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Renormdynamics and universal properties of the multiparticle production Nugzar Makhaldiani

1. Introduction

In the Universe, matter has manly two geometric structures, homogeneous, [Weinberg, 1972]
and hierarchical, [Okun, 1982] .

The homogeneous structures are naturally described by real numbers with an infinite num-
ber of digits in the fractional part and usual archimedean metrics. The hierarchical structures
are described with p-adic numbers with an infinite number of digits in the integer part and non-
archimedean metrics, [Koblitz, 1977].

A discrete, finite, regularized, version of the homogenous structures are homogeneous lattices
with constant steps and distance rising as arithmetic progression. The discrete version of the hier-
archical structures is hierarchical lattice-tree with scale rising in geometric progression.

There is an opinion that present day theoretical physics needs (almost) all mathematics, and
the progress of modern mathematics is stimulated by fundamental problems of theoretical physics.

2. Quantum field theory and Fractal calculus - Universal language of fundamental
physics

In QFT existence of a given theory means, that we can control its behavior at some scales
(short or large distances) by renormalization theory [Collins, 1984].

If the theory exists, than we want to solve it, which means to determine what happens on other
(large or short) scales. This is the problem (and content) of Renormdynamics.

The result of the Renormdynamics, the solution of its discrete or continual motion equations,
is the effective QFT on a given scale (different from the initial one).

We can invent scale variable λ and consider QFT on D+1+1 dimensional space-time-scale.
For the scale variable λ ∈ (0,1] it is natural to consider q-discretization, 0 < q < 1, λn = qn, n =

0,1,2, ... and p - adic, nonarchimedian metric, with q−1 = p - prime integer number.
The field variable φ(x, t,λ ) is complex function of the real, x, t, and p - adic, λ , variables. The

solution of the UV renormdynamic problem means, to find evolution from finite to small scales
with respect to the scale time τ = lnλ/λ0 ∈ (0,−∞). Solution of the IR renormdynamic problem
means to find evolution from finite to the large scales, τ = lnλ/λ0 ∈ (0,∞).

This evolution is determined by Renormdynamic motion equations with respect to the scale-
time.

As a concrete model, we take a relativistic scalar field model with lagrangian

L =
1
2

∂µφ∂ µφ − m2

2
φ2 − g

n
φn, µ = 0,1, ...,D−1 (2.1)

The mass dimension of the coupling constant is

[g] = dg = D−n
D−2

2
= D+n− nD

2
. (2.2)

In the case

n =
2D

D−2
= 2+

4
D−2

= 2+ ε(D)

2
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D =
2n

n−2
= 2+

4
n−2

= 2+ ε(n) (2.3)

the coupling constant g is dimensionless, and the model is renormalizable.
We take the euklidean form of the QFT which unifies quantum and statistical physics problems.

In the case of the QFT, we can return (in)to minkowsky space by transformation: pD = ip0, xD =

−ix0.

The main objects of the theory are Green functions - correlation functions - correlators,

Gm(x1,x2, ...,xm) =< φ(x1)φ(x2)...φ(xm)>

= Z−1
0

∫
dφ(x)φ(x1)φ(x2)...φ(xm)e−S(φ) (2.4)

where dφ is an invariant measure,

d(φ +a) = dφ. (2.5)

For gaussian actions,

S = S2 =
1
2

∫
dxdyφ(x)A(x,y)φ(y) = φ ·A ·φ (2.6)

the QFT is solvable,

Gm(x1, ...,xm) =
δ m

δJ(x1)...J(xm)
lnZJ|J=0,

ZJ =
∫

dφe−S2+J·φ = exp(
1
2

∫
dxdyJ(x)A−1(x,y)J(y))

= exp(
1
2

J ·A−1 · J) (2.7)

This solution is based on the solution of the linear motion equations with sources∫
A(x,y)φ(y)dy = J(x) (2.8)

Nontrivial problem is to calculate correlators for non gaussian QFT.

2.1 Effective action

Generating functional for connected correlators is

F(J) = lnZJ,
δF(J)
δJ(x)

=
1
ZJ

δZJ

δJ(x)
≡< φ(x)>J≡ ϕ(x)− (2.9)

is observable value of the field, generated by source J. We have

δ
δJ

(F(J)− J ·ϕ)|ϕ=const = 0, (2.10)

so

J ·ϕ −F(J) = Sq(ϕ) = S(ϕ)+R(ϕ)

3
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= ∑
n≥1

1
n!

∫
dx1dx2...dxnΓn(x1,x2, ...,xn)ϕ(x1)ϕ(x2)...ϕ(xn),

δSq

δϕ(x)
= J(x);

δ 2Sq

δϕ(x1)δϕ(x2)
=

δJ(x2)

δϕ(x1)
=

δJ(x1)

δϕ(x2)
= Γ2(x1,x2) (2.11)

R(ϕ) - is quantum corrections to the classical action.
The connected part of the two point correlator - propagator, is

< φ(x1)φ(x2)>c=< φ(x1)φ(x2)>−< φ(x1)>< φ(x2)>

=
1

Z(J)
δ 2Z(J)

δJ(x1)δJ(x2)
− 1

Z(J)
δZ(J)
δJ(x1)

1
Z(J)

δZ(J)
δJ(x2)

= Γ2(x1,x2) (2.12)

2.2 p-adic convergence of perturbative series

Perturbative series have the following qualitative form

f (g) = f0 + f1g+ ...+ fngn + ..., fn = n!P(n)

f (x) = ∑
n≥0

P(n)n!xn = P(δ )Γ(1+δ )
1

1− x
, δ = x

d
dx

(2.13)

In the usual sense these series are divergent, but with proper nomalization of the expansion parame-
tre g, the coefficients of the series are rational numbers and if experimental dates indicates for some
rational value for g, e.g. in QED

g =
e2

4π
=

1
137.0...

(2.14)

then we can take corresponding prime number and consider p-adic convergence of the series. In
the case of QED, we have

f (g) = ∑ fn p−n, fn = n!P(n), p = 137,
| f |p ≤ ∑ | fn|p pn (2.15)

In the Yukawa theory of strong interactions (see e.g. [Bogoliubov, Shirkov, 1959]), we take
g = 13,

f (g) = ∑ fn pn, fn = n!P(n), p = 13,

| f |p ≤ ∑ | fn|p p−n <
1

1− p−1 (2.16)

So, the series is convergent. If the limit is rational number, we consider it as an observable value
of the corresponding physical quantity. Note also, that the inverse coupling expansions, e.g. in
lattice(gauge) theories,

f (β ) = ∑rnβ n, (2.17)

are also p-adically convergent for β = pk. We can take the following scenery. We fix coupling
constants and masses, e.g in QED or QCD, in low order perturbative expansions. Than put the
models on lattice and calculate observable quantities as inverse coupling expansions, e.g.

f (α) = ∑rnα−n,

4
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αQED(0) = 1/137; αQCD(mZ) = 0.11...= 1/32 (2.18)

In MSSM (see [Muehlleitner, CALC 2012], [Kazakov, 2004]) coupling constants of the SM
unifies at α−1

u = 26.3±1.9±1.
So,

23.4 < α−1
u < 29.2 (2.19)

Question: how many primes are in this interval?

24, 25, 26, 27, 28, 29 (2.20)

Only one!
Proposal: take the value α−1

u = 29.0... which will be two orders of magnitude more precise
prediction and find the consequences for the SM scale observables.

Remind that for low energy limit of the fine structure constant α, α−1 = 137.036...

2.3 The Goldberger-Treiman relation and the pion-nucleon coupling constant

The Goldberger-Treiman relation (GTR) [Goldberger, Treiman, 1958] plays an important role
in theoretical hadronic and nuclear physics. GTR relates the Meson-Nucleon coupling constants to
the axial-vector coupling constant in β -decay:

mNgA(0) = fπgπN (2.21)

where mN is the nucleon mass, gA(0) is the axial-vector coupling constant in nucleon β -decay at
vanishing momentum transfer, fπ is the π decay constant and gπN is the π −N coupling constant.

Since the days when the Goldberger-Treiman relation was discovered, the value of gA has
increased considerably. Also, fπ decreased a little, on account of radiative corrections. The main
source of uncertainty is gπN .

If we take

απN =
g2

πN

4π
= 13, gπN = 12.78 (2.22)

experimental value for fπ from pion decay

fπ =
130√

2
= 91.9MeV, (2.23)

Neutron mass,

mN = 940MeV, (2.24)

from (2.21), we find

gA(0) =
fπgπN

mN
=

91.9×
√

52π
940

= 1.2496 ≃ 1.25 =
5
4
, (2.25)

which coincides with the experimental value from β -decay

gA(0) = 1.25 (2.26)

So, we can say that using GTR we measured the pion-nucleon fine structure constant and find the
value

απN =
g2

πN

4π
= 13 (2.27)

5
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2.4 A model of pion-nucleon interaction

In a πρN model of pion-nucleon interaction [Di Giacomo, Paffuti, Rossi, 1992]

LπN = g(N̄γµtaN + iεabcπb∂µπc)ρµa, (2.28)

pion interacts with nucleon through the exchange of the vector meson ρ(mρ = 750 MeV,T = 1),
the amplitude of ρ0 → π+π− decay is

M = gεµ(kπ− − kπ+)µ , (2.29)

the decay width is

Γ =
1

2mρ
|M|2(1− 4m2

π
m2

ρ
)

1
2

1
8π

=
g2

48π
mρ(1−

4m2
π

m2
ρ
)

3
2 (2.30)

and for fine structure coupling constant we have

απρN =
g2

4π
=

Γ
mρ

12

(1− 4m2
π

m2
ρ
)

3
2

=
12.

5(1− 4×142

752 )
3
2
= 3.006 = 3.0.. (2.31)

for Γ = Γρππ = 150MeV,mπ = 140MeV,mρ = 750MeV. So, in this strong coupling model the
expansion parameter is a prime number, αg = 3.

3. Neutral pion to two photon decay

After integrating out all heavy and trapped particles, we would expect the effective Lagrangian
for

π0 → 2γ (3.1)

to be given by the unique gauge and Lorentz-invariant term with no more than two derivatives:

Lπγγ = gπ0εµνρσ FµνFρσ (3.2)

where g is an unknown constant with the mass dimension m−1.

The rate for π0 → 2γ is

Γ(π0 → 2γ) =
g2m3

π
π

(3.3)

One might naively expect g to be of order

g =
a2

Fπ
, a =

e
4π

, (3.4)

where Fπ = 190MeV is used as a typical strong interaction mass scale.
In 1949, using the pre-QCD theory of pions and nuclons with interaction lagrangian

LπNN = igπNπaN̄2taγ5N, (3.5)

6
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Steinberger calculated the contribution to g from triangle graphs with a single proton loop

g =
e2gπN

32π2mN
= a2 gπN

2mN
, a =

e
4π

. (3.6)

From Goldberger-Treiman relation we have

gπN

2mN
=

gA

2 fπ
, (3.7)

so,

g =
a2

Fπ
gA, gA = 1.25, Fπ = 2 fπ = 184MeV (3.8)

Using

g =
a2

Fπ
, a =

e
4π

, Fπ = 190MeV (3.9)

Γ(π0 → 2γ) =
g2m3

π
π

=
a4m3

π
πF2

π
=

α2m3
π

16π3F2
π
= 1.0×1016s−1 (3.10)

The observed rate is

Γ(π0 → 2γ)exp = (1.19±0.08)×1016s−1, (3.11)

which is in good agreement with the estimation.

4. Sum rules

Much of the hadronic dynamics at low energies is determined by nucleon and meson ex-
changes while the intermediate energy region is dominated by various resonances. Chiral symme-
try is an important physical constraint that governs the meson-nucleon interactions at low energies
and unitarity is an essential property at intermediate energies. A natural link between the low and
intermediate energy regions is provided by various sum rules.

4.1 Gerasimov, Drell-Hearn sum rules

The Gerasimov, Drell-Hearn (GDH) sum rule [Gerasimov, 1965], [Drell, Hearn, 1966]

π2α
m2s

k2 =
∫ ∞

−∞
dt[σ(t,1+ s)−σ(t,1− s)], (4.1)

relates the anomalous magnetic moment k of a particle with spin s and mass m to the integral of
the difference of polarized total photo-absorption cross-sections σ(t,1± s) for total helicity (1± s)
and energy ω = ω0et . The anomalous magnetic moment is k = (g− 2)s, i.e., the deviation of the
gyromagnetic ratio g from its natural value of 2 for any spin [Ferrara, Porrati, Telegdi, 1992]. In
the case of the proton, e.g., s = 1/2,k = 1.79

7
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It is interesting also to consider high values of s for high spin nuclei, magnetics, string and
extended particle models. Note that, for s = 0, both sides of the relation is zero.

Let us present the integral from right-hand side as∫ ∞

−∞
dt

s

∑
n=−s+1

A(t,n) =
s

∑
n=−s+1

∫ ∞

−∞
dtA(t,n) =

s

∑
n=−s+1

a(n),

A(t,n) = σ(t,1+n)−σ(t,n), a(n) =
∫ ∞

−∞
dtA(t,n) (4.2)

One of the solutions of the GDH relation considered as an integral equation is

a(n) = a =
π2α
2m2 (g−2)2,

b(n+1) = b(n)+a, b(n) =
∫ ∞

−∞
dtσ(t,n) (4.3)

4.2 Adler-Weisberger sum rule

The Adler-Weisberger sum rule (AWS) [Adler, 1965],[Weisberger, 1966], [Adler, Dashen, 1965],
[Treiman, Witten, Jackiw, Zumino, 1985],[Weinberg, 1996] relates integrals over the total cross
section to the scattering amplitude calculated at a subthreshold kinematic point

1−g−2
A =

2m2
N

πg2
πN

∫ ∞

0
dt[σπ+N(t)−σπ−N(t)]

= sin2 θ = (3/5)2 (4.4)

where σπ±N(t)) are the pion-nucleon cross sections at the energy ω = mπet . For the value of the
axial coupling constant gA = 5/4 = 1/cosθ , on the right-hand side of the AWS, we will have
sin2 θ , sinθ = 3/5, θ = 0.6435011087932845∗180/Pi = 36.86989764584403 ≃ 37o

Note that, we can define the pion decay constant from the Goldberger-Treiman relation

fπ =
gAmN

gπN
(4.5)

and put the AWS in the form

g2
A = 1+

2 f 2
π

π

∫ ∞

0
dt[σπ+N(t)−σπ−N(t)] (4.6)

5. Real, p - adic and q - uantum fractal calculus

Every (good) school boy/girl knows what is

dn

dxn = ∂ n = (∂ )n, (5.1)

but what is its following extension

dα

dxα = ∂ α , α ∈ ℜ ? (5.2)

8
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5.1 Euler, ... Liouville, ... Holmgren, ...

Let us consider the integer derivatives of the monomials

dn

dxn xm = m(m−1)...(m− (n−1))xm−n, n ≤ m,

=
Γ(m+1)

Γ(m+1−n)
xm−n. (5.3)

L.Euler (1707 - 1783) invented the following definition of the fractal derivatives,

dα

dxα xβ =
Γ(β +1)

Γ(β +1−α)
xβ−α . (5.4)

J.Liouville (1809-1882) takes exponents as a base functions,

dα

dxα eax = aαeax. (5.5)

The following Cauchy formula

In
0,x f =

∫ x

0
dxn

∫ xn−1

0
dxn−2...

∫ x2

0
dx1 f (x1) =

1
Γ(n)

∫ x

0
dy(x− y)n−1 f (y) (5.6)

permits analytic extension from integer n to complex α,

Iα
0,x f =

1
Γ(α)

∫ x

0
dy(x− y)α−1 f (y) (5.7)

J.H. Holmgren invented (in 1863) the following integral transformation,

D−α
c,x f =

1
Γ(α)

x∫
c

|x− t|α−1 f (t)dt. (5.8)

It is easy to show that

D−α
c,x xm =

Γ(m+1)
Γ(m+1+α)

(xm+α − cm+α),

D−α
c,x eax = a−α(eax − eac), (5.9)

so, c = 0, when m+α ≥ 0, in Holmgren’s definition of the fractal calculus, corresponds to the
Euler’s definition, and c =−∞, when a > 0, corresponds to the Liouville’s definition.

Holmgren’s definition of the fractal calculus reduce to the Euler’s definition for finite c, and to
the Liouvill’s definition for c = ∞,

D−α
c,x f = D−α

0,x f −D−α
0,c f ,

D−α
∞,x f = D−α

−∞,x f −D−α
−∞,∞ f . (5.10)

We considered the following modification of the c = 0 case [Makhaldiani, 2003],

D−α
0,x f =

|x|α

Γ(α)

1∫
0

|1− t|α−1 f (xt)dt, =
|x|α

Γ(α)
B(α, ∂x) f (x)

9
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= |x|α Γ(∂x)
Γ(α +∂x)

f (x), f (xt) = tx d
dx f (x). (5.11)

As an example, consider Euler B-function,

B(α,β ) =
∫ 1

0
dx|1− x|α−1|x|β−1 = Γ(α)Γ(β )D−α

01 D1−β
0x 1 =

Γ(α)Γ(β )
Γ(α +β )

(5.12)

We can define also FC as

Dα f = (D−α)−1 f =
Γ(∂x+α)

Γ(∂x)
(|x|−α f ), ∂x = δ +1, δ = x∂ (5.13)

For the Liouville’s case,

Dα
−∞,x f = (D−∞,x)

α f = (∂x)
α f , (5.14)

∂−α
x f =

1
Γ(α)

∫ ∞

0
dttα−1e−t∂x f (x) =

1
Γ(α)

∫ ∞

0
dttα−1 f (x− t)

=
1

Γ(α)

∫ x

−∞
dt(x− t)α−1 f (t) = D−α

−∞,x f . (5.15)

The integrals can be calculated as

D−n f = (D−1)n f , (5.16)

where

D−1 f = x
Γ(∂x)

Γ(1+∂x)
f = x

1
∂x

f = x(∂x)−1 f = (∂ )−1 f =
∫ x

0
dt f (t). (5.17)

Let us consider Weierstrass C.T.W. (1815 - 1897) fractal function

f (t) = ∑
n≥0

anei(bnt+φn), a < 1, ab > 1. (5.18)

For fractals we have no integer derivatives,

f (1)(t) = i∑(ab)nei(bnt+φn) = ∞, (5.19)

but the fractal derivative,

f (α)(t) = ∑(abα)nei(bnt+πα/2+φn), (5.20)

when abα = a′ < 1, is another fractal (5.18).
Question: what if ab = p is prime number? Can we define integer derivatives in this case?

10
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5.2 p - adic fractal calculus

p-adic analog of the fractal calculus (5.8) ,

D−α
x f =

1
Γp(α)

∫
Qp

|x− t|α−1
p f (t)dt, (5.21)

where f (x) is a complex function of the p-adic variable x, with p-adic Γ–function

Γp(α) =
∫

Qp

dt|t|α−1
p χ(t) =

1− pα−1

1− p−α , (5.22)

was considered by V.S. Vladimirov [Vladimirov, 1988].
The following modification of p-adic FC is given in [Makhaldiani, 2003]

D−α
x f =

|x|αp
Γp(α)

∫
Qp

|1− t|α−1
p f (xt)dt

= |x|αp
Γp(∂ |x|)

Γp(α +∂ |x|)
f (x). (5.23)

5.3 Fractal qalculus

The basic object of q-calculus [Gasper, Rahman, 1990] is q-derivative

Dq f (x) =
f (x)− f (qx)
(1−q)x

=
1−qx∂

(1−q)x
f (x), (5.24)

where either 0 < q < 1 or 1 < q < ∞. In the limit q → 1,Dq → ∂x.

Now we define the fractal q-calculus,

Dα
q f (x) = (Dq)

α f (x)

= ((1−q)x)−α( f (x)+ ∑
n≥1

(−1)n α(α −1)...(α −n+1)
n!

f (qnx)). (5.25)

For the case α =−1, we obtain the integral

D−1
q f (x) = (1−q)x(1−qx∂ )−1 f (x) = (1−q)x ∑

n≥0
f (qnx). (5.26)

In the case of 1 < q < ∞, we can give a good analytic sense to these expressions for prime num-
bers q = p = 2,3,5, ...,29, ...,137, ... This is an algebra-analytic quantization of the q-calculus and
corresponding physical models. Note also, that p-adic calculus is the natural tool for the physi-
cal models defined on the fractal( space)s like Bete lattice ( or Brua-Tits trees, in mathematical
literature).

Note also a symmetric definition of the calculus

Dqs f (x) =
f (q−1x)− f (qx)

(q−1 −q)x
f (x). (5.27)

11
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5.4 Fractal finite - difference calculus

Usual finite difference calculus is based on the following (left) derivative operator

D− f (x) =
f (x)− f (x−h)

h
= (

1− e−h∂

h
) f (x). (5.28)

We define corresponding fractal calculus as

Dα
− f (x) = (D−)

α f (x). (5.29)

In the case of α =−1, we have usual finite difference sum as regularization of the Riemann integral

D−1
− f (x) = h( f (x)+ f (x−h)+ f (x−2h)+ ...). (5.30)

(I believe that) the fractal calculus (and geometry) are the proper language for the quantume (field)
theories, and discrete versions of the fractal calculus are proper regularizations of the fractal calcu-
lus and field theories.

5.5 Hypergeometric functions

A hypergeometric series, in the most general sense, is a power series in which the ratio of
successive coefficients indexed by n is a rational function of n,

f (x) = ∑
n≥0

anxn, an+1 = R(n)an, R(n) =
P(α,n)
Q(β ,n)

(5.31)

so

P(α,δ ) f (x) = Q(β ,δ )( f (x)− f (0))/x,
f (x)− f (0) = xR(δ ) f (x), f (x) = (1− xR(δ ))−1 f (0),δ = x∂x (5.32)

Hypergeometric functions have many particular special functions as special cases, including many
elementary functions, the Bessel functions, the incomplete gamma function, the error function, the
elliptic integrals and the classical orthogonal polynomials, because the hypergeometric functions
are solutions to the hypergeometric differential equation, which is a fairly general second-order
ordinary differential equation.

In a generalization given by Eduard Heine ( 1821 - 1881 ) , the ratio of successive terms,
instead of being a rational function of n, are considered to be a rational function of qn

f (x) = ∑
n≥0

anxn, an+1 = R(qn)an, R(n) =
P(α,qn)

Q(β ,qn)
,

P(α,qδ ) f (x) = Q(β ,qδ )( f (x)− f (0))/x,
f (x)− f (0) = xR(qδ ) f (x), f (x) = (1− xR(qδ ))−1 f (0),δ = x∂x (5.33)

Another generalization, the elliptic hypergeometric series, are those series where the ratio of terms
is an elliptic function (a doubly periodic meromorphic function) of n.

There are a number of new definitions of hypergeometric series, by Aomoto, Gelfand and
others; and applications for example to the combinatorics of arranging a number of hyperplanes in
complex N-space.
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5.6 Hypergeometric field theory (HFT)

Formal solutions for the the hypergeometric functions (5.32,5.33), we put in the fieldtheoretic
form,

f (x) = G(x) f (0),

G(x) =< ψ(x)ϕ(0)>=
δ 2 lnZ

δJ(x)δ I(0)
= (1− xR)−1,

Z =
∫

dψdϕe−S+Iϕ+Jψ = eI(1−xR)−1J,

S =
∫

ψ(1− xR)ϕ =
∫

ψ(Q− xP)φ, ϕ = Qφ. (5.34)

When we invent interaction terms, we obtain nontrivial HFT. In terms of the fundamental fields,
ψ,φ, we have local field model.

5.7 Lauricella Hypergeometric functions (LFs)

For LFs (see, e.g. [Miller, 1977]), we find the following formulas [Makhaldiani, 2011]

FA(a;b1, ...,bn;c1, ...,cn;z1, ...,zn) =
(a)δ1+...+δn(b1)δ1 ...(bn)δn

(c1)δ1 ...(cn)δn

ez1+...+zn

=
(a)δ1+...+δn

(a1)δ1 ...(an)δn

F(a1,b1;c1;z1)...F(an,bn;cn;zn)

= T−1(a)Fn = Σm≥0
(a)m1+...+mn(b1)m1 ...(bn)mn

(c1)m1 ...(cn)mn

zm1
1

m1!
...

zmn
n

mn!
, |z1|+ ...+ |zn|< 1;

FB(a1, ...,an;b1, ...,bn;c;z1, ...,zn) =
(a1)δ1 ...(an)δn(b1)δ1 ...(bn)δn

(c)δ1+...+δn

ez1+...+zn

=
(c1)δ1 ...(cn)δn

(c)δ1+...+δn

F(a1,b1;c1;z1)...F(an,bn;cn;zn) = T (c)Fn

= Σm≥0
(a1)m1 ...(an)mn(b1)m1 ...(bn)mn

(c)m1+...+mn

zm1
1

m1!
...

zmn
n

mn!
, |z1|< 1, ..., |zn|< 1; (5.35)

FC(a;b;c1, ...,cn;z1, ...,zn) =
(a)δ1+...+δn(b)δ1+...+δn

(c1)δ1 ...(cn)δn

ez1+...+zn

=
(a)δ1+...+δn(b)δ1+...+δn

(a1)δ1 ...(an)δn(b1)δ1 ...(bn)δn

F(a1,b1;c1;z1)...F(an,bn;cn;zn)

= T−1(a)T−1(b)Fn = T−1(b)FA

= Σm≥0
(a)m1+...+mn(b)m1+...+mn

(c1)m1 ...(cn)mn

zm1
1

m1!
...

zmn
n

mn!
, |z1|1/2 + ...+ |zn|1/2 < 1;

FD(a;b1, ...,bn;c;z1, ...,zn) =
(a)δ1+...+δn(b1)δ1 ...(bn)δn

(c)δ1+...δn

ez1+...+zn

=
(a)δ1+...+δn(c1)δ1 ...(cn)δn

(a1)δ1 ...(an)δn(c)δ1+...δn

F(a1,b1;c1;z1)...F(an,bn;cn;zn)

= T−1(a)T (c)Fn = T (c)FA = T−1(a)FB

= Σm≥0
(a)m1+...+mn(b1)m1 ...(bn)mn

(c1)m1 ...(cn)mn

zm1
1

m1!
...

zmn
n

mn!
, |z1|< 1, ..., |zn|< 1. (5.36)
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5.8 Lomidze Bn function (LBn)

In the paper ([Lomidze, 1994]) the following formula were proposed

Bn(r0,r1, ...,rn) = det[xi−1
j

∫ 1

x j−1/x j

ui−1(1−u)r j−1
n

∏
k=0,k ̸= j

(
x ju− xk

x j − xk
)rk−1du]/det[xi−1

j ]

=
Γ(r0)Γ(r1)...Γ(rn)

Γ(ro + r1 + ...+ rn)
, 0 = x0 < x1 < x2 < ... < xn, n ≥ 1. (5.37)

Let us put the formula in the following factorized form

LBn(x,r)≡ det[xi−1
j

∫ 1

x j−1/x j

duui+r0−2(1−u)r j−1
n

∏
k=1,k ̸= j

(
x ju− xk

x j − xk
)rk−1]

= detVn(x)Bn(r), Vn(x) = [xi−1
j ], Bn(r) =

Γ(r0)Γ(r1)...Γ(rn)

Γ(r0 + r1 + ...+ rn)
(5.38)

Now, it is enough to proof this formula for general values of xi and particular values of ri, e.g.,
ri = 1, and for general values of ri and particular values of xi, e.g. xi = pi, 1 ≤ i ≤ n. In the case of
ri = 1, right hand side of the formula is equal to the Vandermonde determinant divided by n! The
left hand side is the determinant of the matrix with elements Ai j = xi−1

j (1− (x j−1/x j)
i)/i

When we calculate determinant of this matrix, from the row i, we factorize 1/i,2≤ i≤ n which
gives the 1/n! the rest matrix we calculate transforming the matrix to the form of the Vandermonde
matrix.

This is the half way of the proof. Let us take the concrete values of xi = pi, 1 ≤ i ≤ n, where
p is positive integer and general complex values for ri,0 ≤ i ≤ n, and calculate both sides of the
equality. For Vandermonde determinant we find for high values of p the following asymptotic

detV = pN , N =
n

∑
k=2

k(k−1) =
n(n2 −1)

3
(5.39)

The matrix elements are

Bi j = xi−1
j

∫ 1

x j−1/x j

ui+r0−2(1−u)r j−1
n

∏
k=1,k ̸= j

(
x ju− xk

x j − xk
)rk−1du

= xi−1
j ∏

1≤k< j
(

x j

x j − xk
)rk−1 ∏

j<k≤n
(

xk

xk − x j
)rk−1

∫ 1

x j−1/x j

ui+r0−2(1−u)r j−1

· ∏
1≤k< j

(u− xk/x j)
rk−1 ∏

j<k≤n
(1− x j/xku)rk−1du

= p(i−1) j
∫ 1

0
ui+r0−2+∑ j−1

k=1(rk−1)(1−u)r j−1du

= p(i−1) jB(i+
j−1

∑
k=0

(rk −1),r j) (5.40)

For n = 2 we have

B11 =
∫ 1

0
ur0−1(1−u)r1−1du =

Γ(r0)Γ(r1)

Γ(r0 + r1)
,

B22 = p2
∫ 1

0
ur0+r1−1(1−u)r2−1du =

Γ(r0 + r1)Γ(r2)

Γ(r0 + r1 + r2)
,

14
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LB2/V2 = B11B22/p2 =
Γ(r0)Γ(r1)Γ(r2)

Γ(r0 + r1 + r2)
(5.41)

For n = 3,

B11 =
∫ 1

0
ur0−1(1−u)r1−1 =

Γ(r0)Γ(r1)

Γ(r0 + r1)
= B(r0,r1),

B22 = p2
∫ 1

0
ur0+r1−1(1−u)r2−1 = p2 Γ(r0 + r1)Γ(r2)

Γ(r0 + r1 + r2)
,

B33 = p6
∫ 1

0
ur0+r1+r2−1(1−u)r3−1 = p6 Γ(r0 + r1 + r2)Γ(r3)

Γ(r0 + r1 + r2 + r3)

LB3/V3 = B11B22B33/p8 =
Γ(r0)Γ(r1)Γ(r2)Γ(r3)

Γ(r0 + r1 + r2 + r3)
(5.42)

Now it is obvious the last step of the proof [Makhaldiani, 2011]

LBn(x,r) = detVn(x)B(r0,r1)...B(r0 + r1 + ...+ rn−1,rn)

= detVn(x)Bn(r)

Vn(x) = [xi−1
j ], Bn(r) =

Γ(r0)Γ(r1)..Γ(rn)

Γ(r0 + r1 + ...+ rn)
(5.43)

5.9 Field theory applications of FC

Let us consider the following action

S =
1
2

∫
Qv

dxΦ(x)Dα
x Φ, v = 1,2,3,5, ...,29, ...,137, ... (5.44)

Q1 is real number field, Qp, p - prime, are p-adic number fields. In the momentum representation

S =
1
2

∫
Qv

duΦ̃(−u)|u|αv Φ̃(u), Φ(x) =
∫
Qv

duχv(ux)Φ̃(u),

D−α χv(ux) = |u|−α
v χv(ux). (5.45)

The statistical sum of the corresponding quantum theory is

Zv =
∫

dΦe
− 1

2
∫

ΦDα Φ
= det−1/2Dα = (∏

u
|u|v)−α/2. (5.46)

5.10 String theory applications

For (symmetrized, 4-tachyon) Veneziano amplitude we have (see, e.g. [Kaku, 2000])

Bs(α,β ) = B(α,β )+B(β ,γ)+B(γ,α) =
∫ ∞

−∞
dx|1− x|α−1|x|β−1,

α +β + γ = 1 (5.47)

For the p-adic Veneziano amplitude we take

Bp(α,β ) =
∫

Qp

dx|1− x|α−1
p |x|β−1

p =
Γp(α)Γp(β )
Γp(α +β )

(5.48)
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Now we obtain the N-tachyon amplitude using fractal calculus. We consider the dynamics of
particle given by multicomponent generalization of the action (5.44), Φ → xµ .

For the closed trajectory of the particle passing through N points, we have

A(x1,x2, ...,xN) =
∫

dt
∫

dt1...
∫

dtNδ (t −Σtn)

v(x1, t1;x2, t2)v(x2, t2;x3, t3)...v(xN , tN ;x1, t1)

=
∫

dx(t)Π(
∫

dtnδ (xµ(tn)− xµ
n ))exp(−S[x(t)])

=
∫

Π(dkµ
n χ(knxn))Ã(k), (5.49)

where

Ã(k) =
∫

dxV (k1)V (k2)...V (kN)exp(−S),

V (kn) =
∫

dtχ(−knx(t)) (5.50)

is vertex function.
Motion equation

Dαxµ − iΣkµ
n δ (t − tn) = 0, (5.51)

in the momentum representation

|u|α x̃µ(u)− iΣnkµ
n χ(−utn) = 0 (5.52)

have the solution

x̃µ(u) = iΣkµ
n

χ(−utn)
|u|α

, u ̸= 0, (5.53)

the constraint

Σnkn = 0, (5.54)

and the zero mod x̃µ
n (0), which is arbitrary. Integration in (5.49) with respect to this zero mod gives

the constraint (5.54). On the solution of the equation (5.51)

xµ(t) = iD−α
t Σnkµ

n δ (t − tn) =
i

Γ(α)
Σnkµ

n |t − tn|α−1, (5.55)

the action (5.44) takes value

S =− 1
Γ(α)

Σn<mknkm|tn − tm|α−1,

Ã(k) =
∫

ΠN
n=1dtnexp(−S) (5.56)

In the limit, α → 1, for p-adic case we obtain

xµ(t) =−i
p−1
p lnp

Σnkµ
n ln|t − tn|,
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S[x(t)] =
p−1
p lnp

Σn<mknkm ln|tn − tm|,

Ã(k) =
∫

ΠN
n=1dtnΠn<m|tn − tm|

p−1
p lnp knkm . (5.57)

Now in the limit p = q−1 → 1 we obtain the proper expressions of the real case

xµ(t) =−iΣnkµ
n ln|t − tn|,

S[x(t)] = Σn<mknkm ln|tn − tm|,
Ã(k) =

∫
ΠN

n=1dtnΠn<m|tn − tm|knkm . (5.58)

By fractal calculus and vector generalization of the model (5.44), fundamental string ampli-
tudes were obtained in [Makhaldiani, 1988].

5.11 Renormdynamics of QCD

QCD is the theory of the strong interactions with, as only inputs, one mass parameter for each
quark species and the value of the QCD coupling constant at some energy or momentum scale
in some renormalization scheme. This last free parameter of the theory can be fixed by ΛQCD,
the energy scale used as the typical boundary condition for the integration of the Renormdynamic
equation for the strong coupling constant. This is the parameter which expresses the scale of
strong interactions, the only parameter in the limit of massless quarks. While the evolution of
the coupling with the momentum scale is determined by the quantum corrections induced by the
renormalization of the bare coupling and can be computed in perturbation theory, the strength itself
of the interaction, given at any scale by the value of the renormalized coupling at this scale, or
equivalently by ΛQCD, is one of the above mentioned parameters of the theory and has to be taken
from experiment.

The RD equations play an important role in our understanding of Quantum Chromodynamics
and the strong interactions. The beta function and the quarks mass anomalous dimension are among
the most prominent objects for QCD RD equations. The calculation of the one-loop β -function in
QCD has lead to the discovery of asymptotic freedom in this model and to the establishment of
QCD as the theory of strong interactions [Gross, Wilczek, 1973, Politzer, 1973, ’t Hooft, 1972].

The MS-scheme [’t Hooft, 1972 2] belongs to the class of massless schemes where the β -
function does not depend on masses of the theory and the first two coefficients of the β -function
are scheme-independent.

The Lagrangian of QCD with massive quarks in the covariant gauge

L =−1
4

Fa
µνFaµν + q̄n(iγD−mn)qn

− 1
2ξ

(∂A)2 +∂ µ c̄a(∂µca +g f abcAb
µcc)

Fa
µν = ∂µAa

ν −∂νAa
µ +g f abcAb

µAc
ν

(Dµ)kl = δkl∂µ − igta
klA

a
µ , (5.59)

Aa
µ ,a = 1, ...,N2

c −1 are gluon; qn,n = 1, ...,n f are quark; ca are ghost fields; ξ is gauge parameter;
ta are generators of fundamental representation and f abc are structure constants of the Lie algebra

[ta, tb] = i f abctc, (5.60)
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we will consider an arbitrary compact semi-simple Lie group G. For QCD, G = SU(Nc),Nc = 3.
The RD equation for the coupling constant is

ȧ = β (a) =−β2a2 −β3a3 −β4a4 −β5a5 +O(a6),

a =
αs

4π
= (

g
4π

)2∫ a

a0

da
β (a)

= t − t0 = ln
µ2

µ2
0
, (5.61)

µ is the ’t Hooft unit of mass, the renormalization point in the MS-scheme.
To calculate the β -function we need to calculate the renormalization constant Z of the coupling

constant, ab = Za, where ab is the bare (unrenormalized) charge.
The expression of the β -function can be obtained in the following way

0 = d(abµ2ε)/dt = µ2ε(εZa+
∂ (Za)

∂a
da
dt

)

⇒ da
dt

= β (a,ε) =
−εZa
∂ (Za)

∂a

=−εa+β (a),

β (a) = a
d
da

(aZ1) (5.62)

where

β (a,ε) =
D−4

2
a+β (a) (5.63)

is D−dimensional β−function and Z1 is the residue of the first pole in ε expansion

Z(a,ε) = 1+Z1ε−1 + ...+Znε−n + ... (5.64)

Since Z does not depend explicitly on µ , the β -function is the same in all MS-like schemes, i.e.
within the class of renormalization schemes which differ by the shift of the parameter µ .

For quark anomalous dimension, RD equation is

ḃ = γ(a) =−γ1a− γ2a2 − γ3a3 − γ4a4 +O(a5),

b = lnmq,

b(t) = b0 +
∫ t

t0
dtγ(a(t)) = b0 +

∫ a

a0

daγ(a)/β (a). (5.65)

To calculate the quark mass anomalous dimension γ(g) we need to calculate the renormalization
constant Zm of the quark mass mb = Zmm, mb is the bare (unrenormalized) quark mass. Than we
find the function γ(g) in the following way

0 = ṁb = Żmm+Zmṁ = Zmm((lnZm)
·+(lnm)·)

⇒ γ(a) =−d lnZm

dt
=−d lnZm

da
da
dt

=−d lnZm

da
(−εa+β (a)) = a

dZm1

da
, (5.66)

where RD equation in D−dimension is

ȧ =−εa+β (a) = β1a+β2a2 + ... (5.67)
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and Zm1 is the coefficient of the first pole in the ε−expantion of the Zm in MS-scheme

Zm(ε,g) = 1+Zm1(g)ε−1 +Zm2(g)ε−2 + ... (5.68)

Since Zm does not depend explicitly on µ and m, the γm-function is the same in all MS-like schemes.

5.12 Reparametrization and general method of solution of the RD equation

RD equation,

ȧ = β1a+β2a2 + ... (5.69)

can be reparametrized,

a(t) = f (A(t)) = A+ f2A2 + ...+ fnAn + ...= ∑
n≥1

fnAn,

Ȧ = b1A+b2A2 + ...= ∑
n≥1

bnAn, (5.70)

ȧ = Ȧ f ′(A) = (b1A+b2A2 + ...)(1+2 f2A+ ...+n fnAn−1 + ...)

= β1(A+ f2A2 + ...+ fnAn + ...)+β2(A2 +2 f2A3 + ...)+ ...

+βn(An +n f2An+1 + ...)+ ...

= β1A+(β2 +β1 f2)A2 +(β3 +2β2 f2 +β1 f3)A3+

...+(βn +(n−1)βn−1 f2 + ...+β1 fn)An + ...

= ∑
n,n1,n2≥1

Anbn1n2 fn2δn,n1+n2−1

= ∑
n,m≥1;m1,...,mk≥0

Anβm f m1
1 ... f mk

k f (n,m,m1, ...,mk),

f (n,m,m1, ...,mk) =
m!

m1!...mk!
δn,m1+2m2+...+kmk δm,m1+m2+...+mk , (5.71)

b1 = β1, b2 = β2 + f2β1 −2 f2b1 = β2 − f2β1,

b3 = β3 +2 f2β2 + f3β1 −2 f2b2 −3 f3b1 = β3 +2( f 2
2 − f3)β1,

b4 = β4 +3 f2β3 + f 2
2 β2 +2 f3β2 −3 f4b1 −3 f3b2 −2 f2b3, ...

bn = βn + ...+β1 fn −2 f2bn−1 − ...−n fnb1, ... (5.72)

so, by reparametrization, beyond the critical dimension (β1 ̸= 0) we can change any coefficient but
β1.

We can fix any higher coefficient with zero value, if we take

f2 =
β2

β1
, f3 =

β3

2β1
+ f 2

2 , ... , fn =
βn + ...

(n−1)β1
, ... (5.73)

In this case we have exact classical dynamics in the (external) space-time and simple scale dynam-
ics,

g = (µ/µ0)
−εg0 = e−ετg0;

φ(τ , t,x) = e−(D−2)/2τφ0(t,x),
ψ(τ, t,x) = e−(D−1)/2τψ0(t,x) (5.74)
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We will consider in applications the case when only one of higher coefficient is nonzero.
In the critical dimension of space-time, β1 = 0, and we can change by reparametrization any

coefficient but β2 and β3.

From the relations (5.72), in the critical dimenshion (β1 = 0), we find that, we can define the
minimal form of the RD equation

Ȧ = β2A2 +β3A3, (5.75)

e.g. b4 = 0 when

f3 =
β4

β2
+

β3

β2
f2 + f 2

2 , (5.76)

f2 remains arbitrary and we can make choice f2 = 0. We can solve (5.75) as implicit function,

uβ3/β2e−u = ceβ2t , u =
1
A
+

β3

β2
(5.77)

than, as in the noncritical case, explicit solution will be given by reparametrization representation.
If we know somehow the coefficients βn, e.g. for first several exact and for others asymp-

totic values (see e.g. [Kazakov, Shirkov, 1980]) than we can construct reparametrization function
(5.70) and find the dynamics of the running coupling constant. This is similar to the action-angular
canonical transformation of the analytic mechanics (see e.g. [Faddeev, Takhtajan, 1987]).

Statement: The series for a is p-adically convergent, when βn and A are rational numbers.

5.13 Reparametrization of the anomalous dimensions

Let us take the the anomalous dimension of some quantity (see e.g. [Smirnov, CALC 2012],
[Moch, CALC 2012])

γ(a) = γ1a+ γ2a2 + γ3a3 + ... (5.78)

and make reparametrization

a = f (A) = A+ f2A2 + f3A3 + ... (5.79)

γ(a) = γ1(A+ f2A2 + f3A3 + ...)+ γ2(A2 +2 f2A3 + ...)+ γ3(A3 + ...)+ ...

= Γ1A+Γ2A2 +Γ3A3 + ...

Γ1 = γ1, Γ2 = γ2 + γ1 f2, Γ3 = γ3 +2γ2 f2 + γ1 f3, ... (5.80)

When γ1 ̸= 0, we can take Γn = 0, n ≥ 2, if we define fn as

f2 =−γ2

γ1
, f3 =−γ3 +2γ2 f2

γ1
=−γ3 −2γ2

2/γ1

γ1
, ... (5.81)

So, we get the exact value for the anomalous dimension

γ(A) = γ1A = γ1 f−1(a) = γ1(a+ γ2/γ1a2 + γ3/γ1a3 + ...) (5.82)
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5.14 Renormdynamic functions (RDF)

We will call RDF functions gn = fn(t), which are solutions of the RD motion equations

ġn = βn(g),1 ≤ n ≤ N. (5.83)

In the simplest case of one coupling constant, the function g = f (t), is constant g = gc when
β (gc) = 0, or is invertible (monotone). Indeed,

ġ = f ′(t) = f ′( f−1(g)) = β (g). (5.84)

Each monotone interval ends by UV and IR fixed points and describes corresponding phase of the
system.

5.15 Nonperturbative renormdynamic functions

Based on real experiments and computer simulations, quantum gauge theory in four dimen-
sions is believed to have a mass gap. This is one of the most fundamental facts that makes the
Universe the way it is.

In the lattice (gauge) theory approach to the renormdynamics (see, e.g. [Makhaldiani, 1986]),
coupling constant dynamics were calculated for SU(3) Yang-Mills model [Bogolubsky et al, 2009].
The result is in agreement with perturbative calculations at small scales; at an intermediate scale
the coupling constant reaches its maximum(≃ 1.); than decrease. So, at the maximum, we may
have nontrivial zero of the β−function, which corresponds to the conformal invariance of the
gluodynamics at this point. Beyond this point we have another phase, strong coupling phase with
decreasing coupling constant similar (identical?!) to the abelian (monopole?) theory.

Note that, in the case of the two coupling constants,

ġ1 = β1(g1,g2),

ġ2 = β2(g1,g2), (5.85)

we can reformulate RD as

g1 ≡ g;g2 = f2(t)≡ τ ,
dg1

dg2
=

dg
dτ

≡ ġ = β (g,τ) =
β1(g,τ)
β2(g,τ)

(5.86)

and RDF must fulfil corresponding restrictions. E.g. if

g1 = f1(t) = g = f (τ) = f ( f2(t)),g2 = f2(t) = τ (5.87)

So, if we approximate the form of the curve near maximum as

a(t) = ac −b|t − tc|n, (5.88)

for the β−function we obtain

ȧ = β (a, t) = sign(tc − t)bn(
ac −a

b
)

n−1
n . (5.89)

Of course this is not usual β−function, function of a only. It depends also on t. For t > tc we have
perturbative phase. For n > 1, β (ac, t) = 0. Explicit dependence on time variable in one coupling
case indicates on implicit two coupling case.

21



P
o
S
(
B
a
l
d
i
n
 
I
S
H
E
P
P
 
X
X
I
)
0
6
8

Renormdynamics and universal properties of the multiparticle production Nugzar Makhaldiani

5.16 QCD, parton model, valence quarks and αs = 2

While it has been well established in the perturbative regime at high energies, QCD still lacks
a comprehensive solution at low and intermediate energies, even 40 years after its invention. In or-
der to deal with the wealth of non-perturbative phenomena, various approaches are followed with
limited validity and applicability. This is especially also true for lattice QCD, various functional
methods, or chiral perturbation theory, to name only a few. In neither one of these approaches the
full dynamical content of QCD can yet be included. Basically, the difficulties are associated with
a relativistically covariant treatment of confinement and the spontaneous breaking of chiral sym-
metry, the latter being a well-established property of QCD at low and intermediate energies. As a
result, most hadron reactions, like resonance excitations, strong and electroweak decays etc., are
nowadays only amenable to models of QCD. Most famous is the constituent-quark model (CQM),
which essentially relies on a limited number of effective degrees of freedom with the aim of encod-
ing the essential features of low- and intermediate-energy QCD.

The CQM has a long history, and it has made important contributions to the understanding of
many hadron properties, think only of the fact that the systematization of hadrons in the standard
particle-data base follows the valence-quark picture.

It was noted [Voloshin, Ter-Martyrosian, 1984] that parton densities given by the following
solution

M2(Q2) =
3

25
+

2
3

ω−32/81 +
16
75

ω−50/81,

M̄2(Q2) = Ms
2(Q

2) =
3

25
− 1

3
ω−32/81 +

16
75

ω−50/81,

MG
2 (Q

2) =
16
25

(1−ω−50/81),

ω =
αs(m2)

αs(Q2)
, Q2 ∈ (5,20)GeV 2, b = 9, αs(Q2)≃ 0.2 (5.90)

of the Altarelli-Parisi equation

Ṁ = AM,

MT = (M2,M̄2,Ms
2,M

G
2 ),

M2 =
∫ 1

0
dxx(u(x)+d(x)), M̄2 =

∫ 1

0
dxx(ū(x)+ d̄(x)),

Ms
2 =

∫ 1

0
dxx(s(x)+ s̄(x)), MG

2 =
∫ 1

0
dxxG(x),

A =


32/9 0 0 −2/3

0 32/9 0 −2/3
0 0 32/9 −2/3

−32/9 −32/9 −32/9 2

 , (5.91)

with the following "valence quark" initial condition at a scale m

M2(m2) = 1, M̄2(m2) = Ms
2(m

2) = MG
2 (m

2) = 0,
αs(m2) = 2, (5.92)

gives the experimental values

M2 = 0.44, M̄2 = Ms
2 = 0.04, MG

2 = 0.48 (5.93)
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So, for valence quark VQCD, αs(m2) = 2. We have seen, that for πρN model απρN = 3, and
for πN model απN = 13. It is nice that α2

s +α2
πρN = απN . This relation can be seen, e.g., by

considering pion propagator in the low energy πN model and in superposition of higher energy
VQCD and πρN models.

5.17 Quarkonia, potential and space dimension renormdynamics

Phenomenological approach to the nonrelativistic potential-model study of ϒ and ψ spectra
leads to a static Coulombic Power-law potential of the form

V (r) = a(r)r2−d(r) ∼ 1/r, r ∼ 0.1 f m
r, r ∼ 1. f m

(5.94)

E.g. in the case of the ϒ and small r

V (r) =
4
3

αs

r
, αs =

2π
b lnrΛ

, b = 9. (5.95)

This behavior corresponds not only to the running fine structure constant but also to the running
space dimension. Confinement-the point-like hadrons on the scales higher than hadronic, corre-
sponds to the zero dimensional space for hadron constituents.

RD equations of QCD beyond the critical dimention has explicit dependence on the space
dimension. When the dimension becomes running we should consider two dimensional renormdi-
namics

ȧ1 = β1(a1,a2), a1 = a,
ȧ2 = β2(a1,a2), a2 = d (5.96)

5.18 Low energy unification of the two abelian couplings

At the critical point we may have low energy unification of the two abelian couplings, weak-
electromagnetic and strong-monopole couplings. According to the Dirac quantization rule, for the
electron-e and monopole-g charges we have

eg = 2πn, n =±1,±2, ... (5.97)

so, at the selfdual, critical, point, we have prediction:

αe = αg =
n
2
, n = 1,2, ... (5.98)

The minimal-fundamental value of the unified coupling constant is α = 1/2. In the Schwinger
monopol case, only even n is permitted and the minimal value at the unification point is 1. The
next value is 2. These two values of coupling constant are connected as UV and IR fixed points of
one monotone RD interval.
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5.19 Stability of the states of dynamical systems

If we have a solution xn = x0n (a state) of the following system of motion equations (of the
corresponding dynamical system)

ẋn = fn(x), 1 ≤ n ≤ N, (5.99)

we can consider the question of stability of the solution, the existence of the solutions of the type
xn = x0n + gn, for small values of gn. If there are solutions with rising gn, of the corresponding
motion equations

ġn = βn(g), βn(g) = fn(x0 +g)− fn(x0)

= β1nmgm +β2nmkgmgk + ..., βkn...m = f (n...m)(x0) (5.100)

we say that the solution x0n is not stable.
The linear approximation, we transform into diagonal form,

ġn = β1nmgm, hn = Anmgm,

ḣn = λnhn, λnδnm = (Aβ1A−1)nm, (5.101)

if all of the λn are purely imaginary λn = iωn, we have stable solution (in the linear approximation):
small deviations remain small. If real parts of all λn are negative, we have asymptotic stability:
deviations decrease. If some λn are zero, we have undefined case. In regular case, when the matrix
β1 has inverse, by reparametrization trick we can construct the formal solution of the nonlinear
equation for gn, and try to investigate its convergence properties.

5.20 Nambu - Poisson formulation of Renormdynamics

In the case of several integrals of motion, Hn, 1 ≤ n ≤ N, we can formulate Renormdynamics
as Nambu - Poisson dynamics (see e.g. [Makhaldiani, 2007])

φ̇(x) = [φ(x),H1,H2, ...,HN ], (5.102)

where φ is an observable as a function of the coupling constants xm, 1 ≤ m ≤ M.

In the case of Standard model [Weinberg, 1995], we have three coupling constants, M = 3.

5.21 Hamiltonian extension of the Renormdynamics

The renormdynamic motion equations

ġn = βn(g), 1 ≤ n ≤ N (5.103)

can be presented as nonlinear part of a Hamiltonian system with linear part

Ψ̇n =−∂βm

∂gn
Ψm, (5.104)

Hamiltonian and canonical Poisson bracket as

H =
N

∑
n=1

β (g)nΨn, {gn,Ψm}= δnm (5.105)
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In this extended version, we can define optimal control theory approach [Pontryagin, 1983]
to the unified field theories. We can start from the unified value of the coupling constant, e.g.
α−1(M) = 29.0... at the scale of unification M, put the aim to reach the SM scale with values of
the coupling constants measured in experiments, and find optimal threshold corrections to the RD
coefficients [Makhaldiani, 2010].

5.22 Renormdynamic equation for effective action

For connected vertex functions Γn, (2.11)

Γn(x1,x2, ...,xn;g,m,µ) = Zn/2(µ)Γ0n(x1,x2, ...,xn;g0,m0),

(D− n
2

γ)Γn(x;g,m,µ) = 0; (5.106)

For effective action Sq,

(D− 1
2

γ
∫

dxϕ(x)
δ

δϕ(x)
)Sq(ϕ) = 0,

(D− 1
2

γϕ
∂

∂ϕ
)V (ϕ) = 0, V (ϕ) = Sq(ϕ(x))|ϕ(x)=ϕ=const , (5.107)

where V (ϕ) is effective potential.
For the effective potential in the RD (conformal) fixed point, γ(g) = γ(gc) ≡ γc we have the

following wave equation and corresponding (auto model) solution

(∂t −
γc

2
∂z)V = 0,

V (ϕ ,µ) = f (z+ vt) = F(
ϕ
µv ), t = ln

µ
µ0

,z = ln
ϕ
ϕ0

,v =
γc

2
. (5.108)

5.23 Finite temperature and density QCD

The fundamental quark and gluon degrees of freedom are the relevant ones at high temper-
atures and/or densities. Since these degrees of freedom are confined in the low temperature and
density regime there must be a quark and/or gluon (de)confinement phase transition.

It is difficult to describe the phase transition because there is not known a local parameter
which can be linked to confinement. We consider the fractal dimension of the hadronic/quark-
gluon space as order parameter of (de)confinement phase transition. It has value less than 3 in the
abelian, hadronic, phase, and more than 3, in nonabelian, quark-gluon, phase.

5.24 Ultraviolet (Infrared) fixed point for QCD (QED)

Perturbation theory results for QCD (QED) give negative (positive) β−function, in one loop
approximation

ȧ = β2a2, a = (
g

4π
)2

QCD : β2 = (
2n f

3
−11),

QED : β2 =
4
3

(5.109)
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So, running coupling constant vanishes at higher (low) energy. For QCD this property named
as asymptotic freedom gives the scaling behavior of observable quantities in good agreement with
experimental data. Small value of the coupling constant may describe small deviation from the
scaling. Infrared zero value of the QED coupling constant contradicts with experiments. Small
value of the coupling constant equal to the observable value of the fine structure constant α−1 =

137.036, in the infrared (low energy) limit, will be good solution of the zero-charge problem. For
this, we will consider the QCD (QED) beyond the critical dimension of the space-time.

Corresponding β−function

β (a,ε) =−εa+β (a), (5.110)

has stable ultraviolet (infrared) fixed point for negative (positive) value of ε,

ε = β (a)/a = β2a+ ... (5.111)

We have predictions for deviation from the classical value of the space dimension 3, d = 3−2ε, in
one loop approximation

εQED =
4
3

α
4π

=
α
3π

= 7.8×10−4,

εQCD =−7
αs

4π
=−0.06, n f = 6, αs = 0.1 (5.112)

5.25 Two TeV scale unification of the standard model coupling constants

According to the LEP and Tevatron data, the standard model coupling constants at the Z-boson
mass scale take the values (see, e.g. [Kazakov, 2004])

α1(mZ) = 0.017, α1(mZ)
−1 = 58.8

α2(mZ) = 0.034, α2(mZ)
−1 = 29.4

α3(mZ) = 0.118, α3(mZ)
−1 = 8.47 (5.113)

Our aim is to consider RD equation in critical dimension for weak interaction part of the
SM (ε2 = 0); RD equations for the electromagnetic and strong interaction parts beyond critical
dimension (ε1,ε3 ̸= 0); reach unification (equality) of the three couplings at the TeV scale in the
point α−1

u = 31.0
The solution of the one loop RD equation beyond critical dimension

ȧ =−εa+ ka2,

a =
α
4π

= (
g

4π
)2, t = ln

Q2

m2
Z
, (5.114)

is

an(t)−1 =
kn

ε
+ cneεnt , n = 1,3

cn = an(mZ)
−1 − kn

εn
,

kn = (
41
10

,−7). (5.115)
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The solution of the RD equation in critical dimension

ȧ2 = k2a2
2, k2 =−19

6
(5.116)

is

a−1
2 (t) = a−1

2 (mZ)+ k2t (5.117)

From the last expression, having unification value, α−1
2 (tu) = α−1

u = 31.0 we define the unification
scale

tu = (a−1
2 (tu)−a−1

2 (mZ))/k2

= 4π ×1.6× 6
19

= 6.35,
Qu = 23.9mZ = 2182GeV,
mZ = 91.2GeV (5.118)

Solution of the RD equation beyond the critical dimension for electrodynamic constant,

ȧ =−εa+ba2, b =
41
10

, (5.119)

is

a−1(t) =
b
ε
+(a−1(mZ)−

b
ε
)eεt (5.120)

The condition of the unification

(bε−1 −a−1(tu)) = (bε−1 −a−1(mZ))eεtu (5.121)

defines the value ε1 =−0.093 Unification takes place in dimension d = 4−2ε1 = 4.186
For the strong coupling constant beyond the critical dimension,

ȧ =−εa−ba2, b = 7, (5.122)

the solution is

a−1(t) =−b
ε
+(

b
ε
+a−1(mZ))etε , (5.123)

the unification condition

(bε−1 +a−1(tu)) = (bε−1 +a−1(mZ))eεtu (5.124)

defines ε = 0.168 Unification takes place in the dimension d = 4−2ε = 3.66
Let us consider unification at the point α−1(tu) = 29.0, the low energy unification,

tul = (α−1
2 (tul)−a−1

2 (mZ))/k2

=−4π ×0.4× 6
19

=−1.59,
Qul = 0.45mZ = 41.2GeV (5.125)
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For electrodynamic case unification condition
41
10

−4π29ε = (
41
10

−4π58.8ε)e−1.59ε , (5.126)

gives the values ε1 = 0.453, del = 3.09 = 2.09+1 dimensional space-time.
For strong coupling constant unification condition

7+4πε ×29 = (7+4πε ×8.47)e−1.59ε (5.127)

gives ε3 =−0.8121, dsl = 5.624

5.26 At what scale α−1 = 137?

The low energy value of the QED α−1 = 137.036...
Let us find the scale at which α−1 = 137 if

α−1(mZ) =
5

3cos2 θW
α−1

1 (mZ) = 128.978±0.027 ≃ 129,

sin2 θW = 0.23146±0.00017 ≃ 0.2315,
α−1

1 (mZ) = 58.8,

α−1(mZ) =
5

3×0.7685
×58.8 = 127.52 ≃ 128 (5.128)

Now take one loop RD evolution to the 137,

tl = (a−1
1 (tl)−a−1

1 (mZ))/k1

=−4π ×8.× 10
41

=−24.5,

Ql ≃ 5×10−6mZ ≃ 5×10−4mp ≃ me (5.129)

6. Renormdynamics of observable quantities in high energy physics

Let us consider l−particle semi-inclusive distribution

Fl(n,q) =
dlσn

d̄q1...d̄ql
=

1
n!

∫ n

∏
i=1

d̄q′iδ (p1 + p2 −Σl
i=1qi −Σn

i=1q′i)

·|Mn+l+2(p1, p2,q1, ...,ql,q′1, ...,q
′
n;g(µ),m(µ)),µ)|2,

d̄ p ≡ d3 p
E(p)

, E(p) =
√

p2 +m2. (6.1)

From the renormdynamic equation

DMn+l+2 =
γ
2
(n+ l +2)Mn+l+2, (6.2)

we obtain

DFl(n,q) = γ(n+ l +2)Fl(n,q),
DFl(q) = γ(< n >+l +2)Fl(q),
D < nk(q)>= γ(< nk+1(q)>−< nk(q)>< n(q)>),

DCk = γ < n(q)> (Ck+1 −Ck(1+ k(C2 −1)))

Fl(q)≡
dlσ

d̄q1...d̄ql
= ∑

n

dlσn

d̄q1...d̄ql
, < nk(q)>=

∑n nkdlσn/d̄ql

∑n dlσn/d̄ql

Ck =
< nk(q)>

< n(q)>k (6.3)
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6.1 Scaling relations for multi particle cross sections

From dimensional considerations, the following combination of cross sections [Koba et al, 1972]
must be universal function

< n >
σn

σ
= Ψ(

n
< n >

). (6.4)

Corresponding relation for the inclusive cross sections is [Matveev et al, 1976].

< n(p)>
dσn

d̄ p
/

dσ
d̄ p

= Ψ(
n

< n(p)>
). (6.5)

Indeed, let us define n−dimension of observables [Makhaldiani, 1980]

[n] = 1, [σn] =−1,σ = Σnσn, [σ ] = 0, [< n >] = 1. (6.6)

The following expression does not depend on any dimensional quantities and must have a corre-
sponding universal form

Pn =< n >
σn

σ
= Ψ(

n
< n >

). (6.7)

Let us find an explicit form of the universal functions using renormdynamic equations.
From the definition of the moments we have

Ck =
∫ ∞

0
dxxkΨ(x), (6.8)

so they are universal parameters,

DCk = 0 ⇒Ck+1 = (1+ k(C2 −1))Ck ⇒
Ck = (1+(k−1)(C2 −1))...(1+2(C2 −1))C2. (6.9)

Now we can invert momentum transform and find (see [Makhaldiani, 1980] ) universal functions
[Ernst, Schmit, 1976], [Darbaidze et al, 1978].

Ψ(z) =
1

2πi

∫ +i∞

−i∞
dnz−n−1Cn =

cc

Γ(c)
zc−1e−cz,

C2 = 1+
1
c

(6.10)

The value of the parameter c can be measured from the dispersion low,

D =
√

< n2 >−< n >2 =
√

C2 −1 < n >= A < n >,

A =
1√
c
≃ 0.6, c = 2.8;

(c = 3, A = 0.58) (6.11)

which is in accordance with n−dimension counting.
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Figure 1: KNO distribution, Ψ(z), with c = 2.8

6.2 1/ < n > correction to the scaling function

We can calculate also 1/ < n > correction to the scaling function

< n >
σn

σ
= Ψ = Ψ0(

n
< n >

)+
1

< n >
Ψ1(

n
< n >

),

Ck =C0
k +

1
< n >

C1
k ,

C0
k =

∫ ∞

0
dxxkΨ0(x), C1

k =
∫ ∞

0
dxxkΨ1(x),

Ψ1(z) =
1

2πi

∫ +i∞

−i∞
dnz−n−1C1

n =
C1

2c2

2
(z−2+

c−1
cz

)Ψ0 (6.12)

6.3 Characteristic function for KNO

The characteristic function we define as

Φ(t) =
∫ ∞

0
dxetxΨ(x) = (1− t/c)−c, Re(t)< c (6.13)

For the moments of the distribution, we have

Φ(k)(0) =Ck = (−c)(−c−1)...(−c− k+1)(−1/c)k =
Γ(c+ k)
Γ(c)ck (6.14)

Note that it is an infinitely divisible characteristic function, i.e.

Φ(t) = (Φn(t))n, Φn(t) = (1− t/c)−c/n (6.15)

If we calculate observable(mean) value of x, we find

< x >= Φ′(0) = nΦ(0)n
′ = n < x >n,

< x >n=
< x >

n
(6.16)

For the second moment and dispersion, we have

< x2 >= Φ(2)(0) = n < x2 >n +n(n−1)< x >2
n,
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D2 =< x2 >−< x >2= n(< x2 >n −< x >2
n) = nD2

n

D2
n =

D2

n
=

D2

< x >
< x >n (6.17)

In a sense, any Hamiltonian quantum (and classical) system can be described by infinitely
divisible distributions, because in the functional integral formulation, we use the following step

U(t) = e−itH = (e−i t
N H)N (6.18)

In the case of our scalar field theory (2.1),

L(φ) =
1
2

∂µφ∂ µφ − m2

2
φ2 − g

n
φn

= g
2

2−n (
1
2

∂µϕ∂ µϕ − m2

2
ϕ 2 − 1

n
ϕ n) (6.19)

so, to the constituent field ϕN corresponds higher value of the coupling constant,

gN = gN
n−2

2 (6.20)

For weak nonlinearity, n = 2+2ε ,d = 2/ε +2,gN = g(1+ ε lnN +O(ε2))

6.4 Closed equation of renormdynamics for the generating function of the observables

Let us consider a generating function of the topological crossections

F(h,g,m,µ) = Σn≥2hnσn,

σn =
1
n!

dn

dhn F |h=0,

σ = F |h=1, < n >=
d

dh
lnF |h=1, ... (6.21)

It is natural that for the generating function we have closed renormdynamic equation [Makhaldiani, 1980]

(D− γ(
h∂
∂h

+2))F = 0,

F(h(µ),g(µ),m(µ),µ) = F(h(µ̄),g(µ̄),m(µ̄), µ̄)exp(2
∫ µ

µ̄

dρ
ρ

γ(g(ρ))),

h̄ = h̄(µ̄) = h(µ)exp(
∫ µ̄

µ

dρ
ρ

γ(g(ρ))),

m̄ = m̄(µ̄) = m(µ)exp(
∫ µ̄

µ

dρ
ρ

η(g(ρ))),
∫ ḡ

g

dg
β (g)

= ln
µ̄
µ

(6.22)

6.5 Explicit form of Generating function in the case of KNO scaling

Let us find generating function in the case of KNO scaling. From the definition of Generating
function and using topological cross section from KNO, we find

F(h) = ∑
n

hn σ
< n >

Ψ(
n

< n >
) =

σ
< n > ∑Ψ(

n
< n >

)hn

=
σ

< n >
Ψ(

δ
< n >

)
h2

1−h
, δ ≡ h

d
dh

, qδ f (h) = f (qh), (6.23)
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Now we can find more concrete form of the generating function, with the explicit form of
KNO function,

(
δ

< n >
)c−1 exp(−c

δ
< n >

)
h2

1−h
= (

δ
< n >

)c−1 q2h2

1−qh

=
1

< n >c−1
1

Γ(1− c)

∫ ∞

0

dt
tc

q2h2e−2t

1−qhe−t , (6.24)

so

F(h)KNO =
cc

Γ(c)
σ

< n >c
1

Γ(1− c)

∫ ∞

0

dt
tc

q2h2e−2t

1−qhe−t ,

q = exp(− c
< n >

) (6.25)

Indeed, if we expend and than integrate under this formula, we hind

F(h) =
cc

Γ(c)
σ

< n >c ∑
n≥2

hnnc−1 exp(− c
< n >

n) (6.26)

which corresponds to the considered explicit form of the KNO function.

7. Negative binomial distribution

Negative binomial distribution (NBD) is defined as

P(n) =
Γ(n+ r)
n!Γ(r)

pn(1− p)r, ∑
n≥0

P(n) = 1, (7.1)

5 10 15 20 25 30

0.02

0.04

0.06

0.08

0.10

Figure 2: P(n),r = 2.8, p = 0.3,< n >= 6

NBD provides a very good parametrization for multiplicity distributions in e+e− annihilation;
in deep inelastic lepton scattering; in proton-proton collisions; in proton-nucleus scattering.

Hadronic collisions at high energies (LHC) lead to charged multiplicity distributions whose
shapes are well fitted by a single NBD in fixed intervals of central (pseudo)rapidity η [ALICE, 2010].

It is interesting to understand how NBD fits such a different reactions?
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7.1 NBD and KNO scaling

Let us consider NBD for normed topological cross sections

σn

σ
= P(n) =

Γ(n+ k)
Γ(n+1)Γ(k)

(
k

< n >
)k(1+

k
< n >

)−(n+k)

=
Γ(n+ k)

Γ(n+1)Γ(k)
(1+

k
< n >

)−n(1+
< n >

k
)−k

=
Γ(n+ k)

Γ(n+1)Γ(k)
(

< n >

< n >+k
)n(

k
k+< n >

)k,

=
Γ(n+ k)

Γ(n+1)Γ(k)
( k
<n>)

k

(1+ k
<n>)

k+n
,

r = k > 0, p =
< n >

< n >+k
. (7.2)

The generating function for NBD is

F(h) = (1+
< n >

k
(1−h))−k = (1+

< n >

k
)−k(1−ah))−k,

a = p =
< n >

< n >+k
. (7.3)

Indeed,

(1−ah))−k =
1

Γ(k)

∫ ∞

0
dttk−1e−t(1−ah)

=
1

Γ(k)

∫ ∞

0
dttk−1e−t

∞

∑
0

(tah)n

n!

=
∞

∑
0

Γ(n+ k)an

Γ(k)n!
hn,

P(n) = (1+
< n >

k
)−k Γ(n+ k)

Γ(k)n!
(

< n >

< n >+k
)n

=
kkΓ(n+ k)

Γ(k)Γ(n+1)
(< n >+k)−(n+k) < n >n

=
Γ(n+ k)

Γ(n+1)Γ(k)
(

k
< n >

)k(1+
k

< n >
)−(n+k) (7.4)

Note that KNO characteristic function (6.13) coincides with the NBD generating function (7.3)
when t =< n > (h−1), c = k.

The Bose-Einstein distribution is a special case of NBD with k = 1.

If k is negative, the NBD becomes a positive binomial distribution, narrower than Poisson
(corresponding to negative correlations).

For negative (integer) values of k =−N, we have Binomial GF

Fbd = (1+
< n >

N
(h−1))N = (a+bh)N , a = 1− < n >

N
,b =

< n >

N
,

Pbd(n) =Cn
N(

< n >

N
)n(1− < n >

N
)N−n (7.5)
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(In a sense) we have a (quantum) spectrum for the parameter k, which contains any (positive) real
values and (with finite number of states) the negative integer values, (0 ≤ n ≤ N)

From the generating function we have

< n2 >= (
hd
dh

)2F(h)|h=1 =
k+1

k
< n >2 +< n >, (7.6)

for dispersion we obtain

D =
√

< n2 >−< n >2 =
1√
k
< n > (1+

k
< n >

)1/2

=
1√
k
< n >+

√
k

2
+O(1/ < n >), (7.7)

so the dispersion low for KNO and NBD distributions are the same, with c = k, for high values of
the mean multiplicity.

The factorial moments of NBD,

Fm = (
d
dh

)mF(h)|h=1 =
< n(n−1)...(n−m+1)>

< n >m =
Γ(m+ k)
Γ(m)km , (7.8)

and usual normalized moments of KNO (6.14) coincides.

7.2 Fractal factorial and cumulant moments

Using fractal calculus (see e.g. [Makhaldiani, 2003]),

D−α
0,x f =

|x|α

Γ(α)

1∫
0

|1− t|α−1 f (xt)dt, =
|x|α

Γ(α)
B(α, ∂x) f (x)

= |x|α Γ(∂x)
Γ(α +∂x)

f (x), f (xt) = tx d
dx f (x). (7.9)

we can define factorial and cumulant moments for any complex indexes,

F−q =< n >q D−q
0,xGNBD(x)|x=0 =

kqΓ(k−q)
Γ(k)

,

K−q =< n >q D−q
0,x lnGNBD(x)|x=0 = kq+1Γ(−q),

H−q =
Γ(k+1)Γ(−q)

Γ(k−q)
(7.10)

7.3 The KNO as asymptotic NBD

Let us show that NBD is a discrete distribution corresponding to the KNO scaling,

lim
<n>→∞

< n > Pn| n
<n>=z = Ψ(z) (7.11)

Indeed, using the following asymptotic formula

Γ(x+1) = xxe−x
√

2πx(1+
1

12x
+O(x−2)), (7.12)

34



P
o
S
(
B
a
l
d
i
n
 
I
S
H
E
P
P
 
X
X
I
)
0
6
8

Renormdynamics and universal properties of the multiparticle production Nugzar Makhaldiani

we find

< n > Pn =< n >
(n+ k−1)n+k−1e−(n+k−1)

Γ(k)nne−n
kk

nk < n > zke−k n+k
<n>

=
kk

Γ(k)
zk−1e−kz +O(1/ < n >) (7.13)

We can calculate also 1/ < n > correction term to the KNO from the NBD. The answer is

Ψ =
kk

Γ(k)
zk−1e−kz(1+

k2

2
(z−2+

k−1
kz

)
1

< n >
) (7.14)

This form coincides with the corrected KNO (6.12) for c = k and C1
2 = 1.

We have seen that KNO characteristic function (6.13) and NBD GF (7.3) have almost same
form. This relation become in coincidence if

c = k, t = (h−1)
< n >

k
(7.15)

Now the definition of the characteristic function (6.13) can be read as∫ ∞

0
e−<n>z(1−h)Ψ(z)dz = (1+

< n >

k
(1−h))−k (7.16)

which means that Poisson GF weighted by KNO distribution gives NBD GF. Because of this,
the NBD is the gamma-Poisson (mixture) distribution. This is the exact and universal picture of
hadronization in multiparticle production processes.

7.4 NBD, Poisson and Gauss distributions

Fore high values of x2 = k the NBD distribution reduces to the Poisson distribution

F(x1,x2,h) = (1+
x1

x2
(1−h))−x2 ⇒ e−x1(1−h) = e−<n>eh<n>

= ∑P(n)hn,

P(n) = e−<n>< n >n

n!
(7.17)

For the Poisson distribution
d2F(h)

dh2 |h=1 =< n(n−1)>=< n >2,

D2 =< n2 >−< n >2=< n > . (7.18)

In the case of NBD, we had the following dispersion low

D2 =
1
k
< n >2 +< n >, (7.19)

which coincides withe previous expression for high values of k.
Poisson GF belongs to the class of the infinitely divisible distributions,

F(h,< n >) = (F(h,< n > /k))k (7.20)

For high values of < n >, the Poisson distribution reduces to the Gauss distribution

P(n) = e−<n>< n >n

n!
⇒ 1√

2π < n >
exp(−(n−< n >)2

2 < n >
) (7.21)

For high values of k in the integral relation (7.16), in the KNO function dominates the value zc = 1
and both sides of the relation reduce to the Poisson GF.
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7.5 Multiplicative properties of KNO and NBD and corresponding motion equations

An useful property of the negative binomial distribution with parameters

< n >, k

is that it is (also) the distribution of a sum of k independent random variables drawn from a Bose-
Einstein distribution1 with mean < n > /k,

Pn =
1

< n >+1
(

< n >

< n >+1
)n

= (eβ h̄ω/2 − e−β h̄ω/2)e−β h̄ω(n+1/2), T =
h̄ω

ln <n>+1
<n>

∑
n≥0

Pn = 1, ∑nPn =< n >=
1

eβ h̄ω−1 , T ≃ h̄ω < n >, < n >≫ 1,

P(x) = ∑
n

xnPn = (1+< n > (1− x))−1. (7.22)

This is easily seen from the generating function in (7.3), remembering that the generating
function of a sum of independent random variables is the product of their generating functions.

Indeed, for

n = n1 +n2 + ...+nk, (7.23)

with ni independent of each other, the probability distribution of n is

Pn = ∑
n1,...,nk

δ (n−∑ni)pn1 ...pnk ,

P(x) = ∑
n

xnPn = p(x)k (7.24)

This has a consequence that an incoherent superposition of N emitters that have a negative binomial
distribution with parameters k,< n > produces a negative binomial distribution with parameters
Nk,N < n >.

So, for the GF of NBD we have (N=2)

F(k,< n >)F(k,< n >) = F(2k,2 < n >) (7.25)

And more general formula (N=m) is

F(k,< n >)m = F(mk,m < n >) (7.26)

We can put this equation in the closed nonlocal form

QqF = Fq, (7.27)

where

Qq = qD, D =
kd
dk

+
< n > d
d < n >

=
x1d
dx1

+
x2d
dx2

(7.28)

1A Bose-Einstein, or geometrical, distribution is a thermal distribution for single state systems.
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Note that temperature defined in (7.22) gives an estimation of the Glukvar temperature when it
radiates hadrons. If we take h̄ω = 100MeV, to T ≃ Tc ≃ 200MeV corresponds < n >≃ 1.5 If we
take h̄ω = 10MeV, to T ≃ Tc ≃ 200MeV corresponds < n>≃ 20. A singular behavior of < n> may
indicate corresponding phase transition and temperature. At that point we estimate characteristic
quant h̄ω.

We see that universality of NBD in hadron-production is similar to the universality of black
body radiation.

8. p-adic string theory

p-adic string amplitudes can be obtained as tree amplitudes of the field theory with the follow-
ing lagrangian and motion equation (see e.g. [Brekke, Freund, 1993])

L =
1
2

ΦQpΦ− 1
p+1

Φp+1,

QpΦ = Φp, Qp = pD (8.1)

D =−1
2
△, △=−∂ 2

x0
+∂ 2

x1
+ ...+∂ 2

xn−1
, (8.2)

Φ - is real scalar field on D-dimensional space-time with coordinates x = (x0,x1, ...,xD−1). We have
trivial, Φ = 0 and Φ = 1, and following nontrivial solutions of the equation (8.1)

Φ(x0,x1, ...,xD−1) = p
D

2(p−1) e
1−p−1

2ln p (x2
0−x2

1−x2
2−...−x2

D−1) (8.3)

8.1 p-adic solitons

The equation (8.1) permits factorization of its solutions Φ(x) = Φ(x0)Φ(x1)...Φ(xD−1), every
factor of which fulfils one dimensional equation

pε∂ 2
x Φ(x) = Φ(x)p, ε =±1

2
(8.4)

The trivial solution of the equations are Φ = 0 and Φ = 1. For nontrivial solution of (8.4), we have

pε∂ 2
x Φ(x) = ea∂ 2

Φ(x) =
1√
4πa

∫ ∞

−∞
dye−

1
4a y2+y∂ Φ(x)

=
1√
4πa

∫ ∞

−∞
dye−

1
4a y2

Φ(x+ y) = Φ(x)p, a = ε ln p (8.5)

If we (de quantize) put, p = q, and take (classical) limit, q → 1, the motion equation reduce to

ε∂ 2
x Φ = Φ lnΦ, (8.6)

with solution

Φ(x) = e
1
2 e

x2
4ε . (8.7)

It is obvious that the anzac

Φ = Aebx2
, (8.8)

can pass the equation (8.5). Indeed, the solution is

Φ(x) = p
1

2(p−1) e
1−p−1
4ε ln p x2

,

Φ(x0,x1, ...,xD−1) = p
D

2(p−1) e
1−p−1

2ln p (x2
0−x2

1−x2
2−...−x2

D−1) (8.9)
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8.2 Corresponding class of the motion equations

Now, we can define the following class of motion equations

QqF = Fq, (8.10)

where

Qq = qD, D = D1(x1)+ ...+Dl(xl), (8.11)

Dk(x) is some (differential) operator depending on x. In the case of the NBD GF,

Dk(x) =
xd
dx

. (8.12)

For this (Qlike) class of equations, we have factorization property

F = F(x1, ...,xl) = F1(x1)...Fl(xl),

qDk(x)Fk(x) = ckFk(x)q,1 ≤ k ≤ l, c1c2...cl = 1. (8.13)

8.3 NBD motivated equations

For NBD distribution we have corresponding multiplication(convolution)formulas

(P⋆P)n ≡
n

∑
m=0

Pm(k,< n >)Pn−m(k,< n >)

= Pn(2k,2 < n >) = Q2Pn(k,< n >), ... (8.14)

So, we can say, that star-product on the distributions of NBD corresponds ordinary product for GF.
It will be nice to have similar things for string field theory(SFT) [Kaku, 2000].
SFT motion equation is

QΦ = Φ⋆Φ (8.15)

For stringfield GF F we may have

QF = F2. (8.16)

By construction we know the solution of the nice equation (7.27) as GF of NBD, F. We obtain
corresponding differential equations, if we consider q = 1+ ε , for small ε ,

(D(D−1)...(D−m+1)− (lnF)m)Ψ = 0,

(
Γ(D+1)

Γ(D+1−m)
− (lnF)m)Ψ = 0,

(Dm −Φm)Ψ = 0,m = 1,2,3, ...

Dm =
Γ(D+1)

Γ(D+1−m)
,Φ = lnF, (8.17)

with the solution Ψ = F = exp(Φ). In the case of the NBD and p-adic string, we have correspond-
ingly

D =
x1d
dx1

+
x2d
dx2

;
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D =−1
2
△, △=−∂ 2

x0
+∂ 2

x1
+ ...+∂ 2

xn−1
. (8.18)

These equations have meaning not only for integer m.

For high mean multiplicities we have corresponding equations for KNO

Q2Ψ(z) = Ψ⋆Ψ ≡
∫ z

0
Ψ(t)Ψ(z− t)dt

= z
∫ 1

0
dttδ1(1− t)δ2Ψ(z1)Ψ(z2)|z1=z2=z

= z
Γ(δ1 +1)Γ(δ2 +1)

Γ(δ1 +δ2 +2)
Ψ(z1)Ψ(z2)|z1=z2=z (8.19)

Due to the explicit form of the operator D, these equations and corresponding solutions have the
symmetry under the change of the variables

k → ak, < n >→ b < n > . (8.20)

When

a =
< n >

k
, b =

k
< n >

, (8.21)

we obtain the symmetry with respect to the transformations k ↔< n >,x1 ↔ x2.

9. Zeros of the Riemann zeta function

The Riemann zeta function ζ (s) is defined for complex s = σ + it and σ > 1 by the expansion

ζ (s) = ∑
n≥1

n−s, Re s > 1,

= δ−s
x

x
1− x

|x⇁1 =
1

Γ(s)

∫ ∞

0
ts−1e−δxt x

1− x
|x⇁1 =

1
Γ(s)

∫ ∞

0
ts−1et∂τ

1
eτ −1

|τ⇁0

=
1

Γ(s)

∫ ∞

0

ts−1dt
et −1

, x = e−τ . (9.1)

All complex zeros, s = α + iβ , of ζ (σ + it) function lie in the critical stripe 0 < σ < 1,
symmetrically with respect to the real axe and critical line σ = 1/2. So it is enough to investigate
zeros with α ≤ 1/2 and β > 0. These zeros are of three type, with small, intermediate and big
ordinates.

9.1 Riemann hypothesis

The Riemann hypothesis [Titchmarsh, 1986] states that the (non-trivial) complex zeros of ζ (s)
lie on the critical line σ = 1/2.

At the beginning of the XX century Polya and Hilbert made a conjecture that the imaginary part
of the Riemann zeros could be the oscillation frequencies of a physical system (ζ - (mem)brane).

After the advent of Quantum Mechanics, the Polya-Hilbert conjecture was formulated as the
existence of a self-adjoint operator whose spectrum contains the imaginary part of the Riemann
zeros.

The Riemann hypothesis (RH) is a central problem in Pure Mathematics due to its connection
with Number theory and other branches of Mathematics and Physics.
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9.2 The functional equation for zeta function

The functional equation is (see e.g. [Titchmarsh, 1986])

ζ (1− s) =
2Γ(s)
(2π)s cos(

πs
2
)ζ (s) (9.2)

From this equation we see the real (trivial) zeros of zeta function:

ζ (−2n) = 0, n = 1,2, ... (9.3)

Also, at s=1, zeta has pole with reside 1.
From Field theory and statistical physics point of view, the functional equation (9.2) is duality

relation, with self dual (or critical) line in the complex plane, at s = 1/2+ iβ ,

ζ (
1
2
− iβ ) =

2Γ(s)
(2π)s cos(

πs
2
)ζ (

1
2
+ iβ ), (9.4)

we see that complex zeros lie symmetrically with respect to the real axe.
On the critical line, (nontrivial) zeros of zeta corresponds to the infinite value of the free

energy,

F =−T lnζ . (9.5)

At the point with β = 14.134725... is located the first zero. In the interval 10 < β < 100, zeta
has 29 zeros. The first few million zeros have been computed and all lie on the critical line. It has
been proved that uncountably many zeros lie on critical line.

The first relation of zeta function with prime numbers is given by the following formula,

ζ (s) = ∏
p
(1− p−s)−1, Re s > 1. (9.6)

Another formula, which can be used on critical line, is

ζ (s) = (1−21−s)−1 ∑
n≥1

(−1)n+1n−s, Re s > 0

=
eiπ(δx+1)

(1−21−s)δ s
x

x
1− x

|x⇁1 =
1

1−21−s
1

Γ(s)

∫ ∞

0
dtts−1eiπe(iπ−t)δx

1
x−1 −1

|x⇁1

=
1

1−21−s
1

Γ(s)

∫ ∞

0
dtts−1e(t−iπ)∂τ

eiπ

eτ −1
|τ⇁0 =

1
1−21−s

1
Γ(s)

∫ ∞

0

ts−1dt
et +1

,∫ ∞

0

ts−1dt
et +1

=
∫ ∞

0
dtts−1e−t ∑

n≥0
(−1)ne−nt = Γ(s) ∑

n≥1
(−1)n+1n−s (9.7)

9.3 From Qlike to zeta equations

Let us consider the values q = n,n = 1,2,3, ... and take sum of the corresponding equations
(8.10), we find

ζ (−D)F =
F

1−F
(9.8)
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In the case of the NBD we know the solutions of this equation.
Now we invent a Hamiltonian H with spectrum corresponding to the set of nontrivial zeros of

the zeta function, in correspondence with Riemann hypothesis,

−Dn =
n
2
+ iHn, Hn = i(

n
2
+Dn),

Dn = x1∂1 + x2∂2 + ...+ xn∂n, H+
n = Hn =

n

∑
m=1

H1(xm),

H1 = i(
1
2
+ x∂x) =−1

2
(xp̂+ p̂x), p̂ =−i∂x (9.9)

The Hamiltonian H = Hn is hermitian, its spectrum is real. The case n = 1 corresponds to the
Riemann hypothesis.

The case n = 2, corresponds to NBD,

ζ (1+ iH2)F =
F

1−F
, ζ (1+ iH2)|F =

1
1−F

,

F(x1,x2;h) = (1+
x1

x2
(1−h))−x2 (9.10)

Let us scale x2 → λx2 and take λ → ∞ in (9.10), we obtain

ζ (
1
2
+ iH1(x))e−(1−h)x =

1
e(1−h)x −1

,

1
ζ (1

2 + iH(x))
1

eεx −1
= e−εx,

H(x) = i(
1
2
+ x∂x) =−1

2
(xp̂+ p̂x), H+ = H,ε = 1−h. (9.11)

Now we scale x → xy, multiply the equation by ys−1 and integrate

1
ζ (1

2 + iH(x))

∫ ∞

0
dy

ys−1

eεxy −1
=

∫ ∞

0
dye−εxyys−1 =

1
(εx)s Γ(s),

1
ζ (1

2 + iH(x))

∫ ∞

0
dy

ys−1

eεxy −1
=

1
ζ (1

2 + iH(x))
x−sε−sΓ(s)ζ (s), (9.12)

so

ζ (
1
2
+ iH(x))x−s = ζ (s)x−s ⇒ H(x)ψE = EψE ,

ψE = cx−s, s =
1
2
+ iE, (9.13)

we have correct way and can return to the previous step (9.11) and take the following transfor-
mation

1
eεxy −1

=
1

2π

∫ ∞+ic

−∞+ic
dEx−iE−1/2φ(E,εy),

φ(E,εy) =
∫ ∞

0
dx

xiE− 1
2

eεxy −1
=

Γ(1
2 + iE)

(εy)iE+1/2 ζ (
1
2
+ iE),

1
2π

∫ ∞+ic

−∞+ic
dEx−iE−1/2φ(E,εy)

1
ζ (1/2+ iE)

= e−εxy (9.14)
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If we take the following formula

ζ (s) =
1

Γ(s)

∫ ∞

0

ts−1dt
et −1

, (9.15)

which says that ζ function is the Mellin transformation, we can find

Γ(1+ iH2)
F

1−F
=

∫ ∞

0

dt/t
et −1

F1/t , (9.16)

or

Γ(1+ iH2)Φ =
∫ ∞

0

dt/t
et −1

(
Φ

1+Φ
)1/t ,

Φ =
F

1−F
=

1
(1+ x1

x2
(1−h))x2 −1

(9.17)

We can obtain also the following equation with argument of ζN on critical axis

ζN(
1
2
+ iH1(x2))F(x1,x2,h) =

N

∑
n=1

1
(1+ x1

nx2
(1−h))nx2

=
N

∑
n=1

F(x1,nx2,h),

ζN(
1
2
+ iH1(x2))F(λx1,x2,h) =

N

∑
n=1

1

(1+ λx1
nx2

(1−h))nx2

=
N

∑
n=1

F(λx1,nx2,h)≃ Ne−λ (1−h)x1 ,N ≫ 1. (9.18)

Let us calculate next therm in the 1/λ expansion in the (9.10)

F(x1,λx2,h) = (1+
εx1

λx2
)−λx2 = e−λx2 ln(1+ε x1

λx2
)

= e−εx1e
(εx1)

2

2λx2
+O(λ−2)

= e−εx1(1+
(εx1)

2

2λx2
+O(λ−2)),

(F−1 −1)−1 = (eλx2 ln(1+ε x1
λx2

)−1)−1

=
1

eεx1 −1
(1+

eεx1

eεx1 −1
(εx1)

2

2λx2
+O(λ−2)) (9.19)

The zero order term, λ 0 we already considered. The next, λ−1 order term gives the following
relations

ζ (−δ1 −δ2)
x2

1
x2

e−εx1 =
1
x2

ζ (1−δ1)x2
1e−εx1 =

x2
1eεx1

x2(eεx1 −1)2 ,

ζ (1−δ )x2e−εx =
x2eεx

(eεx −1)2 = x2e−εx +O(e−2εx)

ζ (1−δ )Ψ = EΨ+O(e−2εx),Ψ = x2e−εx,E = 1. (9.20)

There have been a number of approaches to understanding the Riemann hypothesis based on
physics (for a comprehensive list see [Watkins])
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According to the idea of Berry and Keating, [Berry, Keating, 1997] the real solutions En of

ζ (
1
2
+ iEn) = 0, (9.21)

are energy levels, eigenvalues of a quantum Hermitian operator (the Riemann operator) associated
with the one-dimensional classical hyperbolic Hamiltonian

Hc = xp, (9.22)

where x and p are the conjugate coordinate and momentum.
They suggest a quantization condition generating Riemann zeros. This Hamiltonian breaks

time-reversal invariance since (x, p)→ (x,−p)⇒ H →−H. The classical Hamiltonian H = xp of
linear dilation, i.e. multiplication in x and contraction in p, gives the Hamiltonian equations:

ẋ = x,
ṗ =−p, (9.23)

with the solution

x(t) = x0et ,

p(t) = p0e−t (9.24)

for any nonzero E = x0 p0 = x(t)p(t) is hyperbola in phase space.
The system is quantized by considering the dilation operator in the x space

H =
1
2
(xp+ px) =−ih̄(

1
2
+ x∂x), (9.25)

which is the simplest formally Hermitian operator corresponding to the classical Hamiltonian. The
eigenvalue equation

HψE = EψE , (9.26)

is satisfied by the eigenfunctions

ψE(x) = cx−
1
2+

i
h̄ E , (9.27)

where the complex constant c is arbitrary, since the solutions are not square-integrable. To the
normalization ∫ ∞

0
dxψE(x)∗ψE ′(x) = δ (E −E ′), (9.28)

corresponds c = 1/
√

2π.
We have seen that

ζ (
1
2
+ iH)e−εx =

1
eεx −1

,

H =−i(
1
2
+ x∂x) = x1/2 px1/2, p =−i∂x, (9.29)
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than

e−εx =

∫
dEx−1/2+iEφ(E,ε),

φ(E,ε) =
1

2π

∫ ∞

0
dxx−1/2−iEe−εx =

ε−1/2+iE

2π
Γ(1/2− iE);

ζ (
1
2
+ iE)φ(E,ε) =

1
2π

∫ ∞

0
dx

x−1/2−iE

eεx −1

=
ε−1/2+iE

2π
Γ(1/2− iE)ζ (

1
2
− iE). (9.30)

9.4 Some calculations with zeta function values

From the equation (9.11) we have

ζ (
1
2
+ iH1(x))e−εx =

1
eεx −1

, H1 = i(
1
2
+ x∂x),

ζ (−x∂x)(1− εx+
(εx)2

2
+ ...) =

1
εx

(1− (
εx
2
+

(εx)2

6
+ ...)+

+(
εx
2
+ ...)2 + ...), (9.31)

so

ζ (0) =−1
2
, ζ (−1) =− 1

12
, ... (9.32)

Note that, a little calculation shows that, the (εx)2 terms cancels on the r.h.s, in accordance with
ζ (−2) = 0.

More curious question concerns with the term 1/εx on the r.h.s. To it corresponds the term
with actual infinitesimal coefficient on the l.h.s.

1
ζ (1)

1
εx

, (9.33)

in the spirit of the nonstandard analysis (see, e.g. [Davis, 1977]), we can imagine that such a terms
always present but on the r.h.s we may not note them.

For other values of zeta function we will use the following expansion

1
ex −1

=
1

x+ x2

2 + x3

3! + ...
=

1
x
− 1

2
+ ∑

k≥1

B2kx2k−1

(2k)!
,

B2 =
1
6
, B4 =− 1

30
, B6 =

1
42

, ... (9.34)

and obtain

ζ (1−2n) =−B2n

2n
, n ≥ 1. (9.35)

10. Multiparticle production stochastic dynamics

Let us imagine space-time development of the the multiparticle process and try to describe it
by some (phenomenological) dynamical equation. We start to find the equation for the Poisson
distribution and than naturally extend them for the NBD case.
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Let us define an integer valued variable n(t) as a number of events (produced particles) at
the time t, n(0) = 0. The probability of event n(t), P(t,n), is defined from the following motion
equation

Pt ≡
∂P(t,n)

∂ t
= r(P(t,n−1)−P(t,n)), n ≥ 1

Pt(t,0)) =−rP(t,0),
P(t,n) = 0, n < 0, (10.1)

so

P(t,0)≡ P0(t) = e−rt ,

P(t,n) = Q(t,n)P0(t),
Qt(t,n) = rQ(t,n−1), Q(t,0) = 1. (10.2)

To solve the equation for Q, we invent its generating function

F(t,h) = ∑
n≥0

hnQ(t,n), (10.3)

and solve corresponding equation

Ft = rhF, F(t,h) = erth = ∑hn (rt)n

n!
, Q(t,n) =

(rt)n

n!
, (10.4)

so

P(t,n) = e−rt (rt)n

n!
(10.5)

is the Poisson distribution.
If we compare this distribution with (7.21), we identify < n >= rt, as if we have a free particle

motion with velocity r and the distance is the mean multiplicity. This way we have a connection
between n-dimension of the multiplicity and the usual dimension of trajectory.

As the equation gives right solution, its generalization may give more general distribution, so
we will generalize the equation (10.1). For this, we put the equation in the closed form

Pt(t,n) = r(e−∂n −1)P(t,n)
= ∑

k≥1
Dk∂ kP(t,n), Dk = (−1)k r

k!
, (10.6)

where the Dk, k ≥ 1, are generalized diffusion coefficients.
For other values of the coefficients, we will have other distributions.

10.1 Fractal dimension of the multiparticle production trajectories

For mean square deviation of the trajectory we have

< (x− x̄)2 >=< x2 >−< x >2≡ D(x)2 ∼ t2/d f , (10.7)
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where d f is fractal dimension. For smooth classical trajectory of particles we have d f = 1; for free
stochastic, Brownian, trajectory, all diffusion coefficients are zero but D2, we have d f = 2. In the
case of Poisson process we have,

D(n)2 =< n2 >−< n >2∼ t, d f = 2. (10.8)

In the case of the NBD and KNO distributions

D(n)2 ∼ t2, d f = 1. (10.9)

As we have seen, rasing k, KNO reduce to the Poisson, so we have a dimensional (phase) transition
from the phase with dimension 1 to the phase with dimension 2. It is interesting, if somehow this
phase transition is connected to the other phase transitions in strong interaction processes.

For the Poisson distribution GF is solution of the following equation,

Ḟ =−r(1−h)F, (10.10)

For the NBD corresponding equation is

Ḟ =
−r(1−h)

1+ rt
k (1−h)

F =−R(t)F, R(t) =
r(1−h)

1+ rt
k (1−h)

. (10.11)

If we change the time variable as t = T d f , we reduce the dispersion low from general fractal to the
NBD like case. Corresponding transformation for the evolution equation is

FT =−d f T d f −1R(T dF )F, (10.12)

we ask that this equation coincides with NBD motion equation, and define rate function R(T )

d f T d f−1R(T dF ) =
r(1−h)

1+ rT
k (1−h)

, (10.13)

now the following equation defines a production processes with fractal dimension dF

Ft =−R(t)F, R(t) =
r(1−h)

dFt
dF−1

dF (1+ rt1/dF
k (1−h))

(10.14)

11. Spherical model of the multiparticle production

Now we would like to consider a model of multiparticle production based on the d-dimensional
sphere, and (try to) motivate the values of the NBD parameter k. The volum of the d-dimensional
sphere with radius r, in units of hadron size rh is

v(d,r) =
πd/2

Γ(d/2+1)
(

r
rh
)d (11.1)

Note that,

v(0,r) = 1, v(1,r) = 2
r
rh
,
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v(−1,r) =
1
π

rh

r
(11.2)

If we identify this dimensionless quantity with corresponding coulomb energy formula,

1
π
=

e2

4π
, (11.3)

we find e =±2.
For less then -1 even integer values of d, and r ̸= 0, v= 0. For negative odd integer d =−2n+1

v(−2n+1,r) =
π−n+1/2

Γ(−n+3/2)
(
rh

r
)2n−1, n ≥ 1, (11.4)

v(−3,r) =− 1
2π2 (

rh

r
)3, v(−5,r) =

3
4π3 (

rh

r
)5 (11.5)

Note that,

v(2,r)v(3,r)v(−5,r) =
1
π
, v(1,r)v(2,r)v(−3,r) =− 1

π
(11.6)

We postulate that after collision, it appear intermediate state with almost spherical form and con-
stant energy density. Than the radius of the sphere rise, dimension decrease, volume remains
constant. At the last moment of the expansion, when the crossection of the one dimensional sphere
- string become of order of hadron size, hadronic string divide in k independent sectors which start
to radiate hadrons with geometric (Boze-Einstein) distribution, so all of the string final state radiate
according to the NBD distribution.

So, from the volume of the hadronic string,

v = π(
r
rh
)2 l

rh
= πk, (11.7)

we find the NBD parameter k,

k =
πd/2−1

Γ(d/2+1)
(

r
rh
)d (11.8)

Knowing, from experimental date, the parameter k, we can restrict the region of the values of the
parameters d and r of the primordial sphere (PS),

r(d) = (
Γ(d/2+1)

πd/2−1 k)1/drh,

r(3) = (
3
4

k)1/3rh, r(2) = k1/2rh, r(1) =
π
2

krh (11.9)

If the value of r(d) will be a few rh, the matter in the PS will be in the hadronic phase. If the value
of r will be of order 10rh, we can speak about deconfined, quark-gluon, Glukvar, phase. From the
formula (11.9), we see, that to have for the r, the value of order 10rh, in d = 3 dimension, we need
the value for k of order 1000, which is not realistic.
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So in our model, we need to consider the lower than one, fractal, dimensions. It is consistent
with the following intuitive picture. Confined matter have point-like geometry, with dimension
zero. Primordial sphere of Glukvar have nonzero fractal dimension, which is less than one,

k = 3, r(0.7395)/rh = 10.00,
k = 4, r(0.8384)/rh = 10.00 (11.10)

From the experimental data we find the parameter k of the NBD as a function of energy, k = k(s).
Then, by our spherical model, we construct fractal dimension of the Glukvar as a function of k(s).

If we suppose that radius of the primordial sphere r is of order (or less) of rh. Than we will
have higher dimensional PS, e.g.

d r/rh k
3 1.3104 3.0002
4 1.1756 3.0003
6 1.1053 2.9994
8 1.1517 3.9990

11.1 Extra dimension effects at high energy and large scale Universe

With extra dimensions gravitation interactions may become strong at the LHC energies,

V (r) =
m1m2

m2+d
1

r1+d (11.11)

If the extra dimensions are compactified with(in) size R, at r >> R,

V (r)≃ m1m2

m2(mR)d
1
r
=

m1m2

M2
Pl

1
r
, (11.12)

where (4-dimensional) Planck mass is given by

M2
Pl = m2+dRd, (11.13)

so the scale of extra dimensions is given as

R =
1
m
(
MPl

m
)

2
d (11.14)

If we take m = 1TeV,(GeV−1 = 0.2 f m)

R(d) = 2 ·10−17(
MPl

1TeV
)

2
d cm,

R(1) = 2 ·1015cm,

R(2) = 0.2 cm !
R(3) = 10−7cm !
R(4) = 2 ·10−9cm,

R(6)∼ 10−11cm (11.15)

Note that lab measurements of GN(= 1/M2
Pl,MPl = 1.2×1019GeV ) have been made only on scales

of about 1 cm to 1 m; 1 astronomical unit(AU) (mean distance between Sun and Earth) is 1.5×
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1013cm; the scale of the periodic structure of the Universe, L = 128Mps ≃ 4 ·1026cm. It is curious
which (small) value of the extra dimension corresponds to L?

d = 2
ln MPl

m
ln(mL)

= 0.74, m = 1TeV,

= 0.81, m = 100GeV,
= 0.07, m = 1017GeV. (11.16)

12. Dynamical formulation of z - Scaling

Motion equations of physics (applied mathematics in general) connect different observable
quantities and reduce the number of independently measurable quantities. More fundamental equa-
tion contains less number of independent quantities. When (before) we solve the equations, we
invent dimensionless invariant variables, than one solution can describe all of the class of phenom-
ena.

In the z - Scaling (zS) approach to the inclusive multiparticle distributions (MPD) (see, e.g.
[Tokarev, Zborovsky, 2007]), different inclusive distributions depending on the variables x1, ...xn,

are described by universal function Ψ(z) of fractal variable z,

z = x−α1
1 ...x−αn

n . (12.1)

It is interesting to find a dynamical system which generates this distributions and describes
corresponding MPD.

We can find a good function if we know its derivative. Let us consider the following RD like
equation

z
d
dz

Ψ =V (Ψ),∫ Ψ(z)

Ψ(z0)

dx
V (x)

= ln
z
z0

(12.2)

In x−representation,

lnz =−
n

∑
k=1

αk lnxk, δz = z
d
dz

=−∑
k

δk

nhαk
,

n

∑
k=1

xk

nhαk

∂
∂xk

Ψ(x1, ...,xn)+V (Ψ) = 0, (12.3)

e.g.

z = δzz =−
n

∑
k=1

xk

nhαk

∂
∂xk

x−α1
1 ...x−αn

n = z, nh = n. (12.4)

In the case of NBD GF (7.27), we have

n = 2, x1 = k, x2 =< n >, α1 = α2 = 1, nh = 1,
Ψ = F, V (Ψ) =−Ψ lnΨ. (12.5)
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In the case of the z−scaling, [Tokarev, Zborovsky, 2007],

n = 4, x3 = ya, x4 = yb,

α1 = δ1, α2 = δ2, α3 = εa, α4 = εb,nh = 4, (12.6)

for infinite resolution, αn = 1, n = 1,2,3,4. In z variable the equation for Ψ has universal form. In
the case of n = 2,α1 = α2 = 1, nh = 1, we find that V (Ψ) =−Ψ lnΨ,

z
d
dz

Ψ(z) =−Ψ lnΨ,

Ψ(z) = ec/z = (Ψ(z0)
z0)

1
z = Ψ(z0)

z0
z ,

c = z0 lnΨ(z0)< 0, z ∈ (0,∞), Ψ(z) ∈ (0,1). (12.7)

Note that the fundamental equation is invariant with respect to the scale transformation z → λ z, but
the solution is not, the scale transformation transforms one solution into another solution. This is
an example of the spontaneous breaking of the (scale) symmetry by the states of the system.

12.1 Formal motivation (foundation) of the RD motion equation for Ψ

As a dimensionless physical quantity Ψ(z) may depend only on the running coupling constant
g(τ), τ = lnz/z0

z
d
dz

Ψ = Ψ̇ =
dΨ
dg

β (g) =U(g) =U( f−1(Ψ)) =V (Ψ),

Ψ(τ) = f (g(τ)), g = f−1(Ψ(τ)) (12.8)

12.2 Realistic solution for Ψ

According to the paper [Tokarev, Zborovsky, 2007], for high values of z, Ψ(z)∼ z−β ; for small
z, Ψ(z)∼ const.

So, for high z,

z
d
dz

Ψ =V (Ψ(z)) =−βΨ(z); (12.9)

for smaller values of z, Ψ(z) rise and we expect nonlinear terms in V (Ψ),

V (Ψ) =−βΨ+ γΨ2. (12.10)

With this function, we can solve the equation for Ψ and find

Ψ(z) =
1

γ
β + czβ . (12.11)

12.3 Reparametrization of the RD equation

RD equation of the z-Scaling,

z
d
dz

Ψ(z) =V (Ψ), V (Ψ) =V1Ψ+V2Ψ2 + ...+VnΨn + ... (12.12)
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can be reparametrized,

Ψ(z) = f (ψ(z)) = ψ(z)+ f2ψ2 + ...+ fnψn + ...

z
d
dz

ψ(z) = v(z) = v1ψ(z)+ v2ψ2 + ...+ vnψn + ...

(v1ψ(z)+ v2ψ2 + ...+ vnψn + ...)(1+2 f2ψ + ...+n fnψn−1 + ...)

=V1(ψ + f2ψ2 + ...+ fnψn + ...)

+V2(ψ2 +2 f2ψ3 + ...)+ ...+Vn(ψn +n f2ψn+1 + ...)+ ...

=V1ψ +(V2 +V1 f2)ψ2 +(V3 +2V2 f2 +V1 f3)ψ3+

...+(Vn +(n−1)Vn−1 f2 + ...+V1 fn)ψn + ...

v1 =V1,

v2 =V2 − f2V1,

v3 =V3 +2V2 f2 +V1 f3 −2 f2v2 −3 f3v1 =V3 +2( f 2
2 − f3)V1, ...

vn =Vn +(n−1)Vn−1 f2 + ...+V1 fn −2 f2vn−1 − ...−n fnv1, (12.13)

so, by reparametrization, we can change any coefficient of potential V but V1.

We can fix any higher coefficient with zero value, if we take

f2 =
V2

V1
, f3 =

V3

2V1
+ f 2

2 =
V3

2V1
+(

V2

V1

2
), ...

fn =
Vn +(n−1)Vn−1 f2 + ...+2V2 fn−1

(n−1)V1
, ... (12.14)

We will consider the case when only one of higher coefficient is nonzero and give explicit form of
the solution Ψ.

12.4 More general solution for Ψ

Let us consider more general potential V

z
d
dz

Ψ =V (Ψ) =−βΨ(z)+ γΨ(z)1+n (12.15)

Corresponding solution for Ψ is

Ψ(z) =
1

( γ
β + cznβ )

1
n

(12.16)

More general solution contains three parameters and may better describe the data of inclusive
distributions.

In the case of n = 1 we reproduce the previous solution.
Another "natural" case is n = 1/β ,

Ψ(z) =
1

( γ
β + cz)β (12.17)

In this case, we can absorb (interpret) the combined parameter by shift and scaling

z → 1
c
(z− γ

β
) (12.18)
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Figure 3: z-scaling distribution Ψ(z,9,9,1,1)

Another interesting point of view is to predict the value of β

β =
1
n
= 0.5;0.33;0.25;0.2; ..., n = 2,3,4,5, ... (12.19)

For experimentally suggested value β ≃ 9,n = 0.11
In the case of n =−ε, β = γ = 1/ε, c = εk, we will have

V (Ψ) =−Ψ lnΨ, Ψ(z) = e
k
z (12.20)

This form of Ψ−function interpolates between asymptotic values of Ψ and predicts its behav-
ior in the intermediate region.

The three parameter function is restricted by the normalization condition∫ ∞

0
Ψ(z)dz = 1,

B(
β −1

βn
,

1
βn

) = (
β
γ
)

β−1
βn

βn
cβn , (12.21)

so remains only two free parameter. When βn = 1, we have

c = (β −1)(
β
γ
)β−1 (12.22)

If βn = 1 and β = γ, than c = β −1.
In general

cβn = (
β
γ
)

β−1
βn

βn

B(β−1
βn , 1

βn)
(12.23)

12.5 Scaling properties of scaling functions and they equations

RD equation of the z-scaling (12.15), after substitution,

Ψ(z) = (φ(z))
1
n , (12.24)
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reduce to the n = 1 case with scaled parameters,

φ̇ =−βnφ + γnφ2, (12.25)

this substitution could be motivated also by the structure of the solution (12.16),

Ψ(z,β ,γ,n,c) = Ψ(z,βn,γn,1,c)
1
n = Ψ(z,β ,γ,βn,c)β . (12.26)

General RD equation takes form

φ̇ = nv1φ +nv2φ1+ 1
n +nv3φ1+ 2

n + ...+nvnφ2 +nvn+1φ2+ 1
n + ... (12.27)

12.6 Space-time dimension inside hadrons and nuclei

The dimension of the space(-time) is the model dependent concept. E.g. for the fundamental
bosonic string model (in flat space-time) the dimension is 26; for superstring model the dimension
is 10 [Kaku, 2000].

Let us imagine that we have some action-functional formulation with the fundamental motion
equation

z
d
dz

Ψ =V (Ψ(z)) =V (Ψ) =−βΨ+ γΨ1+n. (12.28)

Than, the corresponding Lagrangian contains the following mass and interaction parts

−β
2

Ψ2 +
γ

2+n
Ψ2+n (12.29)

The action gives renormalizable (effective quantum field theory) model when

d +2 =
2N

N −2
=

2(2+n)
n

= 2+
4
n
= 2+4β , (12.30)

so, measuring the parameter β inside hadronic and nuclear matters, we find corresponding (fractal)
dimension.

12.7 Another action formulation of the Fundamental equation

From fundamental equation we obtain

(z
d
dz

)2Ψ ≡ Ψ̈ =V ′(Ψ)V (Ψ) =
1
2
(V 2)′

= β 2Ψ−βγ(n+2)Ψn+1 + γ2(n+1)Ψ2n+1 (12.31)

Corresponding action Lagrangian is

L =
1
2

Ψ̇2 +U(Ψ), U =
1
2

V 2 =
1
2

Ψ2(β − γΨn)2

=
β 2

2
Ψ2 −βγΨ2+n +

γ2

2
Ψ2+2n (12.32)

This potential, −U, has two maximums, when V = 0, and minimum, when V ′ = 0, at Ψ = 0 and
Ψ = (β/γ)1/n, and Ψ = (β/(n+1)γ)1/n, correspondingly.
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We define time-space-scale field Ψ(t,x,η), where η = lnz− is scale coordinate variable, with
corresponding action functional

A =
∫

dtddxdη(
1
2

gab∂aΨ∂bΨ+U(Ψ)) (12.33)

The renormalization constraint for this action is

N = 2+2n =
2(2+d)
2+d −2

= 2+
4
d
, dn = 2, d = 2/n = 2β . (12.34)

So we have two models for spase-time dimension, (12.30) and (12.34),

d1 = 4β ; d2 = 2β (12.35)

The coordinate η characterise (multiparticle production) physical process at the (external) space-
time point (x,t). The dimension of the space-time inside hadrons and nuclei, where multiparticle
production takes place is

d +1 = 1+2β (12.36)

Note that this formula reminds the dimension of the spin s state, ds = 2s+1. If we take β (= s) =
0;1/2;1;3/2;2; ... We will have d +1 = 1;2;3;4;5; ...

Note that as we invent Ψ as a real field, we ought to take another normalization∫
ddx|Ψ|2 = 1 (12.37)

for the solutions of the motion equation. This case extra values of the parameter β is possible,
β > d/2.

12.8 Measurement of the space-time dimension inside hadrons

We can take a renormdynamic scheme were Ψ(g) is running coupling constant. The variable
z is a formation length and has dimension -1, RD equation for Ψ in φ3

D model is

z
d
dz

Ψ =
6−D

2
Ψ+ γΨ2 (12.38)

β =
D−6

2
(12.39)

For high values of z, β = 9, so D= 24. This value of D corresponds to the physical (transverse)
degrees of freedom of the relativistic string, to the dimension of the external space in which this
relativistic string lives. This is also the number of the quark - lepton matter degrees of freedom,
3 ·6+6. So, in these high energy reactions we measured the dimension of the space-time and matter
and find the values predicted by relativistic string and SM. For lower energies, in this model, D
monotonically decrees until D = 6, than the model (may) change form on the φ4

D,β = D− 4. So
we have two scenarios of behavior. In one of them the dimension of the space-time inside hadrons
has value 6 and higher. In another the dimension is 4 and higher.

Perturbative QCD indicates that we have a fixed point of RD in dimension slightly higher than
4, and ordinary to hadron phase transition corresponds to the dimensional phase transition from
slightly lower than 4, in QED, to slightly higher than 4 dimension in QCD.
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12.9 General scalar field

In general scalar field model φn
D,

β =−dg =
nD
2

−n−D. (12.40)

For φ3 model, β = 9 corresponds to D = 24.

12.10 O(N)−sigma model

In tha case of the O(N)−sigma model

β = D−2, (12.41)

For the experimental value of β = 9, we have the dimension of the M−theory, D = 11!
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