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There has been a lot of recent interest in experimental hints of CP violation in B0
d,s mixing. The

DØ measurement of the semileptonic CP asymmetry would - with higher significance - be a clear
signal of beyond the standard model physics. In this talk I present a relation [1] for the mixing
parameters, which allows clearer interpretation of the data in models in which new physics enters
in M12 and/or Γ12. This result implies that the central value of the DØ measurement in B0

d,s decay
is not only in conflict with the standard model, but in a stronger tension with data on ∆Γs than
previously appreciated. After I derive the relation between the theoretical prediction of |Γ12| and
the measurements of ∆M, ∆Γ and ASL, I will explain how this result can help to better constrain
∆Γ or ASL, whichever is less precisely measured.
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1. Introduction

The DØ measurement of the CP asymmetry in decays of a bb̄ pair to two same-sign muons [2]
hinted towards CP violation in B – B̄ mixing, which would be a clear sign of new physics (NP)[3, 4]

Ab
SL =−[7.87±1.72(stat)±0.93(syst)]×10−3 . (1.1)

This is a linear combination of the two individual asymmetries, as both B0
d and B0

s are produced

Ab
SL = (0.594±0.022)Ad

SL +(0.406±0.022)As
SL . (1.2)

The time evolution of the flavor eigenstates is determined by

i
d
dt

(
|B0(t)〉
|B̄0(t)〉

)
=

(
M− i

2
Γ

)(
|B0(t)〉
|B̄0(t)〉

)
, (1.3)

M and Γ are 2×2 Hermitian matrices, CPT invariance implies M11 = M22 as well as Γ11 = Γ22. The
physical eigenstates are given by

|BH,L〉= p |B0〉∓q |B̄0〉 , (1.4)

where we chose |p|2 + |q|2 = 1. CP violation in mixing occurs if the mass and CP eigenstates do
not coincide, δ ≡ 〈BH |BL〉 = (|p|2− |q|2)/(|p|2 + |q|2) 6= 0. The solution for the mixing parameters
satisfies the relation q2/p2 =(2M∗12− iΓ∗12)/(2M12− iΓ12). In the small δ limit, ASL≈ 2δ is a very good
approximation in the Bd/s-systems. In the |Γ12/M12| � 1 limit we have for the mixing parameters

∆m≈ 2 |M12| , ∆Γ≈ 2 |Γ12| cos[arg(−Γ12/M12)] , ASL ≈ Im(Γ12/M12) . (1.5)

In this limit, which applies model independently for B0
d,s systems, q/p is a pure phase to a good

approximation, determined by M12, which has good a sensitivity to NP. The width difference ∆Γs ≡
ΓL−ΓH has been measured experimentally in the Bs system, and has not been observed for the Bd

meson. We use the most precise single measurement from LHCb [5] in the lack of a world average

∆Γs = (0.116±0.019)ps−1 . (1.6)

For ∆ms we take the average of the CDF [6] and LHCb [7, 8] measurements, ∆md from HFAG [9]

∆ms ≡ mH −mL = (17.719±0.043)ps−1 , ∆md = (0.507±0.004)ps−1 . (1.7)

The individual asymmetries measurements at the B factories [9] and at DØ [10] are compatible with
the Standard Model (SM) prediction[11] Ad

SL = −(0.5± 5.6)× 10−3, As
SL = −(1.7± 9.2)× 10−3. In

the following we clarify, if there are any non-trivial constraints on the mixing parameters, besides
the requirement of having positive mass and width eigenvalues for the physical states.

2. Theoretical Constraints on the Mixing Parameters

The unitarity bound [12, 13] is a requirement on the mixing parameters, which constrains the
eigenvalues of Γ to be positive independent of the physical eigenvalues, or equivalently

δ
2 <

ΓHΓL

(mH −mL)2 +(ΓH +ΓL)2/4
=

1− y2

1+ x2 . (2.1)

Here we define, using Γ = (ΓH +ΓL)/2, the quantities x = (mH −mL)/Γ and y = (ΓL−ΓH)/(2Γ). x is
positive by definition, while y ∈ (−1,+1). For the derivation we define the complex quantities

ai =
√

2πρi 〈 fi|H |B〉 , āi =
√

2πρi 〈 fi|H |B̄〉 , (2.2)
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with ρi denoting the phase space density for the final state fi. If we treat ai and āi as vectors in
a complex N-dimensional vector space, then taking the standard inner product on complex vector
spaces, and using the optical theorem [12], amounts to the relations

a∗i ai = Γ11 , ā∗i āi = Γ22 , ā∗i ai = Γ12 , (2.3)

where CPT fixes Γ11=Γ22=Γ. Applying the Cauchy-Schwarz inequality to |(ā)

i| in (2.3) implies [12]

|Γ12| ≤ Γ11 . (2.4)

Thus the eigenvalues of the Γ matrix must be positive in addition to the physical width ΓH,L > 0.
To see that this is also equivalent to the unitarity bound of Eq. (2.1), we use Eq. (1.4) to define aH,L

analogously to the physical states, and proceed with similar steps as above. The unitarity bound in
Eq. (2.1) then arises from using the resulting expressions with the relations (2.3) in Eq. (2.4).

2.1 Deriving a Relation using Theoretical Input

In the kaon system, for which this bound was originally derived, using the inequality in
Eq. (2.4) was a necessity due to the dominance of long-distance physics in the result. For Bd,s

mesons, the large mass scale mb � ΛQCD allows Γ11 and Γ12 to be calculated in an operator prod-
uct expansion, and at leading order |Γ12/Γ11| = O[(ΛQCD/mb)

3 (16π2)]. We extend the preceding
derivation with assuming additional theoretical knowledge in Eq. (2.4), and define

y12 = |Γ12|
/

Γ . (2.5)

Thus we obtain as the solution an exact relation instead of the inequality

δ
2 =

y2
12− y2

y2
12 + x2 =

|Γ12|2− (∆Γ)2/4
|Γ12|2 +(∆m)2 . (2.6)

This equation also follows from the solution of the eigenvalue problem, previously derived in
Ref. [14] with the resulting bound on δ noted. It also appears in related forms in Refs. [15, 16]
and follows from Eqs. (9) and (12) in [17]. For fixed x and y, δ 2 is monotonic in y12: an upper
bound on y12 gives an upper bound on |δ |. With the requirement y12 ≤ 1 the usual unitarity bound in
Eq. (2.1) is recovered. A better understanding of the physical situation can be gained, by obtaining
Eq. (2.6) from a scaling argument: δ only depends on mixing parameters, independent of Γ. One
can then scale Γ by y12, which cannot affect δ but changes x→ x/y12 and y→ y/y12. The exact
relation Eq. (2.6) follows then from this argument and Eq. (2.1). The derivation above makes the
physical origin of this relation clear and also holds in the CPT violating case for |δ |2, as δ can
become complex in this case. Even if a precise calculation of Γ12 is not possible or one assigns a
very conservative uncertainty to it, an upper bound on y12 implies an upper bound on |δ |, stronger
than Eq. (2.1). For small values of y12, as in the Bd system, this bound can be much stronger.

2.2 Application to Recent Data

First we will compare the relation using the measured mass difference and theory prediction
of |Γ12| to the result in Eq. (1.1) from DØ and then to the individual asymmetries. We can only
compare the absolute value of Ab

SL measured by DØ with the result implied by the relation above,
since Eq. (2.6) only bounds |δ |. Thus the bound on Ab

SL is not sensitive to possible cancellations be-
tween Ad

SL and As
SL. Denoting this upper bound by δ

d,s
max and using the weight factors from Eq. (1.2),

3
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Figure 1: Upper bounds on Ab
SL as a function of ∆Γs, setting ∆Γd = 0, description is in text.

|Ab
SL| ≤ (1.188±0.044)δ d

max +(0.812±0.044)δ s
max. As ∆md,s are precisely known, we plot the bound

as a function of the width differences ∆Γd,s. Because ∆Γd has not been measured yet, we set this
to zero as the most conservative choice. If LHCb measures the difference As

SL−Ad
SL [18], then the

above bound with modified coefficients apply for that measurement as well. In Fig. 1, the darker
shaded region shows the upper bound on |Ab

SL| using the 1σ ranges for |Γd,s
12 | in the SM [11], and the

lighter shaded region includes both 2σ regions, with

2|Γs
12|= (0.087±0.021)ps−1 and 2|Γd

12|= (2.74±0.51)×10−3 ps−1 . (2.7)

The dashed [dotted] curve shows the impact of using the 2σ region for Γd
12 [Γs

12] The vertical
boundaries of the shaded regions arise because |∆Γs|> 2 |Γs

12| is unphysical. A tension between the
Ab

SL measurement and the bound is visible, independent of the discrepancy between the DØ result
and the global fit to the latest available experimental data [19]. Of course, independent of the DØ
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Figure 2: Left plot: the region allowed by Eq. (2.6) in the Ad
SL−∆Γd plane. The SM calculation of |Γd,s

12 | at
1σ [2σ ] gives the darker [lighter] shaded region. Right plot: same for As

SL−∆Γs; the straight lines show the
1σ range of the LHCb result for ∆Γs.

measurement of Ab
SL, we can also compare the bound implied by our relation to the individual best

bounds on the semi-leptonic asymmetries. To this end, in Fig. 2 we plot Ad
SL vs. ∆Γd (and similarly

for Bs) allowed by Eq. (2.6) and the 1σ and 2σ ranges of the SM calculation of |Γ12| [11]. Here,
there have been no discrepancies claimed between the theory predictions and measurements, but
our relation allows us to place a bound tighter than the current experimental constraints which is
more robust than the purely theoretical SM calculation as outlined above. A non-zero observation
of ∆Γd will strengthen the upper bound on Ad

SL obtained with the relation (2.6).

2.3 No-Go theorem

We will show, that besides the positivity conditions on the physical mixing parameters MH,L,
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ΓH,L, algebraical relations and the unitarity bound no other consistency relations from physical con-
siderations can appear. The no-go theorem does not apply for the relation presented in this talk,
because we additionally assume knowledge about a parameter of the underlying Hamiltonian. We
now sketch a physical understanding for the proof of this theorem. From Eqs. (2.3) and (2.4) it is
obvious that the unitarity bound is exactly saturated, if the two vectors of B0 and B̄0, equivalently
BL and BH , are aligned: 〈 f |T|BH〉 ∝ 〈 f |T|BL〉. Without loss of generality we can start with an ar-
bitrary, generic decaying two-state system in the Wigner-Weisskopf approximation, i.e. no strong
interactions obscure the situation. We therefore choose an orthogonal, non CP violating system,
which obeys the above required alignment of states as a starting point, which has δ ≡ 0. By adding
arbitrary new ultraviolet (UV) physics, which does not necessarily need to be compatible with data,
we can change M12 independently of Γ12, introducing a non-vanishing δ . We can then vary M12,
however have to keep the mass and width of the physical states positive. We can always saturate the
unitarity bound, leaving no room for stronger constraints than the unitarity bound in any parameter
space. In other words by relaxing the constraint of having no CP violation Arg M12 = Arg Γ12, this
relation gets replaced by a new constraint, the unitarity bound. Thus the total number of relations
is conserved and without assuming knowledge no further bound or relation can be obtained.

3. Discussion

We derived not an absolute bound in the fashion of the unitarity bound but a relation between
calculable and measured quantities. It is thus worth clarifying the relationship of our result to the
stated 3.9σ disagreement of Ab

SL with the SM reported in [2]. The SM prediction of ASL uses the cal-
culation of Γ12, and |Γ12| also enters our bound; the discrepancies are thus correlated. Although the
calculation of |Γ12| and Im(Γ12) both rely on the same operator product expansion and perturbation
theory, the existence of large cancellations in Im(Γ12) may lead one to think that the uncertainties
could be larger in its SM calculation than what is tractable in the behavior of its next-to-leading
order calculation [20, 21]. The sensitivity of Γ12 to new physics is generally weaker than that of
M12 (see [22, 23] for other options). Thus, it is interesting to determine δ from Eq. (2.6), besides
its direct calculation. The relation (2.6) is a monotonic function in y12 and thus an upper bound
on this theory prediction implies an upper bound on |δ |. Therefore this relation is much stronger
for small values of y12, as is e.g. present in the Bd system. A non-zero observation of the width
difference does improve the upper bound as well. Now we are in the position to present numerical
upper bounds for the individual asymmetries. We use ∆Γs from LHCb in Eq. (1.6) and neglect ∆Γd

and find the 2σ bounds

|Ad
SL|< 7.4×10−3, |As

SL|< 4.2×10−3 . (3.1)

While this bound on As
SL may seem to disagree with Fig. 2, note that in the plot the uncertainties

of Γs
12 and ∆Γs are not combined. Propagating the uncertainties, |Γs

12|2− (∆Γs)
2/4 < 0 and thus δ 2

is negative at the 1σ level, which is an unphysical result. Hence we compute the 2σ bounds in
Eq. (3.1). The bound on As

SL is better than the bounds of the measurements in section 1 by more
than a factor of 3, while that for Ad

SL is comparable. However, in the case of Bd this is driven
primarily by the uncertainty in the lifetime difference. If a non-zero value of ∆Γd were observed, a
better bound could be derived. It is worth emphasizing that this implication goes in both directions,
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given that an observation of Ad
SL 6= 0 may happen before that of ∆Γd 6= 0. Due to Eq. (2.6), as soon

as one of the two is measured to be nonzero, the other is constrained to be significantly smaller at
worst and given a definite prediction at best.
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