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1. Interaction

Bound state formation and description in the framework of the relativistictquafield
theory (QFT) is not yet a well-stated problem (see ref. [1, 2, 3]). QiE describes elastic
and inelastic scattering of free relativistic particles that are in a plane ateevghen they are at a
large distance from each other. The QFT formulation is based on thelpegrtur theory, i.e. on the
coupling constant expansion series, where, in principal, any boutedcstanot appear. Therefore,
the bound state problem requires one to go beyond the framework ofrtiielqation theory, where
the existing methods are not yet well-developed.

On the other hand, it is well known that the bound state energy spectnutnecdetermined
with a good accuracy in the framework of nonrelativistic quantum mech#nNiQévl) when an
appropriate interaction potential is chosen. Nevertheless, the noniglatichrodinger equation
(SE), which mathematically correctly describes the bound states, is no Isuffieient since for
the description of modern experimental results, obtained in both atomic [4adrdnic physics
[5], itis necessary to take into account relativistic corrections.

Therefore, the real physics requires a creation of some mathematicabsadil the bound
state problem which is based on the QFT. All the efforts made in this directiold e divided
into two directions.

The initial step of one direction is based on the statement that if there is a ttvclgphound
state with the corresponding quantum numbers, then the elastic scattering denpfithese two-
particles has a simple pole on the energy at a bound state mass point. Onishaf bas idea the
Bethe-Salpeter [3, 6, 7] and the so-called quasi-potential equationef8]formulated.

The other direction is based on the statement that the nonrelativistic SE isceanétool for
the bound state energy spectrum investigation and determination. Theleg&istic corrections
are small, so the theoretical problem reduces to an obtaining of the relatcestactions to the
nonrelativistic interaction potential based on the QFT formalism. This idealigglthe Breit po-
tential [9] and the effective nonrelativistic quantum field theory of Cédlsavel Lepage [10]. Both
these approaches use the scattering matrix as a source of requiesttioos. In [10,11], the non-
relativistic QED method (NRQED) for the Coulomb bound state energy spectetermination by
taking into account relativistic corrections was formulated. In hadronysiphk, the hadron mass
spectrum description of the orbital and radial excited states is one tharherdal problems. At
the present stage, there are phenomenological quark potential mo@egls3][1hat well describe
the hadron mass spectrum. However, most of these models consist of aramygbers most of
which are not physically justified or are applicable only for some particses.

There is another approach in the framework of the latter direction whictsedban the Fock-
Feynman-Schwinger representation suggested in [14]. Later, this metdmdnproved [15, 16]
and successfully applied [17] for the description of the hadron andogluenass spectra. The
present work is a direct continuation of these works. The exact quafield Green functions
can be formally represented in the functional integral form. This functionegral evaluation
technique is still in its infancy; however, the existing representations casdxmbfor obtaining the
nonrelativistic SE solution in the Feynman functional integral form with thergialeconsisting
of necessary relativistic corrections. Our investigations continue ttigsese In [18], the energy
spectrum evaluation technique is suggested which is based on the investafdati@ asymptotic
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behavior of the vacuum averaging (of Green’s functions) of the scakrged particle currents in
the external gauge field. In defining the correlation function asymptotiavi@hthe functional
integral form representation is used so that the averaging over thaaxgauge field can be done
precisely. The obtained representation is similar to the Feynman path intE@jrad honrelativistic
guantum mechanics. In this case, the nonlocal interaction functionahffa}ewhich appears due
to the gauge field (gluon) exchange, is defined by the Feynman diagchaoatains a contribution
to both self-energy of the particles and the bound state formation. Thusténaction potential is
defined by the every possible type Feynman diagrams with exchangeg# fjelds.

The paper is organized as follows. In section 2,we describe in detail teendeation of
the mass and constituent mass bound state system. In section 3, the massnspéatiesons
consisting ofc andb quarks, with the orbital and radial excitations is defined. The dependénce
the constituent mass of the constituent particles on the mass of the initial statell as radial
and orbital quantum numbers is determind. The obtained results are indatigfagreement with
the available experimental data. Finally, the main results of the calculationsiraraagized. In
Appendices the details of calculation of the energy spectrum bound stat firathework of the
oscillator representation are given.

2. Determining the mass of therelativistic bound state

We now briefly discuss the details of our approach. Let us defede= @ (x)d(x) as the
current of scalar charged particles. If we neglect the annihilationreiathen it is convenient to
represent the considered correlators as the averaging over thefigldd\, (x) of a product of the
Green function&n(x,y|A) of the scalar charged particles in the external gauge field:

M(x=y) = (J()I(y)) = (@ ()PP (y)P(y)) (2.1)
= (Gimy (X, YIA) Gy (¥, XIA) )
The Green functiosm(y, x|A) for the scalar particle in the external gauge field is determined from
the equation

c2m2

Gm(X,Y|A) = d(x ). (2.2)

[('axﬁcﬁ““ )+

The solution of (2.2) can be represented as a functional integral in Hogviiog way (for details
see [20]):

00

Gm(X,Y|A) = / ds exp{ —snt — —y }/da exp{ gjdfazsf(g)Aa(E)} . (2.3)
0

0

Here the following notation is used:

Zg(&) = (X—=Y)aé +Ya —2v/SBu($); (2.4)

1
0
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with the normalization
By (0) = Ba(1) = 0; /daﬁ _1,

whereN is the normalization constant. In averaged over the external gaugedfiéx we limit
ourselves to the lowest order, i.e. we take into account only the two-paimsstan correlator:

(oo fom (2.0 ) - oxp| -5 [ [axay (Dagc- B0} (@9

HereJ, (x) is the real current. The propagator of the gauge field has the followmgy fo

2

Dap(X—Y) = (Aa(X)Ag(¥))a = O gD(X—Y) + e g Da(X—Y), (2.6)
where
. _ X
D(x)z/(;;4(wc{]'2‘]')(}, Dd(x):/(;7f)4e)(pé'2qx}d;cl) . 2.7)

So the external field exists only in a virtual state. The mass of the bound steteaBy defined
through the correlation function in the following way:

2.8
Xyl [X—Y] 28)

Thus, if we know the correlation function, then we can determine the baatelrmass.

From (2.8) one can see that for determination of the rivaese needs to calculate correlation
function M(x) in the asymptoticgx| — . Substituting (2.3) into (2.1) and averaging over the
external gauge field we obtain:

me
0= [[eprmsmenl -5 (o) B (En)) e

Here

X
1 ; .
J(H1, k) = N1N2/ ora 6r2exp{2/dr [ulrf(r)+u2r§(r)]}exp{W},
0
W =Wy 1+Wo— 20 5, (2.10)

and following notation is used:
W= 2 (-1 [ [dnduzVa(m)Dag (20(1) - 20(12) 205 (). (211)
00

Representation (2.10) is analogous to the quantum Green function in then&eyunctional inte-
gral, when two patrticles with massp@i M2 interacts via the nonlocal potentld ;. Therefore, we
call massm andny, the current, and parameteaus and L, constituent masses. We emphasize that
in (2.10) the functional integration is made over the four-vecters (?1,r(14)), rp = (?zandrg‘)).
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The termW ;, in this case, is defined by all kinds of Feynman diagrams. There are twe tfp
interactions: the first is the interaction of the constituent particle via the daalgéhe contribution
of which is defined by the terW ;, (i # j); the second is the interaction of the constituent particles
with each other, i.e. the self-energy diagram the contribution of which inetkby the termgv; ;
andW». In the nonrelativistic limit the term@/ ; correspond to the potential interactions, whereas
the termsW; ; correspond to the nonpotential interactions which define the renormalizatiea
contribution.

In the asymptoticsx| — o the integral (2.10) behaves like:

‘HELJ(ULLQ)::>exp{_XEUhJUﬂ}a (2.12)
where the functiorE (s, 42) depends on the coupling constanand parameterg, pp, and is
independent of the massesg, mp. If |[X| — o the integral (2.9) is calculated by the saddle point
method. The bound state mass is determined by the saddle -point:

m3

1 me
M== min{—2 —2 2E . 2.1
ng&h+m+m+m+ WMM} (2.13)

Thus, the problem reduced to calculation of the functional integral in (2H®wever, this integral
cannot be evaluated in a general form and is defined in various frarkepproaches. At present,
there are no exact mathematical methods for the evaluation of this integraéfditee we have to
apply some physical assumptions or approaches in order to somehornpéne integration over
the fourth components mf"'). The integration over the fourth components effectively corresponds
to the transition to the nonrelativistic limit. In other words, we define the interagtodantial
with the corrections connected with the nonperturbative, relativistic anthoal characters of the
interaction. In particular, if we neglect the dependence of the functidfain (2.11) onrf') and

r(24), then the system (2.10) is reduced to the Feynman path integral of the gatiales with
the masseg; andu, in NRQM [19] with the local potential. In this approximation, according to
(2.10), the interaction Hamiltonian of the scalar particles with the magsasd ., reads:

1

He
21

1
P%+ZEP§+val—rg, (2.14)

whereV (r1 —r») interaction potential, which is expressed in term&\pf, thenE(puy, o) is the
eigenvalue of the interaction Hamiltonian (2.148, i.

HW(ry,r2) = E(Hy, H2)W(r1,r2). (2.15)
Then, from the minimum condition of (2.13) one obtains the equatiopfor
4444220;j:Lz (2.16)

The parametersl;, U have the dimension of mass. In further calculations we introduce a new
parameter

=4 (2.17)
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Then equation (2.13)takes the form:

dE
M =u1+uz+u@+E(u); E(H1, H2) = E(1), (2.18)
where
dE dE
Ha me — 2u TR H2 ms — 2u di (2.19)

In our approach, the energy spectrum and the wave function bouedaséadetermined by the SE
with the constituent mass; and ». The corrections connected with the relativistic character of
the interaction are taken into account not only by the corrections to thedtitergotential, but
also by the parameterg andp, (constituent masses), which are defined in (2.16). Therefore, from
the SE with the constituent mass, we will determine the energy spectrum aeduvation of the
atomic and hadronic bound states system by taking into account the relatieistction.

Now we apply our approach for determining the mass and energy speesungll as to de-
termine the decay width of mesons consistingp @hdc quarks with orbital and radial excitations.

3. Mess spectrum of mesonswith orbital excitations
3.1 The Hamiltonian of theinteraction.

Let us, we determine the mass spectrum of charmonium, bottonBantesons with spin-
spin and spin-orbit interactions is determined from the SE with the constituesg. ndne total
interaction Hamiltonian of quarks is represented as:

H - Hc+ Hspin, (31)
whereH. is the central Hamiltonian
1. 4a
Ho= —P2+0.r—-—. 3.2
©= 2 + 3T (3.2)

The second part of the Hamiltonian describes the spin-orbit interactiois amiten in the standard
form (for details see [21, 22]):

Hspin = Hss+His+HrT. (3.3)

HereHssis the spin-spin interaction Hamiltonian:

2 32mas (S$1)
AV, =——FF— —
31 M2 (5:%) U1z

alsoHy s is the describing the spin-orbital interaction:

-0(r), (3.4)

Hss=

11
4pgp3

- (WL S0+ (- (LS )] S} 35)

s { [((k+ 2)* + 242 p12) (L - S4) + (pf = p2) (L -S )] jrvv
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and finally the tensor Hamiltonian of the interaction is

1 10 92
Hrr [

= 712“1“2 FE V_dl’zvv] Siz. (3-6)

HereV, is the vector potential corresponding to the one-gluon exchange:

B dos1
VV— _TF, (3.7)

andVs is the confinement potential
Vs=r10; (3.8)
and we introduced the following notation:

$i=S1+%; S =5-%; (3.9)
4 3
= |L?S?—Z(LS)-3(LS)?| .
S12 (20+3)(20—1) S35t -3LS)
Using expressions (3.1-3.9) for the interaction Hamiltonian we calculate the spagtrum of
mesons.

3.2 Theenergy spectrum of quarkonium

Now, using the explicit form of the total Hamiltonian let us determine the engrggteum of
guarkonium. We determine the energy spectrum and wave functions feoB8h

HY=EY. (3.10)

we will apply the oscillator-representation (OR) method [23] for determinatfarigenvalues and
the wave functions(WF) from the SE (3.10). Before determining the gregrgctrum and WF of
the SE by means of the OR method [23] it should be recalled that this method ésdratie ideas
and techniques of quantum field theory. One of the essential diffesefd®FT from quantum
mechanics is that quantized fields, which represent an assembly of areinfimber of oscillators
for the ground state (or vacuum), keep their oscillatory nature in the guafitld interaction.
In QM eigenfunctions of most potentials differ from the Gauss behavibtlreooscillatory wave
function. Therefore, the variables in the original SE must be changtasthe modified equation
should have solutions with the oscillator behavior at large distances. Sisdeafisformation is
not a canonical one, after the transformation we have a new system withearset of quantum
numbers and wave functions which contains, however, a subset dfigireabwave functions. The
transformation of variables leading to the Gaussian asymptotic behavior inghaeded space is
one of the basic elements of the ORM. Let us note that a similar idea was @ddus$-ock in
the solution of the problem about the hydrogen spectrum using the travagfon into the four-
dimensional momentum space [24]. According to the statements above, letngecthe variables
in the following way (see details in refs.[23, 25]):

r=0®, W=W0J) =g?o(q). (3.11)
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Using the atomic system of unith = c = 1), considering (3.1)-(3.9) and after some standard
simplifications from (3.10) obtain for the modified Schrodinger equation:

1/02 d-10 ,

_ = _ (20-1) 2 2(3p-1) _

{ 2<an+ ] dq) 4p? PE P2~V +4p? o g (3.12)
16p° U As o 1), B40sHP® za o A (P—1)y cire 2D
5 d +* e (51%) im A dt P tsin(tg?)

OP°H 2(p-1) 1((12 1 12 2_ 2 4up®as  Siz

— + L-Sy)+ — L-S))|+ :
A (b + ) (L-Se) (i =) (LS )+ Y

4up?a
+ 3“12Z§qz<§+1> [((pa+ p2)® + 211 pa2) (L - Sp) + (U — 3)(L - S )] }¢(q2) =0,

whered is the dimension of the auxiliary space:
d=2+2p+4pl. (3.13)

As a result of the change of variables, we get the modified SE irditiEnensional auxiliary

spaceRY. From (3.12) and (3.13) it follows that the orbital quantum nunfdeas entered into the
dimensiord of the space. This technique allows us to determine all characteristics wesaested

in the spectrum and WF by solving the modified SE only for the ground state oh-$pace. The
wave function¥,(g?) of the ground state depends only on tievariable. Thus, the operator

2 d-19

@ g aq = Aqg, (3.14)

can be identified with the Laplacian in tl space which acts on the ground state wave function
depending only on the radius The modified SE written as

H®(q) = £(E) ®(a), (3.15)
can be seen, according to (3.12)E) is to be equal to zero iR
e(E)=0. (3.16)

We will consider this equation as the condition for determination of the eng@egtreimE of the
initial system. Following the OR method, let us represent the canonical iesiabterms of the
creation(a™) and annihilatior(a) operators in th& space

aj+a w a-a
= ——, P=4/= — =1,. al]=a 17
qJ m ) ] 2 i ’ J ) 7d7 [ahaj ] d,]: (3 )

wherew is the oscillator frequency which has been unknown yet. Substituting (B1t7§3.15)
and carrying out ordering by the creation and annihilation operatorsteéno

HereHg is the Hamiltonian of the free oscillators:

Ho = w(af ay) (3.19)
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andg is the energy of the ground state in the zero approximation of OR:

_ dw 4p’EpuT(d/2+2p—1) 16asup®T(d/2+p—1)

©F) = T m T raz2 sl [
4p*0 p T(d/2+3p-1) 32asup (S5S) 02 o
w1 r(d/2) o, T2 O
_ pPop T(d/2+p-1) dasupSp; wPr(d/2-p-1) N
M2 p—1 r(d/2) 3 p1pk r(d/2)
4aspp® wPtr(d/2—p-1)
. 3.20
3 M% r(d/2) ( )
Here the following notation is used:
1 1 2 2 2 2 .
'VT% = m (M +p3)(L-Sy) + (uf — p3)(L-S)]
1 1
VARRTT: [((ba+ H2)?+ 2pa k) (L - Si) + (W — p2)(L-S-)] - (3.21)

The interaction Hamiltoniai, can be represented in the normal form of the creasibranda
operators and it does not contain the quadratic terms of the canonitddlear

H = /mdx/ (%)dexp{—n2(1+x)} Le, V) (3.22)
0

40°u Ex?° 40°u  ox 3 16agup? x P
[_ w?-1M(1-20)  w®1r(1-3p) 3wl (1-p)
op?u  xP 40210asS, WPHIXP 4p?uas wPtIxP
T MZP IT(I-p) | 3w T(Lip) | 3MZ F(1ip)
160°uas(SS) | < (1)) AP x 220l
Ty L7 /HooJ;)(Zj%—l)!2j+3w29+2i’l'*1r(1—2p—2pj) '

Here :x : is a symbol of normal ordering, and we used the notation:

& =e"—14+x— %xz.
Some details of the representation in the normal form of the interaction Hamiltbipiare given
in Appendix A. The contribution of the interaction Hamiltonian is considereda|erturba-
tion. In quantum field theory, after the representation of the canoniciblas in terms of the
creation and annihilation operators and after transformation of the interad¢éimiltonian into the
normal form, the requirement of the absence of the second order fietdtops is equivalent, in
essence, to the renormalization of the coupling constant and the wavefuf#5]-[28]. More-
over, such a procedure permits one to take the main contribution into caatsidein terms of
the mass renormalization and in terms of the vacuum energy. In other vedirdsadratic terms
are completely included in the free oscillator Hamiltonian. This requirement aftlawsilate the
following condition, according to the OR [23]

dSo(E)
Jw

—0, (3.23)
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in order to find the frequenay of the oscillator, which determines the main quantum contribution.
Taking into account (3.20), from equations (3.16) and (3.23) we danlete the energy spectrum
of the initial systent. In the framework of the OR method for various potentials [25] it has been
shown that the corrections connected with the interaction Hamiltonian aresheréler corrections
identically equal to zero and the second order corrections are lessrteaepcent. So let us restrict
ourselves only to the consideration of the zeroth order approximation.

3.3 Themass spectrum of the mesons for the ground state.

Let us determine the mass spectrum and wave functions of mesons considtiedp andc
quarks. First of all, we consider the basic state, i.e, determine the prepeftje, J/ Y, np, Y and
B: - mesons taking into account the spin-spin interaction. From (3.20) wegttd ground state

(E) = dw 4p’Ep F(3p)  16asup® T(2p)
4 WP 1r(1l+p) 3wl r(1+p)
4p%cu T(4p)  16asupwPtl[s(s+1)—3/2]
w31 r(1+p) 312 r1+p)
wheres is the spin of mesons. In the this case, the parameter defined from the following
equation:

) (3.24)

16asp?w?u T(2p)  4p?uarl (4p)

S t2ie) T@ip)

16aspp w*[s(s+1) —3/2] _ (3.25)
RIVT) r(1+p)
and for the ground state energy we obtain:
£ m {prr(2+p) _ 4aswPT(2p)
802l (3p) 3r(3p)
0F(4p) Aag[s(s+ 1) — 3/2) } ‘ (3.26)
wPT (3p) SIJEYINETe)

According to (2.16), mass of singlet triplet states are determined by thersg§tequations

m? dE
——142 0;
H1 ™ uldl-ll
ms dE
——=<42 0. 3.27
2 m szuz (3.27)

Heremy andmy, are the current masses of the quarks. As follow the experimentally [5] Vit
of the current massesandb quarks is:

me. = 1.275+0.025GeV;,

my(1S) = 4.65+0.03GeV. (3.28)
The value of the running coupling constant of the quark-gluon interai®represented as:
am 2 2
Os=——5— Po=11-3nf Hiz= Hikz | (3.29)
Boln(kiz) 3 M1+ H2

10
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wheren; is the flavor quantum number, and= 0.169 GeV is the scale of confinement for heavy
quarks. Then the mass of mesons consisting of these quarks is defined as

2 Ha

The results of numerical calculations are introduced in Table 1. Accotdi(8)28), for the current
guark masses use the valugs= 1.275GeV andm, = 4.62 GeV. The oscillator frequencyg and

the constituent quark massgg are determined from the equation presented in (3.25) and (3.28),
respectively. The numerical results for the this parameters also giveabie I. In this case, the
accuracy of calculations aréj, ~ 7.2-10 1% andd,, ~ 1.8- 109, for charmonium.

M:1<u1+n€+u2+TE>+E. (3.30)

Table 1. The mass spectrum of mesons consisting of b and ¢ quarks
for the ground state. The experimental are data from work [5].

cc bb bc
S=0| mGeV 1.275 - 1.275
m, GeV - 4.62 4.62
as 0.30366 0.194679 | 0.248935
o GeV? 0.195 0.153 0.195
E GeV 0.413530 0.157253 | 0.363173
P 0.526448 0.651103 | 0.46495
wP GeV 0.652 1.164 0.648335
U GeV 1.42862 - 1.51306
Uy GeV - 4.73493 4.68082
Mour MeV 2980.05 9400.04 6.2773
Mexp MeV 29803+12 | 93909+28 | 6277+4
|W(0)|? Ge\? 0.047003 0.196457 | 0.0525517
f, GeV 0.435053 0.500795 | 0.316955
S=1 as 0.299085 0.194459 | 0.247683
E 0.519023 0.216613 | 0.412532
P 1.03926 1.24871 1.11493
wP GeV 1.4311 3.4511 2.0512
U GeV 1.47617 - 1.53652
Uy GeV - 4.75281 4.71302
Mour MeV 3096.44 9.4603 6.33071
Mexp MeV | 3096916+ 0.11 | 94603+ 0.26 -
|W(0)|* Ge\? 0.1004 0.5973 0.219078
f, GeV 0.62372 0.8704 0.644412
[ our keV 6.135 1.330 -
expkeV 5.55+0.14 | 1.340+0.018 -

From Table 1 we can see that the constituent quark mass is greater thamrdrg masses.
According to (3.29), with changing of the constituent quark masses tmengicoupling constant
of quark gluon interactions also changed the values are also given ie TabWF in the OR

11
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method is defined by two parametgrsand w, the value of these parameters is also presented in
Table 1. From Table 1, we see that our results for the meson masses adiagreement with
experimental data. The value of WF at the origi0) is in Table 1. The calculation details of
WY(0), with the orbital and radial excitation are presented in Appendix C. FraB8) (Gr the ground
state we have:

1 ¥
W(O0)fF = - — . 31
Using|Wn(0)|? leptonic decay constant is determined by the vector and pseudoscalarsneso
12
for == [ |You(O)]; (3.32)
p,v

whereM,, mass of vector and pseudoscalar mesons. The leptonic decay widthaf vexsons
is determined as follows:

16ma?, 1
MV = ) =— 57— ggs
\Y

whereaem= 1/137 is the electromagnetic coupling constamgtijs the quark current, anldy - is
the vector meson mass. The obtained numerical value for the ground stateTable 1.

WO)P(1-=20) (3.33)

3.4 Themass spectrum mesonswith orbital excitation

Let us calculate the energy and the mass spectrum of mesons consistengddfquarks with
orbital excitation. From (3.4) we see that fo£ 0 spin interactions are determined only by the
spin-orbit interaction. In this case the interaction Hamiltorktaloes not give the contribute. First
of all, we consider the case= 0. Taking into account (3.20) from (3.23) we obtain the equation
for determining the frequenay:

16asup® T(2p0+2pf)  4p?uar (4p +2pk)
P o, 160 ~0 3.34
W T T2y pt200) T T(24p+200) (3-34)

and for the energy spectrum we have

Emi { WPT(2+p+2pl) awPT(2p+2p¢) 0 T(4p+2pl) }
p | 8p2ur(3p+2p¢) 3r(3p+2p¢) wP T (3p+2pf)
Taking into account (3.34), (3.35) and (3.27) from (3.30) we determigentass spectrum of
mesons with orbital excitation. The numerical results are given in Table Z&nd the char-
monium and bottomium, respectively.

Let us calculate the energy spectrum of mesons spin tripletState with orbital excitations.
First of all we define the contribution of the standard spin-orbit intera¢tidghe energy spectrum.
Taking into account (3.9) and after some simplifications, we determine theldgigns spin orbit
interactions to triplet state. The our results represented in Table 4. In treatd@the parametey
is determined from the next equation

16asup?® T(20+2pl)  A4op*ur(4p+2pl)  ,,0p%U T(2p+2p!)

(3.35)

30 _ w20 -
OO T T2 pr2pl) T T2+ p+200) M2 T(2+p+2p7)
4p%asu  Sppw*r(2pf)  p?uasw® r(2pt) 0 (3.36)
ity T (2+p+2pf) M2 r2+p+2p0) '

12



Properties of mesons with beauty and charm in the relatovisamiltonian approach M.Dineykhan
and for the energy we get:
E_ min{ WPl (2+p+2pl) awlT(2p+2pl) o T(4p+2pl)
~ p | 8p2ur(3p+2pY) Ar(3p+20f) ' wP T(3p+2p/)
0 T(2p+2pf) | asSi2 wPr(2pf) asw®  2pl } (3.37)
AM2T (3p+2pl) ~ 3Buipz F(3p+2p0) M2 T (3p+2p?) '

First of all, for the specific values of the orbital quantum nunbierwhich given in Table 2,
from (3.21) we define the value 82 | M3. Numerical results for the | D states shown in Table

2 and 3, respectively.

Table 2. The mass spectrum of charmonium with orbital

excitations. The experimental data are from [5].

J=(-1 J=/ J=(+1 J=1/
S=1 S=1 S=1 S=0
(=1 as 0.3013 0.2981 0.2987 0.2978
E GeV 0.923955 | 0.960388 | 0.976759 | 0.945799
p 0.808694 | 0.613677 | 0.775801 | 0.230383
wP GeV 1.14386 0.618518 | 0.851913 | 0.276542
e GeV 1.45188 1.48592 1.47997 1.48936
Mour Mev 3495.5 3540.33 3555.15 3526.6
MexpMev | 3416.75:.31 | 3510.66:.07 | 3556.2£.09 | 3525.41-.16
|W(0)|?GeV® | 0.116538 | 0.0325412 | 0.0534605| 0.00557
f GeV 0.632513 | 0.332113 | 0.424794 | 0.13763
(=2 ds 0.2987 0.2944 0.2962 0.2936
E GeV 1.2229 1.22267 1.22909 1.21638
P 0.612313 | 0.595989 | 0.366686 | 1.39076
wP GeV 0.595536 | 0.560571 | 0.323594 | 5.59744
e GeV 1.53846 1.5278 1.50771 1.5371
Mour Mev 3.81728 3.8145 3.81501 3.81107
|W(0)|2GeV® | 0.1165385 | 0.025338 | 0.0077298| 1.34144
f GeV 0.632505 | 0.282333 | 0.155929 | 2.05519

13
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Table 3. Bottomonium mass spectrum with orbital
excitations. The experimental data are from [5].
J=/(-1 J=7 J=/+1 J=/
S=1 S=1 S=1 S=0

(=1 ds 0.1944 0.1943 0.1943 0.1946
E GeV 0.635856 0.6479 0.669121 0.657241

P 0.628027 0.780369 0.312187 0.0915
w” GeV 0.985258 1.36504 0.49 0.273495

U GeV 4.7567 4.76124 4.76007 4.76134

Mour Mev 9879.78 9892.09 9913.24 9901.44

MexpMev | 9859.44-0.42 | 9892.78:0.26 | 9912.21H-0.26 -

|W(0)|? Ge\? 0.0514891 0.09099 0.002881 0.03731

f GeV 0.250077 0.332242 0.186755 0.21496

(=2 ds 0.1939 0.1939 0.1939 0.1939
E GeV 0.906587 0.911645 0.916257 0.911824
P 0.184697 0.177198 0.169101 | 0.0634526

wP GeV 0.327369 0.321223 0.315 0.2129

U GeV 4.79492 4.79433 4.7926 4.7967

Mour Gev 10.153 10.158 10.1625 10.1583
|W(0)|? Ge\? 0.000194 0.0089142 0.000156 | 0.0000124
f GeV 0.015147 0.102619 0.0136138 | 0.0038378

Table 4. Contribution of the spin-orbit interaction
to the triplet state

J (+1 ( -1

(LS,) ¢ -1 —(¢+1)
CS) -1 —(+1) 14

2(0+1

S —% 2 - éefl)

3.5 Themass spectrum mesons with radial excitation.

In this section, we will determine the mass and energy spectrum of mesonsnhjitradial
excitation. In this case, the energyE) of the zeroth approximation in the OR are given by (3.24),
and for the interaction Hamiltonian of (3.22) we have:

4p%u  Ex % 16asup?  xP

H = /oodx/<dn)de—r]2(l+x) : egi\/%(qn) :
0 v
w2p—1T(1-2p) 3wP~1 T(1-p)
16pzllas(§1§2) ||m 00 X—2p—2pj

(-1)
oMyt Ao J;J (2j+1)! (2] + 1) w?Pt2,i-17 (1—2p — 2pj)

In this case, the energy spectrum has the following form [20]:

4p%u  ox 3P
w11 (1-3p)
/\2j+3

} (3.38)

&n(E) = &(E) + 2mw+ (ng|HF|n2) + (n2|HP|n2) (3.39)

14
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whereH/ is the Hamiltonian of the interaction of the central p&tg,is the spin part of the inter-
action Hamiltonian. The explicit form of the WF with the radial excitation is presstim (A.13).
The details of the calculation of the matrix elemémt, |n) given in Appendix B.

After some simplification, the energy spectrum with the radial excitations wénobta

_WPr(2+p) L1 oT(4p) 1+Ws | 4agS(S+1)—3/2w® 1+W
7 8p2ur(3p) 1+Wy  wPl(3p) 1+W, 9p sl (3p) 1+Wy

In this case, the oscillator frequency is determined from the following equatio

~ 16asup®w®T (2p) (2p — UMb — (p — DMK 4p2ual (4p) (2p — )5 — (3p)\Wh

(3.40)

30 ~
@ (2+p)  Wh+(2p-1A+4%)  T(2+p) Wa+(20-1)(1+1%)
| 16a5pp[S(S+1) ~3/2)w* (2p - WL+ (1+ p)Wiy (3.41)

Ozl (2+p) Wi+ (20— 1)(1+ 5)

where the following notation is use\zﬁ'j =1+W;, j=1, 2,3ls Using (3.40) from (2.18) and
(2.19) we determine the meson mass and the constituent mass of quarke aachdrical results
are shown in Table 5.

Table 5. The mass spectrum of mesons consisting of b and ¢ quarks
with radial excitation. Experimental data are from [5].

cC bb bc
S=0 as 0.2745 0.19027 0.22974
E GeV 0.939195 0.704855 0.79797
P 0.504507 0.45040495 | 0.537141
wP GeV 0.61426 0.913661 | 0.732053
U GeV 1.79312 - 2.01377
Uy, GeV - 5.115 4.841
Mour MeV 3638.9 9992.76 6833.53
Mexp MeV 36389+1.3 - -
|W(0)|? GeV? 0.0409795 0.161118 | 0.0649499
fn GeV 0.367611 0.439865 0.33772
S=1 Os 0.27479 0.18989 0.22996
E 1.01391 0.728737 | 0.836904
P 0.644051 0.452765 | 0.571577
wP GeV 0.629255 0.905397 0.73425
U GeV 1.7888 - 2.03489
Uy, GeV - 5.1501 4.896
Mour MeV 3711.48 10023.3 6881.57
Mexp MeV | 3686109+ 0.012 | 1002326+ 3.1 -
|W(0)]2 Ge\V? 0.025839 0.15568 | 0.0604622
f GeV 0.289038 0.43172 0.324705
[ our keV 0.691849 0.260597 -
[expkeV 2.35+0.04 0.612+0.011 -
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4. Thewidth of theradiative decay.

Let us we determine the width of the radiative decayar— transition. Matrix elemeril
the transition from statén®>"1J),i, to the statén'? 1Y), f, written as:

M(i — f)y = S5 (=) MK /(20+1) (20 + 1) (20 + 1) (20 + 1) x

¥y 13\ (11 [es
- (—M’ u |v|> (o 0 o) (J’ 1£'> it (1)

where the usual notation in brackets -3 symbol, andeg is the quark charge, angs is radial
matrix element — f transition:

lif = /dr r2Ws,, (r)ry(r) (4.2)
0

whereW, 1 is the radial wave function of the initial and final state. Then the width of tHetiae
decay is defined as follows:

Fi—f+y) = 4%;%(2J’+1)5Ef Ik 142 (4.3)

wherek is the photon momentum and it is equal to

e

m (4.4)
andm;, m; mass of the initial and final state. Statistical facghr= S, is:
2
Ji1 J
St =max(,0)3 (4.5)
s ¢

Thus for determine we need to calculate the transition of matrix elements, wigick@esented
in (4.1). Details of calculatiom_.; given in Appendix C. At specific transitions.  determined
from (C.14), and the numerical results of the decay width shown in the Bable

16
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Table 6. The E1 radiative decay rates.

k lif Four(i = ) | Texp(i — )

MeV | Gev1 keV keV
Xeo — VY+J/@ | 3763 | 2.33 139.312 -
X — Y+J/@ | 416.06 | 1.73 310.3 295.84
X, = Y+J/@ | 429.12 | 2.18 450.5 ~ 500
1°D; — y+1'Ry | 308.22 | 1.78 267.92 ~ 299
13Dy — y+1'P, | 266.90 | 3.274 146.9 ~ 99
18D, — y+1'P, | 253.13 | 2.751 3.54 ~ 3.88

Xeo = V+Y 410.57 | 1.422 16.81 -

Xo — Y+Y | 422.366| 1.57 66.9 -

Xe, = Y+Y | 442.592| 0.6644 22.97 -
13D; — y+ 1Ry | 269.544| 0.1526 0.33 —
18Dy — y+1'P, | 257.56 | 0.135 0.06 -
13D; — y+ 1P, | 236.929| 0.4988 0.024 -

4.1 Conclusion

On the basis of the obtained results, the following conclusions can be made:

e Our approach is based on the investigation of the asymptotic behaviour obtiedation
functions for scalar charged particles in an external gauge field argeteemined the in-
teraction Hamiltonian including the relativistic corrections. The kinetic enengy te in-
teraction Hamiltonian is expressed in terms of the constituent mass of bouedestaing
particles and the potential energy term is determined by the contributionswea gos-
sible type of Feynman diagrams with exchange of gauge fields. The matsusp®f the

bound state is analytically derived. The mechanism for arising of the cagrstitoass of the
relativistic bound state forming particles is explained.

e In our approach, constituent quark masses are not free paransgtedetermined for each
guarkonium separately and differ from the mass of a free state, i.e. thewalence quark
masses. In this case, the constagbf the strong interaction differents from each other for
meson. Free parameter in the our approach is the string teasao for quarkonium con-
sisting ofc quarks iso = 19.5 GeV? and for bottomonium consisting bfis 0 = 15.3 GeV?,

e In the framework of our approach the mass splitting between the singletipred states is
determined and the radiative decay widths of¢hebb andbc systems are calculated.

Appendix A.

The crucial point of calculations in OR [23] is the representation of themaal variables in the

normal form. Therefore, we give examples of this representation faous potentials. We will
give here the details of representation in the normal form for the additpmtahtial. Taking into

17
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account the relations
gkadpa’ _ gpa’ gka. (k) (A1)
wherek andp are vectors ird-dimensional space. Let us consider the expression:
Yi(k) = eafe . (A.2)
Whenk = 0 from (A.2) we get
Y;(0) =a. (A.3)
Taking into account (A.3) from (A.2) fadY;(k)/dk; we have:

aYi(K)  a ika
e ~a

Integrating ovek; and taking into account (A.3), we get:
Y(k) =€**ae @ =a' +ik;. (A.5)
Similarly, we can establish the relation:

ipat ipat .
e P* q;eP* =aj+ipj,

+ _ + _
eaa aaje aa a:aje a
+ _qat
e %ae M A = gle”. (A.6)

Using these relations, we represent the normal form of various typeseoéction potentials. Let
us consider the detail of the specific potentials in normal form:
a) the increasing potential:

dan
9" = (_1)nﬁe X [x=0 (A7)
dn dn\? . >

— (1) 2 N“(1+x/w) . g—2yX(an) -

(-1) O <\/ﬁ) e i€ =0
:ir(%‘i'n) Lo N T(§+n

o (g T Twir(d4)

(=" d" £ /dn\? o 2qe . o .
Haaa) (m) €7 M e,

wheren= 1,2, ... is a integer and positive,

18
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b) the power potential:

w d
:/ dx x‘l‘T/ dn e N2(14x/w) « g-2iVX(an) .
) T v | |

_ATGHD o T TG+
- Tt T(§+1)

17 dx AN\ e . v
+wTO/F(T)X /(ﬁ) ° - i a8

wheret # nand the notatione} = & — 1—x—x2/2 is used.
¢) Inthe general case we use the capacity of the Fourier transform:

wie) = [ (g,‘i)dekz)éw

- <g;> V~V(k2)exp<ikaj%r>
_/<(2j]|_([>dv~\/(k2)exp(— k;) exp(lk\/iw> exp(ikm>
- <d;>dV~V(k2)exp<—ﬁ)> gk (A.9)

Here(kq) = ¥ k;q; and
W(K) = / (AW (R)d )

Using these relations, which are given iﬁ equations (A.7-A.9), normaidaf different potentials
are defined. In particular, the (A.7) obtain fo= 1, 2, 3:

d
2 .2,
! (A.10)
dd+2) d+2
4 C A2 . A4
a0 T 4 Tas
o d@+2)(d+a)  3d+2)d+a) .
8w3 4002 L
3d+4) . 4., . 6.
+T'q A

In determining the energy spectrum of different potentials with radial diaitaeed to define

the operators{a®a®)" or (aa)". For these operators, we use the following representation:
dn

a+a+ n — (-1 n
()" = (-1

exp{—B(ata")}| x (A.11)

B=0

I

B=0
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Will also use the following relation:
%i(kQ) _ I;)Veiv(kq)7

whereR, —operator, working only on the variable and the action of the operator is defined as
follows:
R, =const=0, PV'=0, n<2, PV'=1n>2

These relations are often found in the calculation of matrix elements of theusgslyysical pro-
cesses in the OR. Using these representations we have an expressgiik jo- the ground state
energy, as well as fdd, — the interaction Hamiltonian.

d) Determination of the normalization constant of the wave function.
In the OR the wave function with radial excitation is defined as:
Ne
Ine) =Cp, (aj+aj+) 0), j=1, ....d, (A.12)
whereC, is the normalization constant and is determined by the conditions:
n
1= (nln) = C2(0) (aa)" (aa} ) [0) (A.13)

Considering(A.11) and (A.1), after some simplifications of (A.13) we have:

L, o7 dE\ r/dn\? o
LCnW/(ﬁ) /<ﬁ> e & (A.14)

x (0|e~2va(@d) e 2V/B@n 0)

a,3=0
Sl (25 (25 e
”0(1”0[3” \/ﬁ \/ﬁ 0,50
2 O 1
- "9andpn (1—-4aB)d/? 050

Finally, from (A.14) we obtain:

(M)
o~ (srzm) M

Appendix B
In this section, we present some details of the calculation of the matrix element
(n|HP|ny).The interaction Hamiltonian is presented in (3.24), and the correct matrix eleaen
be written as:

o . d _
(ne[Hi[nr) Z/dx/ <d\/%> e 1@ | ) 2V y o
0

y _4p*Ep x* Jr4;)20;1 x % 16aspp* xP
w1r(1-2p) wi1r(1-3p) 3wl r(l-p)|

(B.1)
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From (B.1) itis seen that for the calculation of the matrix elenjefjH, |n;) we need to determine:

d -
0= (9L e a0 2 ®2)
Considering (A.11) and (A.12), after some simplifications from (B.2) weinbta

To(X) = /< 3’%) N2(14+x) e —2i/xe(qn) . 1)

netsoags () 1 (5) (o)~

« e <1+x> &8 (g|e 2Va(aE) g W@ D)

x e W) g-2y/Bla'&)g) (B.3)
B,a=0
and finally:
2n n k
B ok X ~M1+n)
Pl9=2, 2.V e Finvdjz)
225Kk F(k+n—s+d/2)
“Fin—st1) T2(k—stDr(2s—k+1)’ (B4)
Substituting (B.4) into (B.1) and integrating overfrom (B.1) we have:
e\ Ap?EuT(d/2+2p—1) 16asup?rd/2+p—1
I = et Tty T st g T
4p%cul(d/2+3p—1)
w3P—1 r(d/2) Ws. (B.5)
Here we use the notation:
_ TF(A+n) (/2 2 M(1+k—2p).
W = F(n+d/2)T(1-2p) kZ;—l) A (K) M(k+d/2)
_ T(1+n) r(d/2) & r1l+k—p)
We = rn+d/2)r(1—p) kz( 1)"An (k) r(k+d/2) (8.6)
and
_ T(L+n) T2 &, r(1+k—3p)
W3_I’(nr+d/2)r(1—3p) kZZ(_ ) (K) M(k+d/2) 87
where
noo 2%k F(k+n —s+d/2) (B.8)

Zr —s+1)M2(k—s+1)r(2s—k+1)
Similarly, the matrix element is calculated, |H?|n,) for the spin interaction Hamiltonian .

32ouas[S(S+1)-3/2] wd/ZWs
9 o r(d/2)

(ne|HZny) = (B.9)
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where

2n,

W = ;(—hkAnr(k). (B.10)

k=

Using (B.5) and (B.9) the energy spectrum of the radial excitationis detednin

Appendix C
In this section, we give some details of computing the value of the wave furattitie origin. For
this we define WF, i.e. the normalization coefficient

1— cf,z/dr- W (1) Wy (F) = 47T'C§g/dr 2 (1) W (1) (C.1)
0

where/ is the orbital,n is the radial quantum number, algy(r) is the radial wave function. To
calculate the integral (C.1), apply the OR method, and give the substitution

r=g%; Wy — g dn(g?) (C.2)

Considering (C.2) after some of the (C.1) we have:
1= 4152 [ da-¢* 03 P2 by — 8pCE - (niG® Y n) (C3)
0

In further calculations we use the representation:

1 7 dx-x2 dn a i
2(2p—1) —N°(14%) - 2ivxa(an) -
q = (,zpflo M(1—2p) /<fn> © ' ' (©4)

as well as the explicit form of the radial wave function, and after someulzions from (C.3) for
C2, we obtain:

4400
szi.szli (C.5)
"“am pr(@+20-1)S

where

B r¢) r(+n 1
g2 nrgen) T2 (o)
n 1 k (_1)5
kZOrZ(n—k+ 1) 'k;s!(k—s)!

X F(2n—2k+s—2p+1)r(g+k—s+2p—1).

X

X

In particular,

2p(1-2p)

=1, =1-——".
= S 1+p+2p¢

(C.7)
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From (C.5) for the wave function at the origin we have:

1 wP)(3+20) 1
WO = = L c#)
4 pT(3p+2pf) &
Now, here given some details of the calculation of the integrals present@d3in),(which
defines the matrix elemeftl — transition. Details of the calculation of this integral, similar to the

calculation of the integral presented in (C.1). After similar calculations frar(3t37) we have:

iz = 252 Din ]éz 1 M (C.9)
V1pa(ni|?@o-Ding)  /1po(n2| P22~ D[ny)

where we introduced the notation:
Bryn, = / dg- g% (0q, (aa) g%~ Y (a"a")™|0)q, (C.10)
0

Using expression (C.4) for the normal view from (C.10) we obtain:

© dx.x*Zp dr’ d 2
Bnin, = A(p1,p2) /<> e N7 (1+x) o
Mr1-2
) T(1=2p) J\Vm

x (0|(aq)™ : e 2vXala) : (gtat)m|0) (C.11)
Performing integration and considering the action of operaarsda’™ from (C.11) we have:

otz P dx.x—2p

_ _1\N1+n2
Bn1n2 - A(p17p2)( 1) aanlaan / r(l_zp) x (C12)
" 1
[(1+x—2xa)(1—ap)—2xB(1— 2a)2}% Ba—0
where used the notation:
2 7 2 ? 2P1tp2—1
(L).l. 4 CL)Z 4 1 2—
A(p1,p2) = . C.13
(o1,2) <w1+wz> (OJH-OOz) (o + wp)Pripe T (€13)
This integral for specific valuas, andn, calculated analytically.
The considering (C.12) from (C.9) we obtain:
Inlfl _ p1+pP2 (Mpl)%+[l(a)2p2)%+£2 Bn1n2 (C 14)

nefz \/P1P2 \/ T, Ty \/ [ (3p1+2p101) T (3p2+ 2p202)

This analytical expression is used to calculate the witlth-transitions.
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