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1. Introduction

The precision of measurement of the top-quark mass at hadroncolliders suffers from statis-
tical limitations and a theoretically ill defined top-quarkmass. It has been suggested in Ref. [1]
that at a future linear collider the mass of the top quark can be measured with an accuracy of
about 100 MeV by studying the total cross section fortt̄ production near threshold. To match the
experimental uncertainty it is necessary to also have a reliable theory prediction for this quantity.
The total cross section has been studied at next-to-next-to-leading order in Ref. [2]. The theory
prediction is best done using an effective theory, non-relativistic QCD (NRQCD) [3, 4], which is
suitable for the treatment of threshold and bound-state phenomena. Many building blocks for the
complete third-order calculation have been calculated in recent years, ultra-soft effects have been
considered in Refs. [5, 6], the three-loop static potentialhas been computed in Refs. [7, 8, 9] and
in Ref. [10] a preliminary analysis of the top-quark threshold production cross section has been
presented including also third-order potential effects.

One of the last missing pieces is the matching coefficient of the NRQCD vector currentcv,
which connects the full theory, QCD, with the effective theory, NRQCD. The one- and two-loop
results have been calculated in Refs. [11, 12, 13, 14]. At three-loops the fermionic contributions
have been calculated in [15, 16]. In the following we will review the results for the fermionic
contributions and discuss the status of the calculation of the non-fermionic part.

2. Calculation

We start with the vector current in the full theory

jµ = Q̄γµQ, (2.1)

whereQ denotes a heavy quark with massmQ. To obtain the corresponding current in NRQCD this
has to be expanded in 1/m2

Q, which gives at leading order

j̃ k = φ†σ kχ , (2.2)

whereφ and χ denote two-component Pauli spinors. The matching of the twotheories is then
obtained by requiring

jk = cv(µ) j̃ k+O

(

1

m2
Q

)

, (2.3)

to all orders in perturbation theory, which defines the matching coefficientcv(µ).
The matching coefficient is calculated best by considering renormalized onshell vertex correc-

tions involving the currentsjµ and j̃ k

Z2Γv = cvZ̃2Z̃−1
v Γ̃v+O

(

1

m2
Q

)

. (2.4)

HereZ2 and Z̃2 denote the wave function renormalization constants of the quark in the full and
effective theory, respectively.Z2 has been calculated at three loops in Refs. [17, 18, 19], while
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(d)
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Figure 1: Sample diagrams contributing tocv. Solid lines denote massive quarks and curly ones gluons.

Z̃2 = 1. Z̃v is the renormalization constant of the currentj̃k and has been calculated in Ref. [20]. The
vector current in the full theory does not require renormalization. All necessary renormalization
constants are known and since both sides of Equation (2.4) receive the same soft, potential and
ultra-soft contributions the calculation of vertex corrections can be performed at threshold. Typical
diagrams appearing in the calculation are shown in Fig. 1.

The calculation is performed in a very automated way. The diagrams are calculated using
qgraf [21] and mapped onto 80 topologies usingq2e andexp [22, 23]. After applying suitable
projectors and taking traces withFORM [24] the resulting scalar integrals are reduced to a small set
of master integrals using the programCRUSHER [25], which implements Laporta’s algorithm for
solving integration-by-parts relations. After reductionthe final step is the calculation of about 100
master integrals. For the calculation of the master integrals we employed the programFIESTA [26,
27], which is an implementation of the sector decompositionmethod for the calculation of Feynman
integrals. UsingFIESTA we calculated all required master integrals numerically1. To give an
example for the accuracy that can be achieved using this approach we give the result for a typical
master integral. The integrals given in Fig. 2 in graphical form can be evaluated to

M1 =
e3εγE

m2
Q

(−22.72796(8)) M2 =
e3εγE

m2
Q

(2.7327(3)+23.854(3)ε) ,

whereγE = 0.5772. . . is the Euler-Mascheroni constant. To ensure that all integrals are evaluated
correctly and check the error estimate, we transformed the result by replacing all master integrals
by a different set of integrals using integration-by-partsrelations. The integrals in the new set
were then again calculated usingFIESTA. The results of both calculations agree within the error
estimate.

1Master integrals like Fig. 1(f) resulting from singlet diagrams can at the moment not be calculated usingFIESTA,
but there contribution is expected to be small.

3



P
o
S
(
I
C
H
E
P
2
0
1
2
)
2
2
3

NRQCD matching coefficient at next-to-next-to-next-to-leading order Peter Marquard

Figure 2: Non-trivial master integrals (leftM1, right M2) needed for the calculation ofcv at NNNLO. Solid
and dashed lines denote massive and massless lines, respectively.

3. Results

Before turning to the matching coefficient itself a non trivial check can be performed. The
renormalization constant̃Zv of the current in the effective theory has been calculated inthe effective
theory

Z̃v = 1+

(

α(nl )
s (µ)

π

)2
CF π2

ε

(

1
12

CF +
1
8
CA

)

+

(

α(nl )
s (µ)

π

)3

CFπ2

×

{

C2
F

[

5
144ε2 +

(

43
144

−

1
2

ln2+
5
48

Lµ

)

1
ε

]

+CFCA

[

1
864ε2 +

(

113
324

+
1
4

ln2+
5
32

Lµ

)

1
ε

]

+C2
A

[

−

1
16ε2 +

(

2
27

+
1
4

ln2+
1
24

Lµ

)

1
ε

]

+Tnl

[

CF

(

1
54ε2 −

25
324ε

)

+CA

(

1
36ε2 −

37
432ε

)]

+CFTnh
1

60ε

}

+O(α4
s ) , (3.1)

whereCA =Nc,CF = (N2
c −1)/(2Nc) andT = 1/2 for a SU(Nc) gauge group andLµ = ln(µ2/m2

Q),
but can also be extracted from our calculation in the full theory. Comparing both results the accu-
racy of the calculation can be estimated. We find that the central values of the numerical calculation
agree at the per-cent level with the analytical result forZ̃v. This provides a first non-trivial check
of the calculation.

We write the perturbative expansion of the matching coefficient in the form

cv = 1+
α(nl )

s (µ)
π

c(1)v +

(

α(nl )
s (µ)

π

)2

c(2)v +

(

α(nl )
s (µ)

π

)3

c(3)v +O(α4
s ) , (3.2)

and decomposec(3)v according to the color structures as

c(3)v = CF
[

C2
FcFFF +CFCAcFFA+C2

AcFAA+Tnl (CFcFFL +CAcFAL+TnhcFHL +Tnl cFLL)

+Tnh (CFcFFH +CAcFAH +TnhcFHH)
]

+singlet terms. (3.3)

At this point we will not present the result for the non-fermionic contribution, but only review the
fermionic ones. The result for the non-fermionic contribution will be presented in Ref. [28]. The
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fermionic corrections have been calculated Refs. [15] and [16] and read

cFFL = 46.7(1)+

(

−

17
12

+
61
36

π2
−

2
3

π2 ln2+
1
3

ζ (3)
)

Lµ +
1
18

π2L2
µ , (3.4)

cFAL = 39.6(1)+

(

181
54

−

67
432

π2+
5
9

π2 ln2+
13
6

ζ (3)
)

Lµ +

(

11
9

+
1
12

π2
)

L2
µ , (3.5)

cFHL =−

557
162

+
26
81

π2+

(

−

44
27

+
4
27

π2
)

Lµ , (3.6)

cFLL =−

163
162

−

4
27

π2
−

11
27

Lµ −
2
9

L2
µ , (3.7)

cFFH =−0.841(6)−
1
20

π2Lµ , (3.8)

cFAH =−0.10(4)+

(

121
27

−

11
27

π2
)

Lµ , (3.9)

cFHH =−

427
162

+
158
2835

π2+
16
9

ζ3 , (3.10)

whereLµ = log(µ2/m2
Q). Inserting the colour factors this evaluates numerically to

c(3)v ≈−0.823n2
l +121.66(1)nl −0.93(8)+non-fermionic and singlet terms. (3.11)

4. Conclusion

We presented a status report of the calculation of the non-fermionic corrections to the matching
coefficient at next-to-next-to-leading order. The method of the calculation has been discussed and
examples for the required master integrals have been presented. The validity of the method has been
checked by reevaluating the renormalization constantZ̃v. Furthermore, the result for the fermionic
contributions have been reviewed.
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