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1. Introduction

The precision of measurement of the top-quark mass at haditiders suffers from statis-
tical limitations and a theoretically ill defined top-quarass. It has been suggested in Ref. [1]
that at a future linear collider the mass of the top quark cammigasured with an accuracy of
about 100 MeV by studying the total cross sectiontfgoroduction near threshold. To match the
experimental uncertainty it is necessary to also have alielitheory prediction for this quantity.
The total cross section has been studied at next-to-ndeatling order in Ref. [2]. The theory
prediction is best done using an effective theory, nontikésic QCD (NRQCD) [3, 4], which is
suitable for the treatment of threshold and bound-stateghena. Many building blocks for the
complete third-order calculation have been calculatec@emt years, ultra-soft effects have been
considered in Refs. [5, 6], the three-loop static potetitéd been computed in Refs. [7, 8, 9] and
in Ref. [10] a preliminary analysis of the top-quark thrdshproduction cross section has been
presented including also third-order potential effects.

One of the last missing pieces is the matching coefficienhefNRQCD vector currert,,
which connects the full theory, QCD, with the effective thedNRQCD. The one- and two-loop
results have been calculated in Refs. [11, 12, 13, 14]. Atetthoops the fermionic contributions
have been calculated in [15, 16]. In the following we will i@wv the results for the fermionic
contributions and discuss the status of the calculatiohehbn-fermionic part.

2. Calculation

We start with the vector current in the full theory

" =QyQ, (2.1)

whereQ denotes a heavy quark with masg. To obtain the corresponding current in NRQCD this
has to be expanded ir)’li‘é, which gives at leading order

j“=o'd%x, (2.2)

where @ and x denote two-component Pauli spinors. The matching of thetheories is then

obtained by requiring
. ~ 1
*=amw)i+o <%> : (2.3)

to all orders in perturbation theory, which defines the matgleoefficientc,(u).
The matching coefficient is calculated best by considermgmalized onshell vertex correc-
tions involving the current§# and %

Zoly =22,y + 0 (%) . (2.4)

Here Z, and Z, denote the wave function renormalization constants of therlqin the full and
effective theory, respectivelyZ, has been calculated at three loops in Refs. [17, 18, 19].ewhil
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Figure1: Sample diagrams contributing ¢g. Solid lines denote massive quarks and curly ones gluons.

Z,=1. Z,is the renormalization constant of the curr¢fhiand has been calculated in Ref. [20]. The
vector current in the full theory does not require renoreaion. All necessary renormalization

constants are known and since both sides of Equation (2éjveethe same soft, potential and
ultra-soft contributions the calculation of vertex cotrers can be performed at threshold. Typical
diagrams appearing in the calculation are shown in Fig. 1.

The calculation is performed in a very automated way. Therdias are calculated using
ggr af [21] and mapped onto 80 topologies usimge andexp [22, 23]. After applying suitable
projectors and taking traces wifORM[24] the resulting scalar integrals are reduced to a smill se
of master integrals using the progra@dRUSHER [25], which implements Laporta’s algorithm for
solving integration-by-parts relations. After reductibe final step is the calculation of about 100
master integrals. For the calculation of the master integva employed the prografl ESTA[26,
27], which is an implementation of the sector decompositi@thod for the calculation of Feynman
integrals. UsingFl ESTA we calculated all required master integrals numeriéalljo give an
example for the accuracy that can be achieved using thisappmwe give the result for a typical
master integral. The integrals given in Fig. 2 in graphicaihf can be evaluated to

My = e:éE (—22727968)) My = e:éE

wherey = 0.5772... is the Euler-Mascheroni constant. To ensure that all ialsgare evaluated
correctly and check the error estimate, we transformedebeltrby replacing all master integrals
by a different set of integrals using integration-by-pastations. The integrals in the new set
were then again calculated usiRtyESTA. The results of both calculations agree within the error
estimate.

(2.7327(3) + 23.854(3)¢),

IMaster integrals like Fig. 1(f) resulting from singlet diagis can at the moment not be calculated usINESTA,
but there contribution is expected to be small.
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Figure 2: Non-trivial master integrals (left1;, right M,) needed for the calculation of at NNNLO. Solid
and dashed lines denote massive and massless lines, reslpect

3. Reaults

Before turning to the matching coefficient itself a non @vtheck can be performed. The
renormalization consta, of the current in the effective theory has been calculatebdreffective
theory

. al™ )\’ ce 2 1 o\’
ZV:1+< i £ (lZCF+80A> T Crrr

5 43 1 5 1 1 113 1 5 1
X{cg[_+(___| 020 50) oo o (2 Bz 51,) Y

1442 "\ 125~ 2" " 18 8642  \32472" "3
1 (2 1 \1 1 1 37
2 —_—— U —
+CA[ 16£2+<27 a2+t )J+ ”[CF (54e2 324e>+CA<3652 4325)}
+cFTrh@}+ﬁ(ag‘), (3.1)

whereCa = Ne, Cr = (N¢—1)/(2Nc) andT = 1/2 for a SUN.) gauge group antd,, = In(u?/mg),
but can also be extracted from our calculation in the fulbtige Comparing both results the accu-
racy of the calculation can be estimated. We find that theaakvdlues of the numerical calculation
agree at the per-cent level with the analytical resultZpr This provides a first non-trivial check
of the calculation.

We write the perturbative expansion of the matching coefficin the form

o) @ (o) ’ @ [a () ’ @3) 4
Cv:1+TCv + T Cv + T Cv +ﬁ(as)7 (3.2)

and decompose(,3) according to the color structures as

) =ce [CECFFF +CrCaCrra +Cacran+ TN (CeCrrL +CaCral + TCrrL + TNCFLL)
+ T (CeCrrn + CaCFaH +TnthHH)] + singlet terms (3.3)

At this point we will not present the result for the non-feamic contribution, but only review the
fermionic ones. The result for the non-fermionic contribntwill be presented in Ref. [28]. The
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fermionic corrections have been calculated Refs. [15] 464 énd read

17 61 1 50
CrrL = 46.7(1) + < 12 367'[2 7'[2| 2+ - Z(3)> Lll+_n2|-ua (3.4
181 11
cen =396(0) + (o~ ot ez 0@ )k (B ) @9)
557 26 44 4
CFHLZ—E—FQTIZ—F(—Z—?-FZ—? )L[Jv (3.6)
163 4 1, 2,
CFLL——@—2—7TIZ—2—7LH—§LH, (37)
1
Cren = —0.841(6) — —n2|_,1, (3.8)
121 11
CFAH = —010(4) + ( 27 27 > Mo (39)
427 158 16
CFHH = — (s, (3.10)

1622835 T 9

whereL, = Iog(uz/n%). Inserting the colour factors this evaluates numerically t

o ~ —0.823n? 4 12166(1) n; — 0.93(8) + non-fermionic and singlet terms (3.11)

4. Conclusion

We presented a status report of the calculation of the namidaic corrections to the matching
coefficient at next-to-next-to-leading order. The methbthe calculation has been discussed and
examples for the required master integrals have been pegserhe validity of the method has been
checked by reevaluating the renormalization consfanFurthermore, the result for the fermionic
contributions have been reviewed.
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