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The Standard Model (SM) has so far quite successfully described the strong and electroweak
interactions of fundamental particles. However, it does not explain phenomena such as gravity,
dark matter or dark energy. Furthermore, it does not achieve unification of all forces. To overcome
these and other shortcomings, numerous extensions have been proposed. The Standard Model
SU(3)⊗SU(2)L⊗U(1)Y gauge group can for example be extended by an extra U(1) group, giving
rise to a neutral heavy vector boson Z′, or an extra SU(2) group, giving rise to a charged heavy
vector boson W ′. Some models that have been developed with these assumptions are:

• Sequential Standard Model (SSM) [1]

The new bosons W ′ and Z′ have similar couplings as the W and Z in the SM. This model has
been used as a reference model in many collider physics analyses.

• Left-right symmetric models (LR) [2]

These models contain an extra SU(2)R gauge group.

• E6 models [3]

These models are inspired by Superstrings. They contain the group E6, which is broken down
as E6→ SO(10)⊗U(1)ψ → SU(5)⊗U(1)χ ⊗U(1)ψ , with SU(5) broken to the SM gauge
group.

There are also more complicated scenarios, predicting a tower of new gauge bosons (W n, Zn,
or gravitons Gn), such as extra dimensions [4, 5], composite Higgs or technicolor models.

CMS [6] has searched for new heavy gauge bosons in several decay channels.

1. Z′ decaying to dileptons

Many Z′ models predict narrow resonances decaying to dileptons. A shape analysis of the
dielectron and dimuon mass spectra has been performed, in order to be robust against uncertainties
in the absolute background level coming from Drell-Yan Z/γ∗ production, either directly or through
ττ̄ , tt̄, or from multijets with at least one jet misreconstructed as a lepton. From the 2012

√
s =

8 TeV proton-proton data sample dileptons have been selected using transverse momentum (pT )
cuts of 35 GeV and 45 GeV for electrons and muons, respectively. Isolation criteria have been
applied as well. Fig.1 shows the dimuon spectrum obtained with 4.1 fb−1 and the ratio Rσ of the
production cross section times branching fraction for a Z′ in the SSM and a Z′ψ to that for the Z
boson. The ratio plot includes also data taken at 7 TeV in 2011. Since no excess over the SM
background has been found, mass limits have been set for a new neutral gauge boson. Using 2011
and 2012 data, the SSM Z′ can be excluded below 2590 GeV, and the Z′ψ below 2260 GeV, at 95%
confidence level [7].

The Z′ decay channel into τ’s has also been studied [8]. Usually generation-independent
couplings to fermions are assumed, but there are non-universal scenarios in which the Z′ couples
preferentially to third-generation fermions [9]. Four τ final states have been studied with the 7 TeV
data – τeτµ , τeτh, τµτh and τhτh, where τe and τµ are the electron and muon decay modes, and
τh is the hadronic decay mode into one, three or five charged mesons, which can be accompanied
by neutral pions. The presence of the τ-neutrino does not allow to reconstruct the mass of the
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Figure 1: (a) Invariant mass spectrum of dimuons, (b) Ratio of production cross section times branching
fraction for Z′ and Z.

ττ-system. The event selection required two isolated τ candidates with pT between 15 and 35 GeV
and within a pseudorapidity interval |η | < 2.1. In addition, any b-jets were vetoed. Backgrounds
coming from Z → ττ , W+jets, tt̄, vector boson pairs, and QCD have been estimated from data
where possible. In Fig. 2a the effective visible mass for the τhτh channel with background estima-
tions is plotted. Fig. 2b shows the Z′production cross section times the ττ branching fraction. In
the absence of a signal, Z′SSM and Z′ψ resonances were excluded for masses below 1.4 and 1.1 TeV
at 95% confidence level, respectively.
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Figure 2: (a) Effective visible mass for the τhτh decay channel, (b) Production cross section times branching
fraction for Z′SSM and Z′ψ .

2. W′ decaying to leptons and neutrinos

As for the Z′, a SSM W ′ has been studied, where in contrast to the SM W the decay W ′→ tb
is allowed. The event selection required an isolated lepton back-to-back with balanced missing
transverse energy (Emiss

T ). Backgrounds include events from W → `ν , QCD, tt̄ and single top,
Drell-Yan and vector boson pairs. They have been estimated from data. No interference between
W ′ and W has been assumed. Both for the electron and the muon channels no significant excess is
observed. The data have also been interpreted in the context of a Universal Extra Dimension (UED)
framework , which assumes one additional compact dimension R. In a split-UED model [10] the
parameter space is defined by the parameters 1/R and µ , where µ is the bulk mass parameter
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of the fermion field in five dimensions. Fig. 3a shows the excluded mass region in the [1/R,µ]
parameter space, derived from all available data. Fig.3b shows the observed and expected limits
for the production cross section times branching fraction for a W ′SSM and theoretical expectations
for a Kaluza-Klein W n=2

KK for values of µ = 10 TeV and µ = 0.05 TeV. This is the lowest state that
can couple to SM fermions. Combining the electron and muon channels, one obtains a lower W ′

mass limit of 2.9 TeV from the 5 fb−1 of 7 TeV data and the 3.7 fb−1 of the 8 TeV sample.
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Figure 3: (a) Excluded region in split-UED parameter space, (b) Production cross section times branching
fraction for W ′SSM and W n=2

KK , (c) Simulation of interference effects.

A left-handed W ′ can interfere with the W . With the 7 TeV data studies including interfer-
ence have also be performed [11]. The effects of interference can be seen in Fig. 3c, which shows
simulations with MadGraph and CompHep. The mass limits range from 2.63 TeV for construc-
tive interference to 2.43 TeV for destructive interference. Using the same data and selection, an
interpretation in terms of a right-handed W ′R yields a limit of 2.5 TeV.

3. W′ decaying to tb or td

In many models the third generation is coupled more strongly to the W than the other two
generations. The decays to leptons are suppressed if the right-handed neutrino is heavier than the
W ′. The decay chain W → tb→Wbb→ `νbb has been studied. The event selection was based
on isolated electrons (muons) with pT > 35(32) GeV, two jets with E jet1( jet2)

T > 100(40) GeV, and
at least one b-tagged jet. Backgrounds are tt̄ and single top, W+jets, Z/γ∗+jets, QCD and vector
boson pairs. A new boosted decision tree (BDT) analysis with about 50 variables, including object
and event kinematics, top reconstruction and angular correlations, has been used to facilitate the
discrimination of the signal from background for a W ′R boson. The mass sensitivity is increased by
about 200 GeV compared to a previously used invariant mass method, as shown in Fig. 4a. For
the first time it has also been possible to derive limits on coupling strengths. The most general
model-independent lowest-order Lagrangian for a W ′ coupling to SM fermions is given by:

L =
Vfi f j

2
√

2
gw f̄iγµ(aR

fi f j
(1+ γ5)+aL

fi f j
(1− γ5))W ′µ f j +h.c.

For the left- and right-handed couplings aL,R
fi f j

it was assumed that aL,R
ud = aL,R

cs = aL,R
tb = aL,R. The

corresponding aL− aR contours of the W ′ masses at which the observed 95% cross section upper
limit equals the predicted cross section are plotted in Fig. 4b.
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Figure 4: (a) Sensitivity comparison for the BDT and the invariant mass methods, (b) Contours.

A search for W ′ produced in association with a top quark has also been performed in the ttd
final state, requiring semileptonic t decays and an additional jet. One of the jets was required to
be coming from a b. The search was also motivated by Tevatron measurements of the tt̄ forward-
backward asymmetry, which show a possible deviation from the SM in the high-end tail of the
distribution and which could be explained by a W ′ in the 200 to 600 GeV mass range. At the LHC
the ratio of W ′− to W ′+ production is 85%/15%. This feature is used to aid in the reconstruction of
the W ′. The difference of yields for the t−+d and t++d mass distributions is shown in Fig. 5a. The
analysed 7 TeV data show no asymmetry, whereas a W ′ of 600 GeV mass would lead to sizeable
fluctuations. Combining electron and muon channels, limits were derived for the W ′ cross section
at 95% confidence level as shown in Fig. 5b. The W ′ is excluded for masses below 839 GeV [12].
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Figure 5: (a) Difference of yields for t−+ d and t+ + d mass distributions, (b) Production cross section
limits as a function of W ′ mass.

4. W ′ or GRS decaying to vector bosons

Searches for new heavy resonances decaying to ZW or ZZ have been performed, motivated
by testing theories that propose alternatives to the Higgs mechanism. The decay chains W ′ →
ZW → `` j j and GRS→ ZZ→ `` j j have been selected as benchmark models, where GRS denotes
a Randall-Sundrum graviton [13]. The lepton and jet pairs in the final state are boosted in case
of heavy objects. Therefore each leptonic leg interferes with the isolation definition of the other
leg and has to be excluded from the isolation calculation. Since the hadronically decaying vector
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boson also decays to quarks with small opening angle, they often overlap into a single jet, which
provides a useful handle to distinguish the signal from the background. The jet is required to be well
separated from the lepton pair. Backgrounds are estimated from data and originate mainly from
W+jets, tt̄, γV +jets, Z/γ∗+jets, ZZ, and VV +jets, where V denotes either a W or a Z. Fig. 6a shows
the invariant dimuon mass distribution calculated from 7 TeV data. In Fig. 6b the 95% confidence
level exclusion limits are plotted for the GRS scenario, together with results from other experiments
and other CMS results, for different values of the coupling k/MP. k is the 5-dimensional curvature
and MP the Planck mass divided by

√
8π .
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Figure 6: (a) Invariant dimuon mass, (b) Exclusion limits for GRS.
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