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1. Introduction

The soft part of the multi-particle production in pp collisions at high energy, which can not be
directly described in terms of the perturbative QCD, is usually described in the framework of string
models [1]–[4], which originate from the Gribov-Regge approach. In these models at first stage the
colour strings are stretched between the projectile and target partons. The formation of the pair of
strings corresponds to the cut pomeron in the Gribov-Regge approach. The hadronization of these
strings produces the observed hadrons.

In the case of nuclear collisions, the number of strings grows with the growing energy and the
number of nucleons of colliding nuclei, and one has to take into account the interaction between
strings in the form of their fusion and/or percolation [5]–[7]. The fusion process results in the
reduction of total multiplicity of charged particles and growth of transverse momentum, that was
confirmed later [8, 9] in comparison with RHIC data.

The possible experimental observation of the string fusionor percolation is extremely inter-
esting. Therefore, the investigation of long-range correlations (LRC) between multiplicities and
transverse momenta in two separated rapidity intervals were proposed as the main tool to study this
phenomenon [10]–[17].

Up to the present the string fusion model was usually used fordescribing the multiplicity and
mean transverse momentum of charged particles and their correlation only in the case of nucleus-
nucleus collisions. However, the experimental data indicates an increase with energy of the mean
transverse momentum and its correlation with multiplicityalso in pp collisions [18]–[21]. In
present work we formulate the simple model which enables to take into account the effect of colour
string fusion on the LRC between multiplicities and transverse momenta inpp interactions.

2. Formulation of the model

To take into account the effect of string fusion inpp collisions one needs to know the distri-
bution of strings in the transverse plane at given value of the impact parameterb. We’ll do this in
an analogy with the case of nucleus-nucleus collisions.

2.1 Distribution of strings in the transverse plane:AA interactions

In the case ofAA interactions one usually assumes that at high energy a number of primary
formed quark-gluon strings is proportional to the number ofbinary inelastic nucleon-nucleon in-
teractions in a given event of nucleus-nucleus scattering [2, 12]. In frame of the classical Glauber
model mean number of inelasticNN interactions inAB scattering at a fixed impact parameterb is
give by the expression (e.g. see [22, 23]):

〈Nstr(b)〉 ∼ 〈N in
coll(b)〉 = AB

σ in
NN

σAB(b)

∫
TA(~s−~b/2)TB(~s+~b/2)d2~s . (2.1)

Hereσ in
NN – the cross-section of inelastic nucleon-nucleon interaction, σAB(b) – the probability of

interaction of two nuclei at a given impact parameterb with at least one inelasticNN interaction.
An integral ofσAB(b):

σAB =

∫
σAB(b) d2~b (2.2)

2



P
o
S
(
B
a
l
d
i
n
 
I
S
H
E
P
P
 
X
X
I
)
0
7
2

The dependence of the number of pomerons on the impact parameter and LRC in pp Vladimir Vechernin

gives a so-called «production cross section» ofAB interaction. The〈...〉 in equation (2.1) means an
averaging over all events with a givenb. TA andTB – the profile functions of the colliding nuclei:

TA(~s) =

+∞∫

−∞

ρA(~s,z)dz , (2.3)

whereρA(~r) – the nucleon density of nucleusA, normalized to unity,~r = (~s,z). The~s is a two-
dimensional vector in the impact parameter plane.

By (2.1) in the nucleus-nucleus collision at the impact parameterb for the string density in
transverse plane at a point~s we have:

d〈Nstr(b)〉/d2~s ≡ wstr(~s,~b) ∼ win
coll(~s,~b) = AB

σ in
NN

σAB(b)
TA(~s−~b/2)TB(~s+~b/2) (2.4)

Note that in the transverse plane we place the origin in the middle between the centers of colliding
nuclei.

2.2 Distribution of strings in the transverse plane:pp interactions

By (2.4) it is natural to suppose that in the case of proton-proton collision at the impact pa-
rameterb the string density in transverse plane at a point~s is proportional to

wstr(~s,~b) ∼ T (~s−~b/2)T (~s+~b/2)/σpp(b) , (2.5)

where now theT (~s) is the partonic profile function of nucleon. Theσpp(b) is the probability of
non-diffractive pp interaction (with at least one cut pomeron) at a given impactparameterb. An
integral ofσpp(b):

σpp =

∫
σpp(b) d2~b (2.6)

gives a non-diffractive cross-section ofpp interaction.
By analogy with light nuclei we will use for the partonic profile function of nucleon the sim-

plest gaussian distribution:

T (s) =
e−s2/α2

πα2 . (2.7)

Substituting (2.7) in (2.5) one gets

wstr(~s,~b) ∼ e−(~s+~b/2)2/α2
e−(~s−~b/2)2/α2

/σpp(b) = e−2s2/α2
e−b2/2α2

/σpp(b) . (2.8)

We see that in this approximation the dependencies onb ands are factorized and after integration
on~s one gets for the mean number of strings in thepp collision at the impact parameterb:

〈Nstr(b)〉 ∼ e−b2/2α2
/σpp(b) . (2.9)

Since in this approach the formation of each pair of strings corresponds to one cut pomeron,
Nstr = 2N, whereN is the number of cut pomerons in a given event, hence (2.9) leads to

〈N(b)〉 ∼ e−b2/2α2
/σpp(b) , (2.10)

which gives the dependence of the average number of cut pomerons on the impact parameter in
non-diffractivepp collisions.

3
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2.3 Event-by-event fluctuations of the number of cut pomerons at given impact parameter

For the calculation of LRC one should know not only the mean number of pomerons inpp
collisions at a given impact parameterb, but also the event by event distribution of the number of
pomerons around this mean value. We assume that this distribution P̃(N,b) at a given value of the
impact parameterb at N ≥ 1:

P̃(N,b) = P(N,b)/[1−P(0,b)] (2.11)

is the simple modification of the poissonian distribution:

P(N,b) = e−N(b)N(b)N/N! (2.12)

with some parameterN(b). The difference of our distributioñP(N,b) (2.11) from the poissonian
one (2.12) is only in excluding of the pointN = 0 from it: P̃(0,b) = 0, which corresponds to the
absence of the non-diffractive scattering atN = 0. Clear that atN ≥ 1 this reduces only to the
introduction of the additional common normalization factor in (2.11), which enables the proper
normalization:∑N=1 P̃(N,b) = 1.

The calculation of the mean number of pomerons at a givenb with the distribution (2.11) gives:

〈N(b)〉 = N(b)/[1−P(0,b)] . (2.13)

Since the probabilityσpp(b) of the non-diffractivepp interaction at the given fixed impact
parameterb is equal to the probability to have a nonzero number of cut pomerons, then

σpp(b) = 1−P(0,b) = 1−exp(−N(b)) . (2.14)

Comparing now the formulae (2.10) and (2.13) with taking into account (2.14) we see that in our
modelN(b) ∼ e−b2/2α2

or introducing a parameterN0:

N(b) = N0e−b2/2α2
(2.15)

Then the mean number of cut pomerons at an impact parameterb is given by

〈N(b)〉 = N(b)/[1−exp(−N(b))] , (2.16)

where theN(b) is given by (2.15).

2.4 Integration over impact parameter - min.biaspp collisions

It is convenient to introduce in the impact parameter plane adensity of the probability of
non-diffractivepp interaction (see (2.6)) normalized to unity:

f (b) = σpp(b)/σpp ,

∫
f (b)d2~b = 1 . (2.17)

Using the formula (2.17) one can find a mean number of pomeronsin non-diffractivepp interaction
averaged over the impact parameter:

〈N〉 =

∫
〈N(b)〉 f (b)d2~b =

∫
N(b)d2~b/σpp = 2πα2N0/σpp (2.18)
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and the corresponding varianceDN ≡ 〈N2〉− 〈N〉2, where

〈N2〉 =
∫
〈N2(b)〉 f (b)d2~b = πα2N0(N0+2)/σpp = 〈N〉(N0+2)/2 (2.19)

Here we have used (2.15). In our model using (2.15) we can calculate also the cross-section of
non-diffractivepp interaction

σpp =

∫
σpp(b)d2~b =

∫
[1−exp(−N(b))]d2~b = 2πα2Φ1(N0) , (2.20)

where

Φ1(z) =

∫ z

0
(1− e−t)

dt
t

, Φm(z) =
∞

∑
k=1

(−1)k+1zk

k!km . (2.21)

2.5 Probability of N cut pomerons in non-diffractive pp collision

In the framework of our simple model we can find the probability wN to haveN cut pomerons
in a non-diffractivepp collision by averaging thẽP(N,b) (2.11) overb at fixedN:

wN =
∫

P̃(N,b) f (b)d2~b =
1

σpp

∫
P(N,b)d2~b , (2.22)

where we have taken into account (2.14). Using now (2.12), wehave

wN =
1

σppN!

∫
e−N(b)(N(b))N d2~b =

2π
σppN!

∫ ∞

0
e−N(b)(N(b))N bdb . (2.23)

One can introduce in (2.23) the new integration variableN in accordance with (2.15):

N = N(b) = N0e−b2/2α2
, dN = −(N/α2) bdb . (2.24)

Then (2.23) takes the following form

wN =
2πα2

σppN!

∫ N0

0
e−NN

N−1
dN . (2.25)

Such integral is a difference of the gamma and incomplete gamma functions:
∫ N0

0
e−zzN−1dz =

∫ ∞

0
e−zzN−1 dz−

∫ ∞

N0

e−zzN−1dz = Γ(N)−Γ(N,N0) , (2.26)

At integerN

Γ(N) = (N −1)! , Γ(N,N0) = (N −1)! e−N0
N−1

∑
l=0

N l
0/l! . (2.27)

Gathering we find

wN =
2πα2

σppN

[
1− e−N0

N−1

∑
l=0

N l
0/l!

]
=

σN

σpp
, (2.28)

where we have introduced theσN by

σN ≡ 2πα2

N

[
1− e−N0

N−1

∑
l=0

N l
0/l!

]
, (2.29)

The direct summing gives
∞

∑
N=1

σN = 2πα2Φ1(N0) = σpp , (2.30)

where we have used (2.20) and (2.21). Recall thatσpp is the non-diffractivepp cross section (2.6).

5
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2.6 Comparison with quasi-eikonal and Regge approaches

Now we see that our formula for theσN (2.29) coincides with the well known result for the
cross-sectionσN of N cut-pomeron exchange, obtained in the quasi-eikonal and Regge approaches
[24, 25, 26] :

σN =
4πλ
C N

[
1− e−z

N−1

∑
k=0

zk/k!

]
, (2.31)

where

z =
2γC
λ

exp(∆ξ ) , λ = R2 + α ′ξ , ξ = ln(s/1GeV 2) . (2.32)

Here∆ andα ′ are the residue and the slope of the pomeron trajectory. The parametersγ andR
characterize the coupling of the pomeron trajectory with the initial hadrons. The quasi-eikonal
parameterC is related to the small-mass diffraction dissociation of incoming hadrons.

This enables to connect the parametersN0 andα of our model, which describe the dependence
of the mean number of pomerons on the impact parameterb (see formulae (2.15) and (2.16)) with
the parameters of the pomeron trajectory and its couplings to hadrons. Comparing (2.29) and (2.31)
we have

N0 = z =
2γC
λ

exp(∆ξ ) , α =

√
2λ
C

, λ = R2+ α ′ξ (2.33)

In our calculations the numerical values of the parameters for the case ofpp collisions were taken
from the paper [27]:

∆ = 0.139, α ′ = 0.21 GeV−2, γ = 1.77 GeV−2, R2 = 3.18 GeV−2, C = 1.5 , (2.34)

which gives, for example, for the parametersN0 andα entering in our formula (2.15):

α = 0.51fm, N0 = 3.38 at
√

s = 60GeV ,

α = 0.60fm, N0 = 9.02 at
√

s = 7000GeV . (2.35)

3. String fusion effects

As follows from the consideration in the previous section, in pp interactions the number of
contributing cut pomerons (see formulae (2.15) and (2.16))increases with the collision centrality
and energy (2.35). In our approach the number of strings is twice the number of cut pomerons, so it
also will increases with the collision centrality and energy. Since the strings have a certain limited
size in the transverse plane (a plane of the impact parameter) an overlap of the strings will start
with increase of their density. As a result the color fields ofdifferent strings will interact what will
influence on their fragmentation process. For taking into account the effects from the interaction
of strings at high density a string fusion model (SFM) was proposed [5]–[7].

3.1 Different versions of string fusion model

There are two versions of the SFM a model with local fusion (overlaps model) [28] and a
model with formation of global color clusters (clusters model) [29]. In both versions the fusion

6
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Figure 1: The different versions of the SFM. The first column corresponds to the version with a local
string fusion (overlaps model). The second column corresponds to the formation of fused string clusters
(clusters model). The first row corresponds to the original versions of the SFM [28, 29] and the second row
corresponds to their cellular analogs [30, 31, 33, 34] (see text for details).

processes result in the reduction of total multiplicity of charged particles and growth of transverse
momentum.

In the first variant according to [28] we assume that the mean multiplicity per unit of rapidity
and the mean transverse momentum of charged particles emitted from the region, wherek strings
are overlapping, are described by the following expressions:

〈n〉k = µ0

√
k Sk/σ0 , 〈p2

t 〉k = p2
0

√
k , k = 1,2,3, ... . (3.1)

HereSk is the transverse area of the region, wherek color strings are overlapped.σ0 = πr2
str is the

transverse area of a string.µ0 and p0 are the mean multiplicity per unit of rapidity and the mean
transverse momentum of charged particles, produced from a decay of one string.

In the second variant one assumes that the fused strings forma cluster. According to [29]
in this case we suppose that the mean multiplicity per unit ofrapidity and the mean transverse
momentum of charged particles emitted by a cluster with a transverse areaScl, formed byk strings,
can be found as follows

〈n〉cl = µ0

√
kclScl/σ0 , 〈p2

t 〉cl = p2
0

√
kcl , kcl = kσ0/Scl . (3.2)

Note that in two limiting cases (an absence of overlaps of strings and a total overlapping of string
areas) both variants give the same prescriptions.

Later the simplified discrete analogs of both mentioned versions of SFM based on the imple-
mentation of the lattice in the transverse plane [30, 31, 32]were proposed. It was demonstrated

7
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[33, 34] that the MC algorithms of the calculations of LRC coefficients based on the cellular ver-
sions of SFM work much more faster and give practically the same results as the ones based on
the original versions of SFM. These cellular versions of SFMenables also to calculate analytically
the mean values of the observables and LRC coefficients in some limiting cases [31, 34], what was
used to control the reliability of the created MC codes.

In Fig.1 we illustrate visually the prescriptions of all these versions of the SFM. The first
column corresponds to the version with a local string fusion(overlaps model). The second column
corresponds to the formation of fused string clusters (clusters model). The first row corresponds to
the original versions of the SFM and the second row corresponds to their cellular analogs.

3.2 Monte-Carlo algorithm for the calculation of LRC functi ons

The calculation of LRC functions (regressions) is based on the formula

〈nB〉nF
=

∑C w(C) 〈nB〉C PC(nF)

∑C w(C) PC(nF)
(3.3)

obtained in [13] for the correlation between multiplicities nF andnB in separated rapidity windows
and on the similar formula

〈ptB〉nF
=

∑C w(C) 〈ptB〉C PC(nF)

∑C w(C) PC(nF)
(3.4)

used in [31, 32, 33] for the calculations of the LRC function between the multiplicitynF in the
forward rapidity window and the corresponding mean transverse momentumptB of nB charged
particles in the backward window.

The calculations of the sums on string configurationsC in numerator and denominator of the
formulae (3.3) and (3.4) were performed by MC simulations ofthe configurationsC with proper
weightsw(C):

∑
C

w(C) ... =
1

nsim
∑
sim

... . (3.5)

With this purpose at the generation of the string configurationsC the results of the Section 2 were
used.

For the generated string configurationC the mean values of the multiplicity〈nB〉C and trans-
verse momentum〈ptB〉C in the backward rapidity window, entering the formulae (3.3) and (3.4),
were calculated using the prescriptions (3.1) and (3.2) forthe cases of local string fusion and cluster
formation, both in frameworks of the original version of SFMand its cellular analog.

We also have supposed that the multiplicity distribution ofcharged particles produced from
the decay of any string is poissonian, what leads to the poissonian distribution for the probability
of production ofnF charged particlesPC(nF) from the given string configurationC:

PC(nF) = P〈nF〉C
(nF) = e−〈nF 〉C

(〈nF〉C)nF

nF !
, (3.6)

where one can calculate〈nF〉C similar to〈nB〉C using the prescriptions (3.1) and (3.2).
Similarly to the correlation functions (3.3) and (3.4) one can also calculate (by MC simulations

of the string configurationsC) the overall mean values (averaged over all events) in the forward

〈nF〉 = ∑
C

w(C)〈nF〉C , 〈ptF〉 = ∑
C

w(C)〈ptF 〉C (3.7)

8
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63 GeV
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Clusters
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Figure 2: The long-range correlation (LRC) function inpp collisions between multiplicitiesnF andnB in
separated rapidity windows calculated by (3.3) at energies63 and 900 GeV for the forward and backward
rapidity windows of the same width∆yF = ∆yB = dy = 0.8, what corresponds to the mean multiplicities
〈nF〉 = 〈nB〉 = 〈n〉=1.5 and 3.0 per window at these energies. Points◦ and• - the results of calculations in
the framework of the original versions of the string fusion model (SFM) with the local fusion (overlaps) or
the formation of string clusters (clusters) correspondingly (see first row in Fig.1) [28, 29]. Points and
- the results of calculations in the framework of the latticeanalog of SFM with the local string fusion or the
cluster formation correspondingly (see second row in Fig.1) [30, 31, 33, 34].

and (by the same way) in the backward windows.
Note that the resulting distribution on the number of charged particles produced in the forward

or backward window

P(nF) = ∑
C

w(C)PC(nF) (3.8)

will be non-poissonian despite the poissonian form (3.6) ofthe distributionPC(nF) and almost
poissonian (see (2.11) and (2.12)) fluctuations in the number of cut pomerons at fixed value of the
impact parameterb in our model. The reason is the non-poissonian fluctuations in the number of
cut pomerons originating from the event-by-event fluctuation of the impact parameterb (see also
[33, 35, 36]).

4. Results

In Figs. 2 and 3 we present as an example the results of our calculations of the LRC functions
in pp interactions using the MC algorithm based on the model described above.

In Fig.2 the results of calculations of LRC between multiplicities nF andnB in separated ra-
pidity windows on the base of the formula (3.3) at the initialenergies 63 and 900 GeV are pre-
sented. In both cases the rapidity width of the forward and backward windows is taken the same
∆yF = ∆yB = dy = 0.8, what corresponds to the mean multiplicities〈nF〉= 〈nB〉= 〈n〉=1.5 and 3.0

9
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Figure 3: The long-range correlation (LRC) function inpp collisions between the multiplicitynF in the
forward rapidity window and the corresponding mean transverse momentumptB of nB charged particles in
the backward window calculated on the base of the formula (3.4) at the energy 900 GeV for the forward
and backward rapidity windows of the same width∆yF = ∆yB = dy = 1.6, what corresponds to the mean
multiplicity 〈nF〉 = 〈nB〉 = 〈n〉=6.0 in the window. Notations of the points are the same as in Fig.3.3. Points
× - the experimental data of the ALICE collaboration [37] on the correlation between the multiplicityn and
the mean transverse momentumpt of charged particles in the same pseudorapidity intervalη ∈ (−0.8,0.8),
∆η = 1.6 obtained inpp collisions at 900 GeV.

in such window at these energies. We see in Fig.2 the considerable increase of the strength of the
LRC between multiplicities in separated rapidity windows.

In Figs.3 the results on the LRC between the multiplicitynF in the forward rapidity window
and the corresponding mean transverse momentumptB of nB charged particles in the backward
window on the base of the formula (3.4) at the initial energy 900 GeV are presented. The rapidity
width of the forward and backward windows is taken the same∆yF = ∆yB = ∆y = 1.6, what cor-
responds to the mean multiplicities〈nF〉 = 〈nB〉 = 〈n〉=6.0 in such window at this energy. In Fig.3
we also present the experimental data of the ALICE collaboration [37] on the correlation between
the multiplicity n and the mean transverse momentumpt of charged particles in the same pseudo-
rapidity windowη ∈ (−0.8,0.8), ∆η = 1.6 obtained inpp collisions at the energy 900 GeV. The
difference between calculated LRC function and the ALICE experimental data at large multiplici-
ties can be explained by the contributions of additional short-range mechanisms in the case of the
correlation between the multiplicityn and the mean transverse momentumpt in the same window,
which do not contribute in the case of LRC.

We see also in Figs. 2 and 3 that the results of calculations ofthe LRC strength in the frame-
works of all four versions of SFM (local fusion or cluster formation and their lattice analogs, see
Figs.1) turn out to be very close to each other. On the one hand, because of the principal techni-
cal differences in the realization of these SFM versions, itindicates in favour of the reability of
the obtained results. On the other hand, it obviously means that one can not distinguish between

10
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versions of the SFM mechanisms on the base of this comparisonof the obtained results with the
experimental data and the calculations of other string fusion effects on the physical observables are
needed.

5. Conclusions

The simple model which enables to take into account the effect of colour string fusion inpp
interactions is suggested. At the formulation of the model we assume that the dependence of the
average number of cut pomerons on the impact parameter in a non-diffractive (ND) pp collision
is gaussian (2.15) with the additional condition that we have at least one cut pomeron (2.16). We
assume also that the event-by-event distribution of the number of cut pomerons around this average
value at fixed impact parameterb is poissonian (2.12) with the same condition (2.11).

It is shown that these two simple assumptions after integration over impact parameter lead
to the well known formula for the cross-sectionσN with N cut-pomeron exchange in a NDpp
collision (2.29), (2.31), which was obtained in the quasi-eikonal and Regge approaches [24, 25, 26].
This have enabled us to connect the parameters of our model with the parameters of the pomeron
trajectory and its couplings to hadrons (2.33).

The effects of the string fusion [5, 6] on the multiparticle production were taken into account
in the same way as it was done in the case ofAA collisions [32, 33]. At that the different version of
the string fusion mechanism (local fusion or cluster formation and their lattice analogs, see Fig.1)
were considered.

On the base of the model the Monte-Carlo algorithm was developed and the long-range cor-
relation functions between multiplicities and between theaverage transverse momentum and the
multiplicity in pp collisions at different energies were calculated. It was found that the results of
calculations of the long-range correlation (LRC) strengthin the frameworks of all four versions of
the string fusion model (SFM) turn out to be very close to eachother (see Figs. 3.3 and 3.4).

References

[1] A. Capella and A. Krzywicki,Phys. Rev. D 18 (1978) 4120.

[2] A. Capella, U.P. Sukhatme, C.–I. Tan and J. Tran Thanh Van, Phys. Lett. B 81 (1979) 68;Phys. Rep.
236(1994) 225.

[3] A.B. Kaidalov,Phys. Lett. B 116(1982) 459.

[4] A.B. Kaidalov K.A. Ter-Martirosyan,Phys. Lett. B 117(1982) 247.

[5] M.A. Braun, C. Pajares,Phys. Lett. B 287(1992) 154;Nucl. Phys. B 390(1993) 542.

[6] N.S. Amelin, M.A. Braun, C. Pajares,Phys. Lett. B 306(1993) 312;Z. Phys. C 63 (1994) 507.

[7] N. Armesto, M.A. Braun, E.G. Ferreiro, C. Pajares,Phys. Rev. Lett. 77 (1996) 3736.

[8] M.A. Braun, F. del Moral, C. Pajares,Phys. Rev. C 65 (2002) 024907.

[9] N. Armesto, C. Pajares, D. Sousa,Phys. Lett. B 527(2002) 92.

[10] N.S. Amelin, N. Armesto, M.A. Braun, E.G. Ferreiro, C. Pajares,Phys. Rev. Lett. 73 (1994) 2813.

[11] M.A. Braun and C. Pajares,Phys. Rev. Lett. 85 (2000) 4864.

11



P
o
S
(
B
a
l
d
i
n
 
I
S
H
E
P
P
 
X
X
I
)
0
7
2

The dependence of the number of pomerons on the impact parameter and LRC in pp Vladimir Vechernin

[12] M.A. Braun and C. Pajares,Eur. Phys. J. C 16 (2000) 349.

[13] M.A. Braun, C. Pajares, V.V. Vechernin,Phys. Lett. B 493(2000) 54 [hep-ph/0007241].

[14] M.A. Braun, C. Pajares, V.V. Vechernin,Forward-backward multiplicity correlations, low pt
distributions in the central region and the fusion of colour strings Internal Note/FMD,
ALICE-INT-2001-16, CERN, Geneva 2001.

[15] P.A. Bolokhov, M.A. Braun, G.A. Feofilov, V.P. Kondratiev, V.V. Vechernin,Long-Range
Forward-Backward Pt and Multiplicity Correlations Studies in ALICE Internal Note/PHY,
ALICE-INT-2002-20, CERN, Geneva 2002.

[16] ALICE collaboration,ALICE: Physics Performance Report, Volume II, J. Phys. G 32 (2006)
1295-2040 (Section: 6.5.15 -Long-range correlations, p.1749-1751).

[17] N. Armesto, L. McLerran, C. Pajares,Nucl. Phys. A (2007) 781.

[18] C. Albajar et al. (UA1 Collaboration),Nucl. Phys. B 335(1990) 261.

[19] F. Abe et al. (CDF Collaboration),Phys. Rev. D 61 (2000) 032001.

[20] T. Alexopoulos et al. (E735 Collaboration),Phys. Rev. Lett. 60 (1988) 1622;Phys. Rev. D 48 (1993)
984;Phys. Lett. B 336(1994) 599.

[21] A. Breakstone et al. (ABCDHW Collaboration),Phys. Lett. B 132(1983) 463.

[22] A. Bialas, M. Bleszynski, W. Czyz,Nucl. Phys. B 111(1976) 461.

[23] V.V. Vechernin, H.S. Nguyen,Phys. Rev. C 84 (2011) 054909 [1102.2582 [hep-ph]].

[24] K.A. Ter-Martirosyan,Phys. Lett. B 44 (1973) 377.

[25] V.A. Abramovsky, V.N. Gribov, O.V. Kancheli,Yad. Fiz. 18 (1973) 595.

[26] A.B. Kaidalov, K.A. Ter-Martirosyan,Yad. Fiz. 39 (1984) 1545;ibid. 40 (1984) 211.

[27] G.H. Arakelyan, A. Capella, A.B. Kaidalov, Yu.M. Shabelski, Eur. Phys. J. C 26 (2002) 81.

[28] M.A. Braun, C. Pajares,Eur. Phys. J. C 16 (2000) 349.

[29] M.A. Braun, F. del Moral, C. Pajares,Phys. Rev. C 65 (2002) 024907.

[30] V.V. Vechernin, R.S. Kolevatov,Vestnik SPbU, ser.4, no.2, (2004) 12 [hep-ph/0304295].

[31] V.V. Vechernin, R.S. Kolevatov,Vestnik SPbU, ser.4, no.4, (2004) 11 [hep-ph/0305136].

[32] M.A. Braun, R.S. Kolevatov, C. Pajares, V.V. Vechernin, Eur. Phys. J. C 32 (2004) 535
[hep-ph/0307056].

[33] V.V. Vechernin, R.S. Kolevatov,Physics of Atomic Nuclei 70 (2007) 1797.

[34] V.V. Vechernin, R.S. Kolevatov,Physics of Atomic Nuclei 70 (2007) 1858.

[35] V.V. Vechernin,Long-Range Rapidity Correlations in the Model with Independent Emitters, in
proceedings ofThe XX International Baldin Seminar on High Energy Physics Problems, vol.2, JINR,
Dubna (2011) 10 [1012.0214 [hep-ph]].

[36] V.V. Vechernin,Correlations between multiplicities in rapidity and azimuthally separated windows,
1210.7588 [hep-ph].

[37] K. Aamodt et al. (ALICE collaboration),Phys. Lett. B 693(2010) 53 [1007.0719 [hep-ex]].

12


