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1. Introduction

Dynamical dark matter (DDM) [1, 2] is a new framework for dark-matter physics in which
the dark sector comprises an ensemble of individual constituent fields, and in which the usual re-
quirement of dark-matter stability is replaced by a balancing between constituent lifetimes and
cosmological abundances across the ensemble as a whole. Such DDM ensembles have highly non-
trivial cosmological consequences, including a constantly evolving composition of the dark-matter
relic abundance and a time-dependent dark-matter equationof state [1]. This article will review
these theoretical features of the DDM framework while maintaining as much generality as possi-
ble. However, despite the general theoretical nature of thediscussion presented here, it is important
to emphasize that there do exist explicit realizations of the DDM frameowrk in terms of concrete
models [2, 3] which satisfy all known collider, astrophysical, and cosmological constraints on dark
matter. Moreover, DDM ensembles also give rise to characteristic phenomenological signatures
which can differ significantly from those associated with more traditional dark-matter candidates.
This is true not only at the LHC [4] but also at the next generation of direct-detection experi-
ments [5]. Thus dynamical dark matter truly represents a newway of thinking about the overall
dark-matter question.

2. Overview of the DDM framework

Many theoretical proposals for physics beyond the SM give rise to suitable dark-matter candi-
dates. In most of these cases, the ability of these candidates to serve as dark matter rests squarely
on their stability. This in turn is usually the consequence of a stabilizing symmetry. Indeed, any
particle which decays too rapidly into SM states is likely toupset big-bang nucleosynthesis (BBN)
and light-element abundances, and also leave undesirable imprints in the cosmic microwave back-
ground (CMB) and diffuse X-ray/gamma-ray backgrounds.

There is, of course, one important exception to this argument: A given dark-matter candidate
need not be stable if its abundance at the time of its decay is sufficiently small. A sufficiently small
abundance assures that the disruptive effects of the decay of such a particle will be minimal, and
that all constraints from BBN, CMB,etc. will continue to be satisfied.

Dynamical dark matter [1, 2, 3] is a new framework for dark-matter physics which takes advan-
tage of this possibility. First, we assume that dark matter comprises a vast ensemble of interacting
fields with varying masses, mixings, and abundances. Second, rather than impose stability for each
field individually (or even for the collection of fields as a whole), we ensure the phenomenological
viability of this scenario by requiring that states with larger masses and SM decay widths have
correspondingly smaller abundances, and vice versa. In other words, stability is not an absolute re-
quirement in such a scenario: stability is balanced againstabundance! As we shall see, this leads to
a highly dynamical scenario in which cosmological quantities such asΩCDM experience non-trivial
time-dependences beyond those normally associated with the expansion of the universe.

Thus, in the DDM framework, the dark-matter “candidate” is actually anensemble of individ-
ual dark component states whose lifetimes are balanced against their abundances. We emphasize
that such a balancing is highly non-trivial: while lifetimes are determined by the masses and cou-
plings in the underlying particle-physics Lagrangian, cosmological abundances are determined by
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the interplay between the Lagrangian parameters and a specific cosmological history. This bal-
ancing is ultimately the core feature which underlies the DDM framework and which gives rise to
distinctive astrophysical, cosmological, and collider signatures that transcend those usually associ-
ated with dark matter.

Because of its non-trivial structure, the DDM ensemble — unlike most traditional dark-matter
candidates — cannot be characterized in terms of a single mass, decay width, or set of scattering
amplitudes. The DDM ensemble must therefore be characterized in terms of parameters (e.g., scal-
ing relations or other internal correlations or constraints) describing the behavior of its constituents
as a whole. As a consequence, phenomenological bounds on theDDM dark sector must be ex-
pressed and analyzed in terms of a new set of variables which describe the behavior of the entire
DDM ensemble as a collective entity with its own internal structures and/or symmetries.

It turns out that theories of large extra dimensions — and by extension, certain limits of string
theory — can naturally give rise to dynamical dark matter [1]. Moreover, as we shall demonstrate,
DDM ensembles also generically give rise to a rich set of collider and astrophysical pheonomena
which transcend those usually associated with dark matter.Indeed, many new and unique signature
patterns are possible. Thus, by studying DDM and its phenomenological viability, we are not only
exploring a new candidate for dark matter but also providingnew phenomenological constraints on
large extra dimensions and certain limits of string theory.

To be more specific, let us suppose that the dark matter consists of N states, withN ≫ 1.
Because of the multitude of dark-matter states, no state individually needs to carry the full dark-
matter abundanceΩCDM observed by WMAP so long as the sum of their abundances matches
ΩCDM. In particular, each state can have a very small abundance. Of course, if all of these states
have the same lifetime, they must continue to be hyperstablein order to evade problems with BBN,
CMB data,etc. However, the states can carry different lifetimes. As longas those with larger
abundances have larger lifetimes, phenomenological constraints can be satisfied. Seen from this
perspective, the usual dark-matter scenarios are just a limiting N = 1 case of this more general
framework. However, takingN ≫ 1 leaves room for our states to exhibit a whole spectrum of
decay widths/lifetimes without running afoul of phenomenological and cosmological constraints.

We can outline the salient features of this scenario more quantitatively as follows. In general,
let us assume for simplicity that the universe can be modelled as a Friedman-Robertson-Walker
(FRW) universe which progresses through four distinct phases: inflation; reheating [which is a
matter-dominated (MD) phase, where the matter comprises coherent oscillations of the inflaton
field]; a radiation-dominated (RD) phase; and the final matter-dominated phase (which represents
the current epoch). Moreover, let us recall that “stuff” with equation of statep = wρ (wherep is
the pressure,ρ the energy density) will have an abundanceΩ ≡ ρ/ρcrit which scales with time as

Ω ∼















t(1−3w)/2 RD era

t−2w RH/MD eras

exp[−3H(1+ w)t] inflationary era ,

(2.1)

whereρcrit ≡ 3M2
PH2 with MP the reduced Planck mass andH ∼ 1/t the Hubble parameter. Recall

thatw = 0 for matter, whilew =−1 for vacuum energy (cosmological constant). For concreteness,
we shall further assume that the individual dark-matter components in our scenario are described
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by scalarsφi (i = 1, ...,N) with massesmi and decay widthsΓi describing decays into SM states. If
we assume that both the spatial variations in theφi and the self-interactions among these fields can
be safely neglected, the time-evolution of each of these fields follows

φ̈i +[3H(t)+ Γi]φ̇i + m2
i φi = 0 , (2.2)

which is simply a harmonic-oscillator equation with a time-dependent damping term. At early
times for which 3H(t)+Γi > 2mi, the fieldφi does not oscillate, and consequently its energy density
scales with time like vacuum energy. By contrast, at later times for which 3H(t)+ Γi < 2mi, the
field is underdamped and therefore oscillates; at such times, its energy density scales like massive
matter. The condition 3H(t)+ Γi = 2mi thus determines the “turn-on” time at which each of the
φi transitions from acting as dark energy to acting as dark matter. SinceH(t) ∼ 1/t in all non-
inflationary epochs, and since we typically haveΓi ≪H(t) whenH(t)∼ mi, we see that the turn-on
time for each fieldφi generally scales asti ∼ 1/mi. Thus heavier states in the DDM ensemble “turn
on” first, and lighter states turn on later. Indeed, at the time t0 at which the abundances are initially
established, those heavy modes withmi

>
∼ H(t0) all “turn on” simultaneously, while those with

mi
<
∼ H(t0) experience a sequential, “staggered” turn on. Given these observations, we find that the

abundancesΩi associated with our DDM ensemble generically behave as sketched in Fig. 1.
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Figure 1: A sketch of the evolution of dark-matter abundances in the DDM framework. For concreteness,
we have assumed that the abundances of the DDM constituentsφi are initially established at a common time
(chosen here during the inflationary epoch), with values scaling inversely with constituent mass. In this
example, the energy density stored in each constituent fieldscales with time like vacuum energy until the
time at which 3H(t) ∼ 2mi, after which it scales like massive matter. Open circles indicate points at which
the corresponding constituent energy densities are inflated away, while closed circles indicate the points
at which the corresponding energy densities begin falling exponentially due to decays. The balancing of
lifetimes against abundances — the hallmark of the DDM framework — is manifest in the upward-sloping
trend among the closed circles. The dynamical nature of the DDM framework — and thus its non-trivial
equation of state — reflects the fact that the composition andproperties of the dark-matter sector experience
a non-trivial time evolution prior to, during, and even after the current epoch.
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3. The DDM equation of state

In order to characterize a particular DDM configuration at any moment in time — and ulti-
mately the equation of state for DDM as a whole — we introduce three complementary parameters.
First, we define the contribution of the DDM ensemble to the total dark-matter relic abundance.
This is simply a sum of the contributionsΩi of the individual DDM constituents:

Ωtot(t) ≡ ∑
i

Ωi(t) . (3.1)

In principle, this sum should include the contributions of only those constituents which have already
“turned on.” By contrast, another important characteristic of a given DDM ensemble is the degree
to which this total abundance isdistributed among the DDM constituents. For example, one may
ask how significantlyΩtot is shared between a dominant component and all others. Towards this
end we can define

η(t) ≡ 1−
Ω0

Ωtot
, (3.2)

whereΩ0 ≡ maxi{Ωi} denotes the largest individual contribution. Thus,η quantifies the degree to
which our DDM framework departs from standard dark-matter scenarios: a valueη ≪ 1 indicates
that a single particle species contributes essentially theentirety of the dark-matter relic abundance,
as in traditional dark-matter models, whileη ∼ O(1) signifies that the entire DDM ensemble con-
tributes non-trivially toΩtot.

Finally, we may also define an effective equation-of-state parameterweff(t) which applies to
the DDM ensemble as a whole —i.e., as a single collective entity. This can be defined via the
relationweff(t) ≡ p/ρtot(t), whereρtot = ρcritΩtot is the total ensemble energy density and where
p is the corresponding pressure. Following standard derivations (see,e.g., Ref. [1]), we find that
during any matter-dominated (MD) or radiation-dominated (RD) cosmological epoch, this effective
equation-of-state parameter may be expressed in terms of the time-derivatives ofΩtot:

weff(t) ≡ −

(

1
3H

d logρtot

dt
+1

)

=























−
1
2

(

d logΩtot

d logt

)

for RH/MD eras

−
2
3

(

d logΩtot

d logt

)

+
1
3

for RD era.

(3.3)

It is straightforward to evaluate the quantities{Ωtot,η ,weff} as functions of time. For con-
creteness, let us focus on the evolution of the DDM ensemble during the final MD era, within
which bothρtot andρcrit scale with time in the same way. In the approximation that thedecay of
eachφi can be treated as occurring instantaneously att = τi ≡ Γ−1

i , the abundances during this era
are given byΩi(t) ≈ ΩiΘ(τi − t), whereΘ(x) denotes the Heaviside function. Moreover, from a
DDM perspective, we are principally interested in the regime in which the number of ensemble
constituents is large and the spectrum of lifetimes across the ensemble approaches a continuum.
We therefore find that

dΩtot

dt
= −∑

i

Ωiδ (τi − t) ≈ −
∫

dτ Ω(τ)nτ(τ)δ (τ − t) = −Ω(t)nτ(t) , (3.4)
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where the functionΩ(τ) describes the abundance of those DDM constituents with decay width τ−1

and wherenτ denotes the density of DDM states per unitτ across the ensemble.
To proceed further, it is necessary to specify functional forms forΩ(τ) andnτ(τ). It is in this

way that we are implicitly endowing our DDM ensemble with an internal structure. Towards this
end, let us assume thatΩ(τ) andnτ (τ) can be parameterized through power laws of the form

Ω(Γ) ∼ AΓα , nΓ(Γ) ∼ BΓβ , (3.5)

wherenΓ is the density of states per unitΓ ≡ τ−1 and whereA, B, α , andβ are general scaling
coefficients and exponents. Note that such functional formsfor Ω(Γ) andnΓ(Γ) are particularly
relevant, emerging naturally in many realistic, theoretically-motivated DDM models [2, 3]. Given
these parameterizations forΩ(Γ) andnΓ(Γ), we then find thatdΩtot/dt = −ABt−α−β−2. We thus
see that the collective dynamics of the ensemble as a whole isgoverned by thesum x ≡ α + β of
the scaling exponents rather than by either exponent individually. It then follows from Eq. (3.3)
that the effective equation-of-state parameter for the DDMensemble takes the general form

weff(t) =























(1+ x)w∗

2w∗ +(1+ x−2w∗)(t/tnow)1+x x 6= −1

w∗

1−2w∗ log(t/tnow)
x = −1

(3.6)

wherew∗ ≡ weff(tnow) = AB/(2ΩCDMt1+x
now).

4. Cosmological implications

If the DDM ensemble under study is to be in rough agreement with cosmological observations,
we expect thatw∗ today should be small (since traditional dark “matter” hasw = 0). Furthermore, a
variety of astrophysical considerations (including limits set by CMB data) also stipulate thatweff(t)
should not have experienced strong variations in the recentpast. The results in Eq. (3.6) therefore
imply that the DDM ensembles which are likely to be phenomenologically preferred are those for
which

−2 . x . −1 . (4.1)

However, depending on the detailed properties of the particular DDM ensemble under study, values
of x which lie slightly above−1 may also be acceptable. Remarkably, there exist broad classes of
DDM models in which this constraint is automatically satisfied [1]. Further cosmological im-
plications of the decays leading to such a non-trivial DDM equation of state are discussed in
Refs. [1, 2, 3].
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