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1. Introduction

During several decades hadronic reactions with helium and tritium weéeasxely investi-
gated at the energies of a few hundred MeV. A number of experimenéspeeiormed at TRIUMF,
IUCF, RCNP, Saclay. The aim of these experiments was to study the heliumahg&ucture. The
simple relations between the helium wave function and differential cros®semnd polarization
observables in the frame of the plane-wave-impulse-approximation (P#&)an opportunity to
extract useful information about the ground state spin structure of helium.

Several years ago the experiment to studyckthe- 3Hen, dd — 3H p reactions was carried out
at RIKEN [1,[2]. The vector and tensor analyzing powers were ohidme wide angular range at
three deuteron kinetic energies: 140, 200, and 270 MeV. Previoudtiffaeential cross sections of
the reactiongH (d,n)3He and?H (d, p)®H were measured for incident deuteron momenta between
1.1 GeV/c and 2.5 GeV/][3].

The dd —2 Hen reaction was considered in the one-nucleon-exchange (ONE) fratkémwo
refs. [4,[]. High sensitivity of some of the polarization observables tcsfhie structure of the
3Hewas shown. However, the data obtained at RIKEN are in disagreemen®Wihpredictions.
Only a small angular range, arounf-015° and 168 — 18, is reasonably described by ONE
mechanism. This result stimulated further theoretical investigations of thisaeac

In the present paper thiel — 3Hen reaction is studied at the deuteron energies between 200
MeV and 520 MeV. We start our investigation from the Alt-Grassbergard8as (AGS) equations
for the four-body casg]6] and then iterate them up to the first order tevershe nucleon-nucleon
t-matrix. In such a way we include not only ONE mechanism into consideratibalbo the next
term. It corresponds to the case when nucleons from different degténteract with each other
and then form a three-nucleon bounded state and a free nucleonarémagierization based on the
modern phase-shift analysis data is applied to describe NN interactionpartial wave decom-
position is not used in this approach. It allows us to avoid the problem reldtedconvergence
which is important at the considered energies.

2. General formalism

Here we consider the reaction where four initial nucleons are boundedlri® forming two
deuterons, and three final nucleons are bounded to the helium or tritdion@mucleon is free. In
other words, we have the reaction of {f& + (2) — (3) + (1) type.

We write the transition operatd#(z) for our reaction as it was offered by Grassberger and
Sandhas[]6]:

Upa(2) = (1-08pa)(z—Ha) + > Ti(2Go(2Vika(2)+ H Vaa,ik (2.1)
ikZB ikZp

wherea andf denote two-cluster partitions of the four-particles. Here these labelgf@mead to
the initial and final states, respectively:
Da = (ij)(K); Va=Viju) =Vij+Vi; Pijyu) = K. ka > [t > (e > (2.2)
2)B=(ijk); Vg =Vijy =Vij+Vik+Vik Piji = [Kijk. ki > [Whjk >
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In accordance with the AGS-formalism the channel Hamiltonian is definedsaseaof the free
particles Hamiltoniaidy and the interaction potential:

HU(B) =Hop —‘rVa(B). (23)

The eigenfunctions of the channel Hamiltoni@, > characterize possible initial and final
configurations. These functions are products of plane waves andahtesve functionsyy, >.

The operatofiij(z) in Eq.(2.]) is a two-body transition operator which satisfies the Lippmann-
Schwinger equation:

Tij(2) = Vij +VijGo(2)Tij » (2.4)

whereGy is the resolvent of the four-nucleon kinetic energy oper@igiz) = (z— Ho) L.

The operatobix 4 in Eq.{2.1) corresponds to the case when the initial stagedetermined as
in Eq.(2.R) and the final state is a combination of two bounded nuclglonand two free nucleons.
This transition operator can be also defined from[Ed.(2.1) if we put thedtatdfd = (ik). The
notationik ¢ B means that paifik) is not either equal to one cluster Bfor contained in it.

We deal with four identical nucleons and two identical deuterons in the inititg slt means
that symmetrized wave functions both for the initial and final states, shoudditidf]]. Using the
properties of the symmetrized functions and permutation operators we delitinéng expression
for the reaction amplitude:

< MPHeU|dd >— ;g [ <4 p(1235U|W(12)sp(34)s > —

<L y(2344U[Y(12)sp(34)s >]. (2.5)

Here the wave functions of deuterog$i j)s are antisymmetrized:
S
V2

Three-nucleon statgjk)s is also presented by the antisymmetrized wave function

@(i]) >s= —=[[@(i)) > —|@(ji) >]. (2.6)

i[ |W(123) > —|(213) > +|Y(231) > —|Y(321) > +

|W(123) >s= \/é
|W(312) > —|P(132) >]. (2.7)

The same way it is necessary to find two matrix elements of the transition opdrattle start to
consider the first of them. This term corresponds to the cage-ofijk) = (123), a = (12)(34).

From Eq.[2]1) we get

U(123,12/34(2) = (Z—Ho) — V12— Vaa+ T14(2)Go(2)U 14) (1234 (2) +
T24(2)Go(2)U 24 (12)(34) (2) + T34(2) Go(2)U(34),(12) (34)- (2.8)

The relation [[2]8) contains transition operators for another reaction typéhe final state two
particles are bounded and the other two are free, while the initial state isnteasmbefore. In
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order to derive expressions for these operators, it is convenieentite Eq.[2.]1) in the following
form:

Upa(2) = (1-0pa)(z—Hp) + > Upm(DCGo(2)Tm(2)+ 5 Vsdpm. (2.9)
mn o mnZa
Iterating equationd (3.8) only up to the first order term over T-matrix anidgakto account
Egs.[2.D), we get the following sequence for theys) (12)(34-0perator:

U(123,12)(34 ~ (2— H12) +T14(2) + T24(2). (2.10)

Likewise we derive the expression for the other transition operator i By (
U (234),(12)(34) ~ (Z—Haz4) + T13(2) + T14(2). (2.11)

Since the initial and final states are antisymmetrized, the contributions ©f£aadT; 4 matrix
elements are equal to each other. In order to show it, we use the promériies permutation
operator:PioPio = 1, PioTo4Pi2 = Tia.

< 4, (IJ(123)S‘T24| 4/(12)5Lp(34)s >= 4, lll(123)s|P12P12T24P12P12| L,U(].Z)SL,U(34)S >=
= < 4,(213)s| T12|W(21)s(34)s >=< 4, P(123)s| T12| Y (12)s(34)s > (2.12)

It also concernd;z andTy4 matrix elements in the exchange contribution:

< 1L, (234)s| Taa|P(12)sp(34)s > = < 1, (234)s| Tra|P(12)sP(34)s > . (2.13)

In such a way Eq[(2]5) can be reduced to the following:

<n’HelU|dd >= \%[< 4,(123)5|z— Hi2|W(12)sp(34)s > — (2.14)

< 1,Y(234s|z— Haa|P(12)s(34)s > +2 < 4, P(123)| TS| (125 (34)s >],

where antisymmetrized NN T-matrix is defined &y " = (1— Pi4) Tia.

Two first terms in Eq[(2.34) correspond to the one-nucleon-exchadN&) mechanism of
the reaction. We call the first of them as "direct" and the second onexelsdiege”. Here one of
the deuterons breaks in a neutron and proton. One of the nucleonaéefi@e, while the other
interacts with the remained deuteron forming helium or tritium. Schematically it candsented
by diagrams in Figs.1la and 1b. The latter term corresponds to single sea(t®8h when two
nucleons from different deuterons interact in the final state (Fig, 1c¢).

Taking the quantum numbers and momenta of all particles into account, weedetltiwing
expression for

ONE terms:
1 — ~ — —
<n’HelU|dd >one = %K BrMaTn, W23(FMa ) | (2E4 — Hao) [WH(Pr, My), W34 (Fo, M) > —
< BrMaTh, W24 BMnTh) | (2Eq — Haa) |WE2(Py, My), W34(Bo, M) >]. (2.15)
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Figure 1: The diagrams taken into consideration: one-nucleon-exghda),(b), and single scattering (c)
graphs.

and Single Scattering term:

l = =3 —
<nPHeU|dd > = 7 < PaMnTn, P23(FMTH) | TOU(E) |[WH2(PL, M), W34(By, M) >
(2.16)

Here we introduce notatiow”k(ﬁ],Mh,rh) for the *He wave function, wheréHe is formed by
i, j,k nucleons and has momentufy spin projectiorMy, and isospin projectiom,. Note in case
T = —1/2 we deal with the reaction afd — tp. TheW(P,M) denotes the wave function of the
deuteron with momentur® and spin projectio. In our calculation we use the parameterized
wave functions both for a three-nucleon system|ref.[8] and for theede [9,[ZD].

The nucleon-nucleon scattering is described by the T-matrix. We use tthe@i@rization of
this matrix offered by Love and Franely J11]. A new fit of the model partanse{1?] was done in
accordance with the phase-shift-analysis data SP§7 [13].

3. Resultsand discussions.

The formalism presented above was applied to describe the experimetataitdained for
dd — 3Hen anddd — tp reactions at the deuteron kinetic energies of a few hundred MeV. The
calculations have been performed with CD-Bonn deutdfon [9] and heffiimgve functions.

In Figs.2-4 the results of the calculations of the differential cross seciimngresented in
comparison with the data. We consider three energies, 300 MeV, 457 k&B20 MeV, which
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Figure 2. The differential cross section at Figure 3: The differential cross section at
the deuteron momentum of 1.109 GeV/c as the deuteron momentum of 1.387 GeV/c as
a function oft. The data are taken frorf] [3]. a function oft. The data are taken frorf] [3].
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Figure 4: The differential cross section at
the deuteron momentum of 1.493 GeV/c as
a function oft. The data are taken frorﬂ [3].

Figure5: The energy dependence of tensor
analyzing poweiT,g at the zero scattering
angle. The data are taken froff [1].

correspond to the laboratory momeftg = 1.109, 1.387, and 1493 GeV/c, respectively. In order
to demonstrate the contribution of the single scattering term, we have comsidereases. One of
them corresponds to the calculations including only ONE terms. The resulies# calculations
are given with the dashed curves. The other case corresponds sddahkations taking into account
both ONE and single scattering contributions. These results are presétitale solid curves.

The contribution of the rescattering term is not large at small scatteringsatigle0.7 —
0.8(GeV/c)?). It is in agreement with the results obtained in f@f.[2]. However, the rdiffee
between these two curves increases with the scattering angle increadirgpahes the maximal
value at 98. Taking the single scattering diagram into consideration significantly impriees
agreement between the experimental data and theoretical predictiongvé/a good description
of the data forR4, = 1.109 GeV /c (Fig.2). Nevertheless, the underestimation of the differential
cross sections is observed at the deuteron energies above 300 Me\3(#).

The formalism presented here gives us an opportunity to calculate notrenlyifferential
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Figure 6: The angular dependence of vec- Figure 7: The angular dependence of ten-
tor analyzing powepy at the deuteron en- sor analyzing powefyy at the deuteron en-
ergy of 200 MeV. The data are taken from ergy of 200 MeV. The data are taken from
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Figure 8: The angular dependence of ten- Figure 9: The angular dependence of ten-
sor analyzing powey at the deuteron en- sor analyzing poweA; at the deuteron en-
ergy of 200 MeV. The data are taken from ergy of 200 MeV. The data are taken from

cross sections but also polarization observables. In Fig.5 the engrggpdience of tensor analyzing
powerTyg is presented at the scattering angle equal to zero. The experimentalataetahtained
at RIKEN [d]. As it is mentioned above, the contribution of the single scatiggrm is not large
at small angles. Nevertheless, one can observe some improvement gfékenant between the
data and theory predictions. Unfortunately, we do not have enougirimxgntal data to confirm
this tendency.

The angular dependence of vector analyzing powgrhas been considered at the deuteron
energy equal to 200 MeV (Fig.6). As well known, the vector analyzinggrds equal to zero in
the ONE framework. However, the experimental data demonstrate sighifieaiation of theA,
from zero value. Taking the single-scattering diagram into consideratoodesive the non zero
value of the vector analyzing power. Unfortunately, the description oéxiperimental data is not
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good even with SS contribution.

Tensor analyzing powergyy, Ay, andAy; at the same deuteron energy are given in Figs.7-
9. Here we have reasonable description of the data when the singleingaiteincluded into
consideration, especially, at the scattering angle abofe e difference between the results
obtained with SS term and without it is significant. Inclusion of the single-saagteliagram
improves the agreement between data and theory. The solid curvetbddlerexperimental data
quit good in the angular range betweer? @md 158. However, it is necessary to note that the
peaks at the scattering angle about-240° are not described by adding SS term. Moreover, the
curves with SS term and without it are practically undistinguished\fgin this angular range. It
notes us, that additional reaction mechanisms must be included into cotisigera

4. Conclusion.

Thedd — 3Henreaction has been considered at the deuteron energies between ZGh¥e
520 MeV. The theoretical model for description of this process has ieggested. This model is
based on the multiple scattering expansion formalism taking relativistic kinematiceekativis-
tic spin theory into account.The one-nucleon-exchange and singlerstatiaction mechanisms
have been included into consideration. It was shown that the inclusioe sfrijle scattering term
gives significant contribution into the reaction amplitude.A reasonable mgraeetween the the-
oretical predictions and experimental data was obtained for the diffdrentiss section at the
deuteron energy of 300 MeV. Also the qualitative description of the diffeal cross sections were
obtained at the deuteron energies about of 500 MeV and 520 MeV.shmaale description of the
tensor analyzing power,y, Ay, A Were obtained at the scattering angles above 6Mfortu-
nately, the observed peaks in the tensor analyzing powers at the scpdiegies between 2@nd
40P are not explained in the present model. This fact notes us, that additiotiore mechanisms
should be taken into account. Perhaps, this discrepancy can be dedube A-excitation in the
intermediate state is taken into account. This possibility is discussed {ij reftj8tevtheh-isobar
is taken into consideration in the simplest phenomenological model.
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