ(1−2ρ −2ρ j)

]
.

Here :⋆ : is a symbol of normal ordering, and we used the notation:

e−x
2 = e−x−1+x− 1

2
x2.

Some details of the representation in the normal form of the interaction HamiltonianHI are given
in Appendix A. The contribution of the interaction Hamiltonian is considered as small perturba-
tion. In quantum field theory, after the representation of the canonical variables in terms of the
creation and annihilation operators and after transformation of the interaction Hamiltonian into the
normal form, the requirement of the absence of the second order field operators is equivalent, in
essence, to the renormalization of the coupling constant and the wave function [26]-[28]. More-
over, such a procedure permits one to take the main contribution into consideration in terms of
the mass renormalization and in terms of the vacuum energy. In other words,all quadratic terms
are completely included in the free oscillator Hamiltonian. This requirement allowsformulate the
following condition, according to the OR [23]

∂ε0(E)
∂ω

= 0 , (3.23)

9
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in order to find the frequencyω of the oscillator, which determines the main quantum contribution.
Taking into account (3.20), from equations (3.16) and (3.23) we can calculate the energy spectrum
of the initial systemE. In the framework of the OR method for various potentials [25] it has been
shown that the corrections connected with the interaction Hamiltonian are the first order corrections
identically equal to zero and the second order corrections are less than one per cent. So let us restrict
ourselves only to the consideration of the zeroth order approximation.

3.3 The mass spectrum of the mesons for the ground state.

Let us determine the mass spectrum and wave functions of mesons consistingof theb andc
quarks. First of all, we consider the basic state, i.e, determine the properties of ηc, J/ψ , ηb, ϒ and
Bc - mesons taking into account the spin-spin interaction. From (3.20) we get for the ground state

ε0(E) =
dω
4

− 4ρ2Eµ
ω2ρ−1

Γ(3ρ)
Γ(1+ρ)

− 16αsµρ2

3ωρ−1

Γ(2ρ)
Γ(1+ρ)

+
4ρ2σ µ
ω3ρ−1

Γ(4ρ)
Γ(1+ρ)

+
16αsµρωρ+1

3µ1µ2

[s(s+1)−3/2]
Γ(1+ρ)

, (3.24)

wheres is the spin of mesons. In the this case, the parameterω is defined from the following
equation:

ω3ρ − 16αsρ2ω2ρ µ
3

Γ(2ρ)
Γ(2+ρ)

− 4ρ2µσΓ(4ρ)
Γ(2+ρ)

+
16αsρµ
3µ1µ2

ω4ρ [s(s+1)−3/2]
Γ(1+ρ)

= 0 (3.25)

and for the ground state energy we obtain:

E = min
ρ

{
ω2ρΓ(2+ρ)
8ρ2µΓ(3ρ)

− 4αsωρΓ(2ρ)
3Γ(3ρ)

+

+
σΓ(4ρ)

ωρΓ(3ρ)
+

4αs[s(s+1)−3/2]ω3ρ

9ρµ1µ2Γ(3ρ)

}
. (3.26)

According to (2.16), mass of singlet triplet states are determined by the system of equations

µ1−
m2

1

µ1
+2µ1

dE
dµ1

= 0 ;

µ2−
m2

2

µ2
+2µ2

dE
dµ2

= 0 . (3.27)

Herem1 andm2 are the current masses of the quarks. As follow the experimentally [5] fittedvalue
of the current massesc andb quarks is:

mc = 1.275±0.025GeV;

mb(1S) = 4.65±0.03GeV. (3.28)

The value of the running coupling constant of the quark-gluon interactions is represented as:

αs =
4π

β0 ln( µ2
12

Λ2 )
; β0 = 11− 2

3
nf ; µ12 =

2µ1µ2

µ1+µ2
, (3.29)
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wherenf is the flavor quantum number, andΛ = 0.169GeV is the scale of confinement for heavy
quarks. Then the mass of mesons consisting of these quarks is defined as:

M =
1
2

(
µ1+

m2
1

µ1
+µ2+

m2
2

µ2

)
+E. (3.30)

The results of numerical calculations are introduced in Table 1. Accordingto (3.28), for the current
quark masses use the valuesmc = 1.275GeV andmb = 4.62GeV. The oscillator frequencyω and
the constituent quark massesµq are determined from the equation presented in (3.25) and (3.28),
respectively. The numerical results for the this parameters also given in Table 1. In this case, the
accuracy of calculations are:δµ ∼ 7.2·10−10 andδω ∼ 1.8·10−9, for charmonium.

Table 1. The mass spectrum of mesons consisting of b and c quarks
for the ground state. The experimental are data from work [5].

c̄c b̄b b̄c

S= 0 mc GeV 1.275 - 1.275
mb GeV - 4.62 4.62

αs 0.30366 0.194679 0.248935
σ GeV2 0.195 0.153 0.195
E GeV 0.413530 0.157253 0.363173

ρ 0.526448 0.651103 0.46495
ωρ GeV 0.652 1.164 0.648335
µc GeV 1.42862 - 1.51306
µb GeV - 4.73493 4.68082

Mour MeV 2980.05 9400.04 6.2773
Mexp MeV 2980.3±1.2 9390.9±2.8 6277±4

|Ψ(0)|2 GeV3 0.047003 0.196457 0.0525517
fη GeV 0.435053 0.500795 0.316955

S= 1 αs 0.299085 0.194459 0.247683
E 0.519023 0.216613 0.412532
ρ 1.03926 1.24871 1.11493

ωρ GeV 1.4311 3.4511 2.0512
µc GeV 1.47617 - 1.53652
µb GeV - 4.75281 4.71302

Mour MeV 3096.44 9.4603 6.33071
Mexp MeV 3096.916±0.11 9460.3±0.26 -

|Ψ(0)|2 GeV3 0.1004 0.5973 0.219078
fη GeV 0.62372 0.8704 0.644412

Γour keV 6.135 1.330 -
Γexp keV 5.55±0.14 1.340±0.018 -

From Table 1 we can see that the constituent quark mass is greater than the current masses.
According to (3.29), with changing of the constituent quark masses the running coupling constant
of quark gluon interactions also changed the values are also given in Table 1. WF in the OR

11
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method is defined by two parametersρ andω , the value of these parameters is also presented in
Table 1. From Table 1, we see that our results for the meson masses are in good agreement with
experimental data. The value of WF at the originΨ(0) is in Table 1. The calculation details of
Ψ(0), with the orbital and radial excitation are presented in Appendix C. From (C.8) for the ground
state we have:

|Ψ(0)|2 = 1
4π

ω3ρ

ρΓ(3ρ)
. (3.31)

Using|Ψn(0)|2 leptonic decay constant is determined by the vector and pseudoscalar mesons:

f NR
p = f NR

v =

√
12

Mp,v
|Ψp,v(0)|, (3.32)

whereMp,v mass of vector and pseudoscalar mesons. The leptonic decay width of vector mesons
is determined as follows:

Γ(V → ℓℓ) =
16πα2

eme2
Q

M2
V

|Ψ(0)|2(1− 16αs

3π
) (3.33)

whereαem= 1/137 is the electromagnetic coupling constant;eQ is the quark current, andMV - is
the vector meson mass. The obtained numerical value for the ground state are in Table 1.

3.4 The mass spectrum mesons with orbital excitation

Let us calculate the energy and the mass spectrum of mesons consisting ofc andb quarks with
orbital excitation. From (3.4) we see that forℓ 6= 0 spin interactions are determined only by the
spin-orbit interaction. In this case the interaction HamiltonianHI does not give the contribute. First
of all, we consider the caseS= 0. Taking into account (3.20) from (3.23) we obtain the equation
for determining the frequencyω :

ω3ρ −ω2ρ · 16αsµρ2

3
Γ(2ρ +2ρℓ)

Γ(2+ρ +2ρℓ)
+

4ρ2µσΓ(4ρ +2ρℓ)
Γ(2+ρ +2ρℓ)

= 0 (3.34)

and for the energy spectrum we have

E = min
ρ

{
ω2ρΓ(2+ρ +2ρℓ)
8ρ2µΓ(3ρ +2ρℓ)

− αωρΓ(2ρ +2ρℓ)
3Γ(3ρ +2ρℓ)

+
σ

ωρ · Γ(4ρ +2ρℓ)
Γ(3ρ +2ρℓ)

}
(3.35)

Taking into account (3.34), (3.35) and (3.27) from (3.30) we determine the mass spectrum of
mesons with orbital excitation. The numerical results are given in Table 2 and3 for the char-
monium and bottomium, respectively.

Let us calculate the energy spectrum of mesons spin triplet stateS= 1 with orbital excitations.
First of all we define the contribution of the standard spin-orbit interactionto the energy spectrum.
Taking into account (3.9) and after some simplifications, we determine the contributions spin orbit
interactions to triplet state. The our results represented in Table 4. In the thiscase the parameterω
is determined from the next equation

ω3ρ −ω2ρ · 16αsµρ2

3
Γ(2ρ +2ρℓ)

Γ(2+ρ +2ρℓ)
+

4σρ2µΓ(4ρ +2ρℓ)
Γ(2+ρ +2ρℓ)

−ω2ρ σρ2µ
M2

1

Γ(2ρ +2ρℓ)
Γ(2+ρ +2ρℓ)

+

+
4ρ2αsµ

µ1µ2
· S12ω4ρΓ(2ρℓ)

Γ(2+ρ +2ρℓ)
+

ρ2µαsω4ρ

M2
2

· Γ(2ρℓ)
Γ(2+ρ +2ρℓ)

= 0 (3.36)

12
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and for the energy we get:

E = min
ρ

{
ω2ρΓ(2+ρ +2ρℓ)
8ρ2µΓ(3ρ +2ρℓ)

− αωρΓ(2ρ +2ρℓ)
3Γ(3ρ +2ρℓ)

+
σ

ωρ · Γ(4ρ +2ρℓ)
Γ(3ρ +2ρℓ)

−

− σ
4M2

1

Γ(2ρ +2ρℓ)
Γ(3ρ +2ρℓ)

+
αsS12

3µ1µ2

ω3ρΓ(2ρℓ)
Γ(3ρ +2ρℓ)

+
αsω3ρ

M2
2

2ρℓ
Γ(3ρ +2ρℓ)

}
(3.37)

First of all, for the specific values of the orbital quantum numberℓ in which given in Table 2,
from (3.21) we define the value ofM2

1 ĺ M2
2. Numerical results for theP ĺ D states shown in Table

2 and 3, respectively.

Table 2. The mass spectrum of charmonium with orbital
excitations. The experimental data are from [5].

J = ℓ−1 J = ℓ J = ℓ+1 J = ℓ

S=1 S=1 S=1 S=0

ℓ= 1 αs 0.3013 0.2981 0.2987 0.2978
E GeV 0.923955 0.960388 0.976759 0.945799

ρ 0.808694 0.613677 0.775801 0.230383
ωρ GeV 1.14386 0.618518 0.851913 0.276542
µc GeV 1.45188 1.48592 1.47997 1.48936

Mour Mev 3495.5 3540.33 3555.15 3526.6
Mexp Mev 3416.75±.31 3510.66±.07 3556.2±.09 3525.41±.16

|Ψ(0)|2 GeV3 0.116538 0.0325412 0.0534605 0.00557
f GeV 0.632513 0.332113 0.424794 0.13763

ℓ= 2 αs 0.2987 0.2944 0.2962 0.2936
E GeV 1.2229 1.22267 1.22909 1.21638

ρ 0.612313 0.595989 0.366686 1.39076
ωρ GeV 0.595536 0.560571 0.323594 5.59744
µc GeV 1.53846 1.5278 1.50771 1.5371

Mour Mev 3.81728 3.8145 3.81501 3.81107
|Ψ(0)|2 GeV3 0.1165385 0.025338 0.0077298 1.34144

f GeV 0.632505 0.282333 0.155929 2.05519

13
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Table 3. Bottomonium mass spectrum with orbital
excitations. The experimental data are from [5].

J = ℓ−1 J = ℓ J = ℓ+1 J = ℓ

S=1 S=1 S=1 S=0

ℓ= 1 αs 0.1944 0.1943 0.1943 0.1946
E GeV 0.635856 0.6479 0.669121 0.657241

ρ 0.628027 0.780369 0.312187 0.0915
ωρ GeV 0.985258 1.36504 0.49 0.273495
µb GeV 4.7567 4.76124 4.76007 4.76134

Mour Mev 9879.78 9892.09 9913.24 9901.44
Mexp Mev 9859.44±0.42 9892.78±0.26 9912.21±0.26 –

|Ψ(0)|2 GeV3 0.0514891 0.09099 0.002881 0.03731
f GeV 0.250077 0.332242 0.186755 0.21496

ℓ= 2 αs 0.1939 0.1939 0.1939 0.1939
E GeV 0.906587 0.911645 0.916257 0.911824

ρ 0.184697 0.177198 0.169101 0.0634526
ωρ GeV 0.327369 0.321223 0.315 0.2129
µb GeV 4.79492 4.79433 4.7926 4.7967

Mour Gev 10.153 10.158 10.1625 10.1583
|Ψ(0)|2 GeV3 0.000194 0.0089142 0.000156 0.0000124

f GeV 0.015147 0.102619 0.0136138 0.0038378

Table 4. Contribution of the spin-orbit interaction
to the triplet state

J ℓ+1 ℓ ℓ−1

(~L~S+) ℓ −1 −(ℓ+1)
(~L~S−) −1 −(ℓ+1) ℓ

S12 − 2ℓ
2ℓ+1 2 −2(ℓ+1)

2ℓ−1

3.5 The mass spectrum mesons with radial excitation.

In this section, we will determine the mass and energy spectrum of mesons with only radial
excitation. In this case, the energyε0(E) of the zeroth approximation in the OR are given by (3.24),
and for the interaction Hamiltonian of (3.22) we have:

HI =

∞∫

0

dx
∫ (

dη√
π

)d

e−η2(1+x) : e2i
√

xω(qη)
2 :

{
− 4ρ2µ

ω2ρ −1
Ex−2ρ

Γ(1−2ρ)
+

4ρ2µ
ω3ρ−1

σx−3ρ

Γ(1−3ρ)
− 16αsµρ2

3ωρ−1

x−ρ

Γ(1−ρ)

+
16ρ2µαs(~S1~S2)

9πµ1µ2
lim

Λ→∞

∞

∑
j=0

(−1) j

(2 j +1)!
Λ2 j+3

(2 j +1)
x−2ρ−2ρ j

ω2ρ+2ρ j−1Γ(1−2ρ −2ρ j)

}
(3.38)

In this case, the energy spectrum has the following form [20]:

εn(E) = ε0(E)+2n2ω + 〈n2|Hc
I |n2〉+ 〈n2|Hs

I |n2〉 (3.39)
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whereHc
I is the Hamiltonian of the interaction of the central part,Hs

I is the spin part of the inter-
action Hamiltonian. The explicit form of the WF with the radial excitation is presented in (A.13).
The details of the calculation of the matrix element〈n|HI |n〉 given in Appendix B.

After some simplification, the energy spectrum with the radial excitations we obtain:

En2 =
ω2ρΓ(2+ρ)
8ρ2µΓ(3ρ)

1+ n2
1+ρ

1+W1
− σΓ(4ρ)

ωρΓ(3ρ)
1+W3

1+W1
+

4αs[S(S+1)−3/2]ω3ρ

9ρµ1µ3Γ(3ρ)
1+Ws

1+W1
(3.40)

In this case, the oscillator frequency is determined from the following equation:

ω3ρ − 16αsµρ2ω2ρΓ(2ρ)
3Γ(2+ρ)

(2ρ −1)W̃2− (ρ −1)W̃1

W̃1+(2ρ −1)(1+ 4n2
1+ρ )

+
4ρ2µσΓ(4ρ)

Γ(2+ρ)
(2ρ −1)W̃3− (3ρ)W̃1

W̃1+(2ρ −1)(1+ n2
1+ρ )

+

+
16αsµρ[S(S+1)−3/2]ω4ρ

9µ1µ2Γ(2+ρ)
(2ρ −1)W̃s+(1+ρ)W̃1

W̃1+(2ρ −1)(1+ n2
1+ρ )

(3.41)

where the following notation is used;̃Wj = 1+Wj , j = 1,2,3 ĺ s: Using (3.40) from (2.18) and
(2.19) we determine the meson mass and the constituent mass of quarks, and the numerical results
are shown in Table 5.

Table 5. The mass spectrum of mesons consisting of b and c quarks
with radial excitation. Experimental data are from [5].

c̄c b̄b b̄c

S= 0 αs 0.2745 0.19027 0.22974
E GeV 0.939195 0.704855 0.79797

ρ 0.504507 0.45040495 0.537141
ωρ GeV 0.61426 0.913661 0.732053
µc GeV 1.79312 - 2.01377
µb GeV - 5.115 4.841

Mour MeV 3638.9 9992.76 6833.53
Mexp MeV 3638.9±1.3 - -

|Ψ(0)|2 GeV3 0.0409795 0.161118 0.0649499
fη GeV 0.367611 0.439865 0.33772

S= 1 αs 0.27479 0.18989 0.22996
E 1.01391 0.728737 0.836904
ρ 0.644051 0.452765 0.571577

ωρ GeV 0.629255 0.905397 0.73425
µc GeV 1.7888 - 2.03489
µb GeV - 5.1501 4.896

Mour MeV 3711.48 10023.3 6881.57
Mexp MeV 3686.109±0.012 10023.26±3.1 -

|Ψ(0)|2 GeV3 0.025839 0.15568 0.0604622
f GeV 0.289038 0.43172 0.324705

Γour keV 0.691849 0.260597 -
Γexp keV 2.35±0.04 0.612±0.011 -
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4. The width of the radiative decay.

Let us we determine the width of the radiative decay orE1 – transition. Matrix elementE1
the transition from state(n2s+1J),i, to the state(n′2s′+1J′), f , written as:

M(i → f )µ = δs,s′(−1)s+J+J′+1m′
k
√
(2J+1)(2J′+1)(2ℓ+1)(2ℓ′+1)×

×
(

J′ 1 J
−M′ µ M

)(
ℓ′ 1 l
0 0 0

)(
ℓ s J
J′ 1 ℓ′

)
eQ Ii, f , (4.1)

where the usual notation in brackets 3j – symbol, andeQ is the quark charge, andIi, f is radial
matrix elementi → f transition:

Ii f =

∞∫

0

dr r2Ψ∗
n′ℓ′(r)rΨnl(r) (4.2)

whereΨi, f is the radial wave function of the initial and final state. Then the width of the radiative
decay is defined as follows:

Γ(i → f + γ) =
4αem e2

Q

3
(2J′+1)SE

i f k3 |Ii, f |2 (4.3)

wherek is the photon momentum and it is equal to

k=
m2

i −m2
f

2mi
(4.4)

andmi ,mf mass of the initial and final state. Statistical factorSE
i f = SE

f i is:

SE
i f = max(ℓ,ℓ′)

{
J 1 J′

ℓ′ s ℓ

}2

(4.5)

Thus for determine we need to calculate the transition of matrix elements, which are represented
in (4.1). Details of calculationIi→ f given in Appendix C. At specific transitionsIi→ f determined
from (C.14), and the numerical results of the decay width shown in the Table6.
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Table 6. The E1 radiative decay rates.

Transition k Ii f Γour(i → f ) Γexp(i → f )
i → f MeV GeV−1 keV keV

χc0 → γ +J/ψ 376.3 2.33 139.312 -
χc1 → γ +J/ψ 416.06 1.73 310.3 295.84
χc2 → γ +J/ψ 429.12 2.18 450.5 ∼ 500

13D1 → γ +11P0 308.22 1.78 267.92 ∼ 299
13D1 → γ +11P1 266.90 3.274 146.9 ∼ 99
13D1 → γ +11P2 253.13 2.751 3.54 ∼ 3.88

χc0 → γ +ϒ 410.57 1.422 16.81 -
χc1 → γ +ϒ 422.366 1.57 66.9 -
χc2 → γ +ϒ 442.592 0.6644 22.97 −

13D1 → γ +11P0 269.544 0.1526 0.33 −
13D1 → γ +11P1 257.56 0.135 0.06 −
13D1 → γ +11P2 236.929 0.4988 0.024 −

4.1 Conclusion

On the basis of the obtained results, the following conclusions can be made:

• Our approach is based on the investigation of the asymptotic behaviour of thecorrelation
functions for scalar charged particles in an external gauge field and wedetermined the in-
teraction Hamiltonian including the relativistic corrections. The kinetic energy term of in-
teraction Hamiltonian is expressed in terms of the constituent mass of bound-state forming
particles and the potential energy term is determined by the contributions of a every pos-
sible type of Feynman diagrams with exchange of gauge fields. The mass spectrum of the
bound state is analytically derived. The mechanism for arising of the constituent mass of the
relativistic bound state forming particles is explained.

• In our approach, constituent quark masses are not free parameters,are determined for each
quarkonium separately and differ from the mass of a free state, i.e., fromthe valence quark
masses. In this case, the constantαs of the strong interaction differents from each other for
meson. Free parameter in the our approach is the string tensionσ and for quarkonium con-
sisting ofc quarks isσ = 19.5 GeV2 and for bottomonium consisting ofb is σ = 15.3 GeV2.

• In the framework of our approach the mass splitting between the singlet and triplet states is
determined and the radiative decay widths of the ¯cc, b̄bandb̄csystems are calculated.

Appendix A.
The crucial point of calculations in OR [23] is the representation of the canonical variables in the
normal form. Therefore, we give examples of this representation for various potentials. We will
give here the details of representation in the normal form for the additionalpotential. Taking into

17
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account the relations

eikaeipa+ = eipa+eika ·e−(kp), (A.1)

wherek andp are vectors ind-dimensional space. Let us consider the expression:

Yj(k) = eikaa+j e−ika. (A.2)

When~k= 0 from (A.2) we get

Yj(0) = a+j . (A.3)

Taking into account (A.3) from (A.2) fordYj(k)/dkl we have:

dYj(k)
dkl

= eikai
[
al ,a

+
j

]
e−ika = iδ jl . (A.4)

Integrating overkl and taking into account (A.3), we get:

Yj(k) = eikaa+j e−ika = a+j + ikj. (A.5)

Similarly, we can establish the relation:

e−ipa+a je
ipa+ = a j + ip j ,

eαa+aa je
−αa+a = a je

−α

eαa+aa+j e−αa+a = a+j eα . (A.6)

Using these relations, we represent the normal form of various types ofinteraction potentials. Let
us consider the detail of the specific potentials in normal form:
a) the increasing potential:

q2n = (−1)n dn

dxne−xq2

|x=0 (A.7)

= (−1)n dn

dxn

∫ (
dη√

π

)d

e−η2(1+x/ω) : e−2i
√

x(qη) :|x=0

=
1

ωn

Γ(d
2 +n)

Γ(d
2)

+ : q2 :
n

ωn−1

Γ(d
2 +n)

Γ(d
2 +1)

+
(−1)n

ωn

dn

dxn

∫ (
dη√

π

)d

e−η2(1+x) : e−2i
√

xω(qη)
2 :|x=0 ,

wheren= 1,2, ... is a integer and positive,
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b) the power potential:

q2τ =

∞∫

0

dx
Γ(−τ)

x−1−τe−xq2

=

∞∫

0

dx
Γ(−τ)

x−1−τ
∫ (

dη√
π

)d

e−η2(1+x/ω) : e−2i
√

x(qη) :=

=
1

ωτ
Γ(d

2 + τ)
Γ(d

2)
+ : q2 :

τ
ωτ−1 ·

Γ(d
2 + τ)

Γ(d
2 +1)

+

+
1

ωτ

∞∫

0

dx
Γ(−τ)

x−1−τ
∫ (

dη√
π

)d

e−η2(1+x) : e−2i
√

xω(qη)
2 :, (A.8)

whereτ 6= n and the notation:ex
2 = ex−1−x−x2/2 is used.

c) In the general case we use the capacity of the Fourier transform:

W(q2) =
∫ (

dk
2π

)d

W̃(k2)ei(kq)

=
∫ (

dk
2π

)d

W̃(k2)exp

(
ik

a+a+√
2ω

)

=
∫ (

dk
2π

)d

W̃(k2)exp

(
− k2

4ω

)
exp

(
ik

a+√
2ω

)
exp

(
ik

a√
2ω

)

=
∫ (

dk
2π

)d

W̃(k2)exp

(
− k2

4ω

)
: eikq : . (A.9)

Here(kq) = ∑k jq j and

W̃(k2) =
∫
(dx)dW(x2)ei(kx) .

Using these relations, which are given in equations (A.7-A.9), normal forms of different potentials
are defined. In particular, the (A.7) obtain forn= 1, 2, 3 :

q2 =
d

2ω
+ : q2 :, (A.10)

q4 =
d(d+2)

4ω2 +
d+2

ω
: q2 : + : q4 :,

q6 =
d(d+2)(d+4)

8ω3 +
3(d+2)(d+4)

4ω2 : q2 :

+
3(d+4)

2ω
: q4 : + : q6 : .

In determining the energy spectrum of different potentials with radial excitation need to define
the operators:(a+a+)n or (aa)n. For these operators, we use the following representation:

(
a+a+

)n
= (−1)n dn

dβ n exp{−β (a+a+)}
∣∣∣∣∣
β=0

× (A.11)

× (−1)n dn

dβ n

∫ (
dξ√

π

)d

exp{−ξ 2−2i
√

β (a+ξ )}
∣∣∣∣∣
β=0

, .
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Will also use the following relation:

ei(kq)
2 = Pve

iv(kq),

wherePv –operator, working only on the variablev, and the action of the operator is defined as
follows:

Pv = const= 0, Pvv
n = 0, n≤ 2, Pvv

n = 1 n> 2.

These relations are often found in the calculation of matrix elements of the various physical pro-
cesses in the OR. Using these representations we have an expression for ε0(E) – the ground state
energy, as well as forHI – the interaction Hamiltonian.

d) Determination of the normalization constant of the wave function.
In the OR the wave function with radial excitation is defined as:

|nr〉=Cnr

(
a+j a+j

)nr

|0〉 , j = 1, . . . ,d, (A.12)

whereCn is the normalization constant and is determined by the conditions:

1≡ 〈n|n〉=C2
n〈0|(aiai)

n
(

a+j a+j

)n
|0〉 . (A.13)

Considering(A.11) and (A.1), after some simplifications of (A.13) we have:

1=C2
n

∂ 2n

∂αn∂β n

∫ (
dξ√

π

)d ∫ ( dη√
π

)d

e−ξ 2−η2 × (A.14)

×〈0|e−2i
√

α(aξ ) ·e−2i
√

β (a+η)|0〉
∣∣∣∣∣
α,β=0

=

=C2
n

∂ 2n

∂αn∂β n

∫ (
dξ√

π

)d ∫ ( dη√
π

)d

e−ξ 2−η2−4
√

αβ (ξ η)

∣∣∣∣∣
α,β=0

=

=C2
n

∂ 2n

∂αn∂β n

1

(1−4αβ )d/2

∣∣∣∣∣
α,β=0

.

Finally, from (A.14) we obtain:

Cn =

(
Γ(d/2)

4nn!Γ(d/2+n)

)1/2

. (A.15)

Appendix B
In this section, we present some details of the calculation of the matrix element
〈nr |H0

I |nr〉.The interaction Hamiltonian is presented in (3.24), and the correct matrix element can
be written as:

〈nr |HI |nr〉=
∞∫

0

dx
∫ (

dη√
π

)d

e−η2(1+x)〈nr | : e−2i
√

xω(qn)
2 : |nr〉×

×
[
−4ρ2Eµ

ω2ρ−1

x−2ρ

Γ(1−2ρ)
+

4ρ2σ µ
ω3ρ−1

x−3ρ

Γ(1−3ρ)
− 16αsµρ2

3ωρ−1

x−ρ

Γ(1−ρ)

]
. (B.1)
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From (B.1) it is seen that for the calculation of the matrix element〈nr |HI |nr〉 we need to determine:

Tn(x) =
∫(

dη√
π

)d

e−η2(1+x)〈n| : e−2i
√

xω(qn)
2 : |n〉. (B.2)

Considering (A.11) and (A.12), after some simplifications from (B.2) we obtain:

Tn(x) =
∫(

dη√
π

)d

e−η2(1+x)〈n| : e−2i
√

xω(qn)
2 : |n〉

= PvC
2
n

d2n

dαndβ n

∫(
dη√

π

)d∫∫ (dξ1√
π

)d(dξ2√
π

)d

×

× e−η2(1+x)−ξ 2
1−ξ 2

2 〈0|e−2i
√

α(aξ1)e−iv
√

2x(a+η)×

× e−iv
√

2x(aη) ·e−2i
√

β (a+ξ2)0〉
∣∣∣∣∣
β ,α=0

(B.3)

and finally:

Tn(k) =
2n

∑
k=2

n

∑
s=0

(−1)k xk

(1+x)k+d/2
· Γ(1+n)

Γ(n+d/2)
×

× 22s−k

Γ(n−s+1)
· Γ(k+n−s+d/2)

Γ2(k−s+1)Γ(2s−k+1)
. (B.4)

Substituting (B.4) into (B.1) and integrating overx, from (B.1) we have:

〈nr |Hc
I |nr〉=−4ρ2Eµ

ω2ρ−1

Γ(d/2+2ρ −1)
Γ(d/2)

W1−
16αsµρ2

3ωρ−1

Γd/2+ρ −1
Γ(d/2)

W2+

+
4ρ2σ µ
ω3ρ−1

Γ(d/2+3ρ −1)
Γ(d/2)

W3. (B.5)

Here we use the notation:

W1 =
Γ(1+nr)

Γ(nr +d/2)
Γ(d/2)

Γ(1−2ρ)

2nr

∑
k=2

(−1)kAnr (k)
Γ(1+k−2ρ)

Γ(k+d/2)
;

W2 =
Γ(1+nr)

Γ(nr +d/2)
Γ(d/2)

Γ(1−ρ)

2nr

∑
k=2

(−1)kAnr (k)
Γ(1+k−ρ)
Γ(k+d/2)

(B.6)

and

W3 =
Γ(1+nr)

Γ(nr +d/2)
Γ(d/2)

Γ(1−3ρ)

2nr

∑
k=2

(−1)kAnr (k)
Γ(1+k−3ρ)

Γ(k+d/2)
, (B.7)

where

Anr (k) =
nr

∑
s=1

22s−k

Γ(nr −s+1)
Γ(k+nr −s+d/2)

Γ2(k−s+1)Γ(2s−k+1)
. (B.8)

Similarly, the matrix element is calculated〈nr |Hs
I |nr〉 for the spin interaction Hamiltonian .

〈nr |Hs
I |nr〉=

32ρµαs[S(S+1)−3/2]
9 µ1 µ2

· ωd/2Ws

Γ(d/2)
δℓ,0 , (B.9)
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where

Ws =
2nr

∑
k=2

(−1)kAnr (k). (B.10)

Using (B.5) and (B.9) the energy spectrum of the radial excitationis determined.

Appendix C
In this section, we give some details of computing the value of the wave functionat the origin. For
this we define WF, i.e. the normalization coefficient

1=C2
nℓ

∫
d~r ·Ψ∗

nℓ(~r)Ψnℓ(~r) = 4π ·C2
nℓ

∞∫

0

dr · r2Ψ∗
nℓ(r)Ψnℓ(r) , (C.1)

whereℓ is the orbital,n is the radial quantum number, andΨnℓ(r) is the radial wave function. To
calculate the integral (C.1), apply the OR method, and give the substitution

r = q2ρ ; Ψnl → q2ρℓΦn(q
2) (C.2)

Considering (C.2) after some of the (C.1) we have:

1= 4·πC2
nℓ2ρ

∞∫

0

dq·qd−1Φ∗
nℓq

2(2ρ−1)Φnℓ = 8πρC2
nℓ · 〈n|q2(2ρ−1)|n〉 (C.3)

In further calculations we use the representation:

q2(2ρ−1) =
1

ω2ρ−1

∞∫

0

dx·x−2ρ

Γ(1−2ρ)

∫ (
dη√

π

)d

e−η2(1+x) : e2i
√

xω(qη) : (C.4)

as well as the explicit form of the radial wave function, and after some calculations from (C.3) for
C2

nℓ we obtain:

C2
nℓ =

1
4π

· ω d
2+2ρ−1

ρΓ(d
2 +2ρ −1)

1
Sn

(C.5)

where

Sn =
Γ(d

2)

Γ(d
2 −2ρ −1)

Γ(1+n)

Γ(d
2 +n)

· 1
Γ(1−2ρ)

× (C.6)

×
n

∑
k=0

1
Γ2(n−k+1)

·
k

∑
k=0

(−1)s

s!(k−s)!
×

× Γ(2n−2k+s−2ρ +1)Γ(
d
2
+k−s+2ρ −1).

In particular,

S0 = 1; S1 = 1− 2ρ(1−2ρ)
1+ρ +2ρℓ

. (C.7)
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From (C.5) for the wave function at the origin we have:

|Ψn(0)|2 =
1

4π
· (ωρ)(3+2ℓ)

ρ Γ(3ρ +2ρℓ)
· 1
Sn

(C.8)

Now, here given some details of the calculation of the integrals presented in (3.37), which
defines the matrix elementE1 – transition. Details of the calculation of this integral, similar to the
calculation of the integral presented in (C.1). After similar calculations from the (3.37) we have:

In1ℓ1
n2ℓ2

=
2ρ√

1ρ1〈n1|q2(2ρ1−1)|n1〉
· 1√

1ρ2〈n2|q2(2ρ2−1)|n2〉
Bn1n2 (C.9)

where we introduced the notation:

Bn1n2 =

∞∫

0

dq·qd−1〈0|d2(aa)n2q2(2ρ−1)(a+a+)n1|0〉d1 (C.10)

Using expression (C.4) for the normal view from (C.10) we obtain:

Bn1n2 = A(ρ1,ρ2) ·
∞∫

0

dx·x−2ρ

Γ(1−2ρ)
·
∫ (

dη√
π

)d

e−η2(1+x)×

× 〈0|(aa)n2 : e−2i
√

xω(qη) : (a+a+)n1|0〉 (C.11)

Performing integration and considering the action of operatorsa anda+ from (C.11) we have:

Bn1n2 = A(ρ1,ρ2)(−1)n1+n2
∂ n1+n2

∂αn1∂β n2

∞∫

0

dx·x−2ρ

Γ(1−2ρ)
× (C.12)

× 1

[(1+x−2xα)(1−αβ )−2xβ (1−2α)2]
d
2

∣∣∣∣
β ,α=0

,

where used the notation:

A(ρ1,ρ2) =

(
2ω1

ω1+ω2

) d1
4
(

2ω2

ω1+ω2

) d2
4 2ρ1+ρ2−1

(ω1+ω2)ρ1+ρ2−1 . (C.13)

This integral for specific valuesn1 andn2 calculated analytically.
The considering (C.12) from (C.9) we obtain:

In1ℓ1
n2ℓ2

=
ρ1+ρ2√ρ1ρ2

(ω1ρ1)
3
2+ℓ1(ω2ρ2)

3
2+ℓ2

√
fn1 fn2

√
Γ(3ρ1+2ρ1ℓ1)

Bn1n2

Γ(3ρ2+2ρ2ℓ2)
(C.14)

This analytical expression is used to calculate the widthE1 –transitions.
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