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Top quark as resonance: renormalization and spin effect V.P. Lomov

1. Introduction

The top quark, the heaviest elementary particle observed to date, plays a special role in Stan-
dard Model (SM) [1 – 3] and it is an object of intensive research at LHC [4 – 8]. Being a short-
living particle (due to the open channels with W-boson on mass shell), it may be considered on an
equal footing with ordinary hadron resonances. The dressed propagator can be obtained as a result
of Dyson summation of self-energy insertions or, equivalently, by solving the Dyson–Schwinger
equation. As for top quark, its vertex violates parity, so γ5 takes part in this process, and it leads to
nonstandard form of resonance factor, as we shall see below.

The form of fermion resonance with parity violation was discussed earlier. In particular, in
[9] were written general formulas for dressed propagator with the use of the off-shell basis. The
paper [10] was devoted to extension of the concept of pole mass and width [11 – 15] to the case
of the parity violation. The obtained dressed fermion propagator was written in a boson-like form
without separation of the positive and negative energy poles. It is difficult to compare this general
expression with the standard Breit–Wigner form, in particular to recognize there the on-shell decay
width.

In this work we build the γ-matrix projectors onto the positive and negative energy poles and
corresponding resonance factors. The key moment is the use of the spectral representation of
operator for this purpose. The explicit form of this representation (4.5), (4.6) can be obtained for
arbitrary form of interaction, its particular case (5.7) corresponds to V-A vertex of SM.

2. Standard Breit–Wigner formula in QFT

To obtain Breit–Wigner-like formula in QFT one needs to solve the Dyson–Schwinger equa-
tion for the dressed propagator,

G = G0 +G0ΣG, or G−1 = G−1
0 −Σ, (2.1)

where G and G0 are dressed and free propagators and Σ is a self-energy.
For bosons one has

G0 =
1

m2
0− s− ıε

and G =
1

m2
0− s−Σ(s)

∼ 1
m2− s− ıΓm

,

and if Σ has imaginary part, the dressed propagator G should be compared with relativistic Breit–Wigner
formula for renormalization.

For fermions all are similar:

G0 =
1

p̂−m0
and G =

1
p̂−m0−Σ(p)

,

but to make this procedure more transparent, it is convenient to pass to off-shell projection opera-
tors.

Let’s define off-shell projection operators as follows:

Λ
± =

1
2

(
1± p̂

W

)
, (2.2)
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where W =
√

p2 is invariant mass or rest-frame energy.
In this basis dressing of fermion propagator looks like

G0 =
1

p̂−m0
= Λ

+ 1
W −m0

+Λ
− 1
−W −m0

, and

G = Λ
+ 1

W −m0−Σ1(W )
+Λ

− 1
−W −m0−Σ2(W )

, (2.3)

where the self-energy is also decomposed in this basis

Σ(p) = A(p2)+ p̂B(p2) = Λ
+(A+WB)+Λ

−(A−WB)≡ Λ
+

Σ1(W )+Λ
−

Σ2(W ).

The positive energy pole should be compared with Breit–Wigner formula

1
W −m0−Σ1(W )

∼ 1
W −m+ ıΓ/2

. (2.4)

The above formulas correspond to the parity conservation, because the self-energy does not
involve γ5.

3. Dressed fermion propagator with parity violation

In case of parity violation the projection basis (2.2) must be supplemented by elements with
γ5, it is handy to choose the basis as [9]

P1 = Λ
+, P2 = Λ

−, P3 = Λ
+

γ
5, P4 = Λ

+
γ

5. (3.1)

Now the decomposition of a self-energy or a propagator has four terms

S =
4

∑
M=1

SMPM, (3.2)

where coefficients SM are followed by obvious symmetry properties

S2(W ) = S1(−W ), S4(W ) = S3(−W ).

With the use of decomposition (3.2), the Dyson–Schwinger equation (2.1) is reduced to the set
of equations for scalar coefficients

SM = (S0)M−ΣM, M = 1, . . . ,4, (3.3)

where (S0)M and SM are coefficients of free and dressed inverse propagators correspondingly. Con-
sidering the self-energy Σ as a known value, we obtain the dressed propagator

G =
4

∑
M=1

GMPM, (3.4)

where the coefficients GM are

G1 =
S2

∆
, G2 =

S1

∆
, G3 =−

S3

∆
, G4 =−

S4

∆
, (3.5)

and ∆ = S1S2−S3S4.
In spite of simple answer (3.4), it is inconvenient because the positive and negative energy

poles are not separated, compare with formula (2.3). So, in case of the parity non-conservation the
comparison with Breit–Wigner formula is not so evident.
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4. Spectral Representation of propagator

In order to obtain the analog of representation (2.3) in case of parity violation, we use the
spectral representation of inverse propagator

S = λ1Π1 +λ2Π2, (4.1)

where Πk are projectors, satisfying the eigenstate problem

SΠk = λkΠk. (4.2)

Let’s write the dressed propagator S(p) as

S =
4

∑
M=1

SMPM,

with arbitrary coefficients and will look for the matrix Π in the same form with coefficients aM.
After some algebra one finds that eigenvalues λi are roots of the equation

λ
2−λ (S1 +S2)+(S1S2−S3S4) = 0, (4.3)

and solution of (4.2) is

Πi = P1ai
1 +P2ai

2−
S3

S1−λi
ai

2P3−
S4

S2−λi
ai

1P4 (4.4)

with arbitrary coefficients a1, a2.
In order (4.4) to be a projector, Π2 = Π, we need only one additional condition

a2 = 1−a1.

After it the orthogonality property Π1Π2 = Π2Π1 = 0 defines a1 coefficient

a1
1 =

S2−λ1

λ2−λ1
, a2

1 =−
S2−λ2

λ2−λ1
.

As result we have the projectors

Π1 =
1

λ2−λ1

(
(S2−λ1)P1 +(S1−λ1)P2−S3P3−S4P4

)
,

Π2 =
1

λ1−λ2

(
(S2−λ2)P1 +(S1−λ2)P2−S3P3−S4P4

)
,

(4.5)

with desired properties:

• SΠk = λkΠk, where an eigenvalue λk is a root of equation (4.3),

• Π2
k = Πk,

• Π1Π2 = Π2Π1 = 0,

• Π1 +Π2 = 1.

4
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The dressed propagator G(p) is obtained by reversing of equation (4.1)

G =
1
λ1

Π1 +
1
λ2

Π2. (4.6)

The determinant ∆(W ) of S is

∆(W ) = S1S2−S3S4 = (W −m0−Σ1)(−W −m0−Σ2)−Σ3Σ4,

where Σi(W ) are self-energy components in the basis (3.1). Free propagator has poles at points
W = m0 and W =−m0, the dressed one has them at W = m and W =−m. On the other hand, ∆(W )

is equal to product of eigenvalues

∆(W ) = λ1(W )λ2(W ), (4.7)

so in the spectral representation of propagator (4.6) the positive and negative energy poles con-
tributions are separated from each other. Therefore, the matrices (4.5) are projectors onto these
poles.

5. t-quark propagator in Standard Model

Consider the dressing of top quark in SM. The main one-loop contribution to self-energy arises
from Wb intermediate state

Σ(p) =−ıg2|Vtb|2
∫ d4k

(2π)4 γ
µ(1− γ

5)
p̂− k̂+mb

(p− k)2−m2
b

γ
ν(1− γ

5)
gµν − kµkν/m2

W

k2−m2
W

, (5.1)

and generates only kinetic term

Σ(p) = p̂(1− γ
5)Σ0(W 2). (5.2)

Its decomposition in the basis (3.1) has the following coefficients:

Σ1 =WΣ0(W 2), Σ2 =−WΣ0, Σ3 =−WΣ0, Σ4 =WΣ0.

As a preliminary, let us forget about renormalization of self-energy and calculate the eigenval-
ues

λ1,2 =−m±W
√

1−2Σ0(W 2).

In analogy with on-mass-shell (OMS) renormalization scheme let’s subtract the real part of self-
energy at resonance point

λ1,2 =−m±W
√

1−2
(
Σ0(W 2)−ReΣ0(m2)

)
.

As a result we have rather unusual resonance factor

1
λ1(W )

=
1

W

√
1+ ı

Γ

m
−m

, (5.3)

5



P
o
S
(
B
a
l
d
i
n
 
I
S
H
E
P
P
 
X
X
I
)
0
9
7

Top quark as resonance: renormalization and spin effect V.P. Lomov

which only at Γ/m� 1 returns to standard Breit–Wigner form,

1
λ1(W )

' 1

W −m+ ıW
Γ

2m

at Γ/m� 1.

To analyse the obtained dressed propagator in more detail, we need to renormalize it. We will
use the OMS scheme of renormalization in order to compare with Breit–Wigner formula. Let’s
suppose that self-energy does not have imaginary part. Then the analogy of this case with the
mixing problem allows us to formulate the OMS requirements (see [16, 17]) on the self-energy

• Σ1 has zero of second order at W = m

• Σ3 has zeroes at W = m and W =−m.

The Σ2 and Σ4 are defined by substitution W →−W , so the OMS renormalization in this case is

Σ
r
1(W ) = Σ1(W )−Σ1(m)−Σ

′
1(m)(W −m),

Σ
r
2(W ) = Σ

r
1(−W ),

Σ
r
3(W ) =−W

(
Σ0(W 2)−Σ0(m2)

)
,

Σ
r
4(W ) = Σ

r
3(−W ).

Eigenvalues in OMS scheme are

λ1,2(W ) =−mK±WK
√

d, where d = 1−2Σ̃/K (5.4)

and K = 1+2m2Σ′0(m
2), Σ̃ = Σ0(W 2)−Σ0(m2).

Let us write down the eigenvalues in vicinity of W = m

λ1(W ) =W −m+o(W −m),

λ2(W ) =−2mK− (W −m)+o(W −m),

and in vicinity of W =−m

λ1(W ) =−2mK− (−W −m)+o(−W −m),

λ2(W ) =−W −m+o(−W −m).

Projectors on eigenstates have the form

Π1 = P1

√
d +(1− Σ̃/K)

2
√

d
+P2

√
d− (1− Σ̃/K)

2
√

d
−P3

Σ̃/K
2
√

d
+P4

Σ̃/K
2
√

d
,

Π2 = P1

√
d− (1− Σ̃/K)

2
√

d
+P2

√
d +(1− Σ̃/K)

2
√

d
+P3

Σ̃/K
2
√

d
−P4

Σ̃/K
2
√

d
,

(5.5)

and dressed propagator is

G(p) =
m0 + p̂− p̂(1+ γ5)Σ̃/K

K(W 2d−m2
0)

.

6
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The expressions for eigenvalues and projectors may be simplified in vicinity of W 2 = m2,
where Σ̃(W )� 1 and we take into account only linear in Σ̃ terms

λ1,2(W ) = K(−m±W )∓W Σ̃(W 2),

Π1 = P1−P3
Σ̃

2K
+P4

Σ̃

2K
= Λ

+− Σ̃(W 2)

2K
p̂γ5

W
,

Π2 = P2 +P3
Σ̃

2K
−P4

Σ̃

2K
= Λ

−+
Σ̃(W 2)

2K
p̂γ5

W
.

Let’s consider the case when the self-energy Σ(W ) acquire the imaginary part. In this situation
we use a generalization [18, 19] of OMS scheme for unstable particles, which consists in subtrac-
tion of real part of a loop. The formulas for eigenvalues and projectors, (5.4) and (5.5), remain the
same, but in this case

Σ̃(W 2) = Σ0(W 2)−ReΣ0(m2), and K = 1+2m2(ReΣ0)
′(m2).

Resonance factor 1/λ1 in vicinity of W = m practically coincides with naive expression (5.3)

1
λ1(W )

=
1

K
(

W
√

1−2Σ̃/K−m
) ≈ 1

K
(

W
√

1+ ı Γ(W )
KW −m

) , (5.6)

if to introduce the energy-dependent width Γ(W ) =−2W ImΣ0(W 2).
At small Γ resonance factor returns to standard form

1
λ1(W )

' 1
W −m+ ıΓ(W )/2

at W ' m, Γ/m� 1.

Using the same approximations in projectors, we can write down a parametrization of dressed
propagator in vicinity of W = m:

G =
1

W −m+ ıΓ(W )/2

(
P1 + ı

Γ(W )

4KW 2 p̂γ
5
)
+

+
1

−2mK− (W −m)− ıΓ(W )/2

(
P2− ı

Γ(W )

4KW 2 p̂γ
5
)
. (5.7)

6. Pole Scheme and Spectral Representation

The pole renormalization scheme for fermion with parity non-conservation have been consid-
ered in detail in work [10]. We will consider the pole scheme on the base of spectral representation.
Instead of renormalization of determinant, as in [10], in this case it is sufficient to renormalize the
single pole contribution 1/λ1(W ). It simplifies essentially the algebraic procedure and clarifies
some aspects.

The inverse propagator has the form

S(p) = p̂−m0−Σ(p) = p̂−m0−
(
A(p2)+ p̂B(p2)+C(p2)γ5 + p̂γ

5D(p2)
)
. (6.1)

In CP-symmetric theory C(p2) = 0.

7
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In terms of scalar functions the eigenvalues and corresponding projectors (4.5) have the form

λ1(W ) =−m0−A(W 2)+WR(W 2),

λ2(W ) = λ1(−W ),

Π1(W ) =
1
2

[
1− γ

5 C(W 2)

WR(W 2)
+

p̂
W

(1−B(W 2)

R(W 2)
− γ

5 D(W 2)

R(W 2)

)]
,

Π2 = Π1(−W ),

(6.2)

where we have introduced the notation

R(W 2) =

√(
1−B(W 2)

)2−D2(W 2)+C2(W 2)/W 2.

Let’s λ1(W1) = 0, where W1 = Mp− ıΓp/2:

−m0−A(W 2
1 )+W1R(W 2

1 ) = 0.

Real part of this equality allows to get rid of m0 in dressed propagator

S(p) = p̂−
(

Ã(p2)+ p̂B(p2)+ γ
5C(p2)+ p̂γ

5D(p2)
)
,

Ã(p2) = A(p2)−A(W 2
1 )+

(
W1R(W 2

1 )
)
.

The imaginary part of (6),

Im
(
−A(W 2

1 )+W1R(W 2
1 )
)
= 0

gives relation between Γp and self-energy at pole point. In particular, in case of parity conservation
it reduces to the obvious relation

Im
(

W1−
(
A(W 2

1 )+W1B(W 2
1 )
))

= 0, or
Γp

2
=− ImΣ1(W 2

1 ).

Let’s introduce wave function renormalization constants connecting bare and renormalized
fields

Ψ = Z1/2
Ψ

r, Ψ̄ = Ψ̄
rZ̄1/2.

In case of parity violation Z1/2, Z̄1/2 are matrices

Z1/2 = α +βγ
5, Z̄1/2 = ᾱ + β̄ γ

5.

Renormalized inverse propagator

Sr(p) = (ᾱ + β̄ γ
5)
[

p̂−
(
Ã+ p̂B+ γ

5C+ p̂γ
5D
)]
(α +βγ

5) =

= I
[
− Ã(αᾱ + β̄β )−C(ᾱβ + β̄α)

]
++p̂

[
(1−B)(αᾱ−ββ̄ )−D(ᾱβ − β̄α)

]
+

+ γ
5[−C(ᾱα + β̄β )− Ã(ᾱβ + β̄α)

]
+ p̂γ

5[−D(ᾱα− β̄β )+(1−B)(ᾱβ − β̄α)
] (6.3)

allows to obtain the renormalized components of self-energy.
In our representation (4.6) it is sufficient to renormalize only one pole contribution, the second

pole will obtain the correct properties automatically by substitution W →−W . Looking at first term

8
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in spectral representation, we see that renormalization is divided into two parts: renormalization of
eigenvalue and projector.

For stable fermion there is a physical requirement for projector. As it follows from (6.2) the
projector at point W = m has form

Π
r
1(m) =

1
2

[
1− γ

5c+
p̂
m

(
b− γ

5d
)]
,

where parameters b, d and c are related by b2−d2 + c2 = 1. However, if c 6= 0, d 6= 0 then Πr
1(m)

do not commutate with spin projector, what leads to spin flip for fermion on mass shell. Therefore
there are requirements for renormalization of a stable fermion:

Cr(m2) = 0, Dr(m2) = 0. (6.4)

For unstable fermion, when pole is at point W1 = Mp− ıΓp/2, there is some arbitrariness. The
simplest generalization of (6.4) consists in:

Cr(W 2
1 ) = 0, Dr(W 2

1 ) = 0. (6.5)

The same relations arise from a principle, suggested in [10]: the chiral components should have
poles with unit absolute value of residue.

A few words about the relation between renormalization constants Z1/2, Z̄1/2. The pseudo-
hermiticity condition

Z̄1/2 = γ
0(Z1/2)†

γ
0, (6.6)

is traditionally used in literature, which is reduced to ᾱ = α∗, β̄ =−β ∗. However, as it was noted
in [20], one should refused from this condition, if self-energy has absorptive parts. The same is
seen from our renormalized propagator (6.3). Assuming pseudo-hermiticity we calculate Dr(W 2)

thus:

Dr(W 2) = |α|2
{

D(W 2)
(

1+
|β |2

|α|2
)
−
(
1−B(W 2)

)(β

α
+

β ∗

α∗

)}
. (6.7)

Because D(W 2) and B(W 2) contain physically different contributions we cannot provide the con-
dition Dr(W 2

1 ) = 0 for complex self-energy. So, the pseudo-hermiticity condition, tacitly assumed
in [10], seems to be too restrictive for parity violating theory.

Let’s consider below the case of CP conservative theory when component C(p2) = 0. In order
to avoid CP violation under renormalization it is necessary to require (see (6.3))

ᾱβ + β̄α = 0. (6.8)

The pseudo-hermiticity condition (6.6) leads to (6.8) in case of real α , β (stable fermion).
However, for resonance one have to refuse from pseudo-hermiticity, (6.6).

Taking into account the condition (6.8) the renormalized inverse propagator becomes

Sr = αᾱ

{
− Ã(W 2)(1− x2)+ p̂

[
(1−B(W 2))(1+ x2)−D(W 2)2x

]
+

+ p̂γ
5
[
−D(W 2)(1+ x2)+(1−B(W 2))2x

]}
, (6.9)

9
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where α , ᾱ and x = β/α are complex numbers.
The condition at pole Dr(W 2

1 ) = 0 defines

x≡ β

α
=

1−B1−R1

D1
,

where B1 = B(W 2
1 ), D1 = D(W 2

1 ), R1 = R(W 2
1 ). Substituting that into Sr, taking out common factor

and denoting it by Z we get

Sr = Z
{
− Ã(W 2)++p̂

[(
1−B(W 2)

)1−B1

R1
−D(W 2)

D1

R1

]
+

+ p̂γ
5
[
−D(W 2)

1−B1

R1
+
(
1−B(W 2)

)D1

R1

]}
= p̂−Σ

r, (6.10)

where renormalized components are given by

Ãr(W 2) = ZÃ(W 2),

Br(W 2) = 1−Z
[(

1−B(W 2)
)1−B1

R1
−D(W 2)

D1

R1

]
,

Dr(W 2) = Z
[
D(W 2)

1−B1

R1
−
(
1−B(W 2)

)D1

R1

]
.

To determine Z factor we consider renormalized eigenvalue λ r
1(W ), its derivative at W = W1

has to equal 1. It is easy to check that

λ
r
1(W ) = Zλ1(W ).

If to require (λ r
1)
′(W1) = 1 it gives

Z =
1

R(W 2
1 )+2W 2

1 R′(W 2
1 )−2W1A′(W 2

1 )
. (6.11)

In case of unstable fermions, the right hand side of (6.11) is, generally speaking, complex. If
we define

λ
r
1,2(W ) = |Z|λ1,2(W ), (6.12)

we have the renormalized propagator with λi(W ) satisfying the Schwartz principle,

λ
r
i (W

∗) =
(
λ

r
i (W )

)∗
. (6.13)

So, λ r
i has zeroes at complex conjugate points W1, W ∗1 with unit absolute value of residues.

7. Conclusions

We studied in detail the dressing of fermion propagator in the case of the parity non-conservation.
In contrast to previous works, we found the representation of propagator (4.5), (5.7), where the
positive and negative energy poles are separated from each other. We compared our resonance
representation with Breit–Wigner form and used the on-shell definitions of mass and width. The
spectral representation also allows to perform pole renormalization in a simple and compact way.

10
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We found that in case of parity violation the resonance factor (5.6) differs from Breit–Wigner-
like formula. The reason is that in presence of γ5 the Dyson summation of the self-energy insertions
in a propagator takes another form. But in case of SM vertex the self-energy contains only the
kinetic term and the obtained resonance factor 1/λ1(W ) returns to the standard form for small
width Γ/m� 1.

For top quark Γ/m ∼ 10−2 is really a small parameter, so for SM its resonance propagator
will practically coincide with standard one. Recall that at LHC the measurement of Γt is a rather
challenging problem, and it is difficult to observe the deviation from a standard picture in the form
of a resonance curve.

Another possibility to see such a deviation is related with projectors (4.5). One sees that Πk do
not commutate with spin projectors (1± γ5ŝ)/2 and this fact can lead to non-trivial spin properties
at the level of Γ/m.

We suppose that spectral representation (4.6) may be useful for neutrino propagation and mix-
ing, if to consider it in QFT approach. If, following [21, 22], we are to consider neutrino propaga-
tion as macroscopic Feynman diagram, then at long distances only the positive energy contribution
survives, and representation (4.6) allows one to identify covariantly this term.
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