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model in the regime where a sixth-order term and a generalized mass term dominate. The mass
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and isospin symmetry breaking, we reproduce the mass of the most abundant isotopes to rather
good accuracy.
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1. Introduction

The idea suggested by Skyrme [1] that baryon physics could emerge as solitons from an ef-
fective Lagrangian of meson fields remains one of the most original and successful attempts for
the description of the low-energy regime of the theory of strong interactions (QCD). In its origi-
nal formulation, the Skyrme model succeeds in predicting the properties of the nucleon within a
precision of 30% [2]. A number of generalizations of the model have been proposed to improve
this concordance with baryon and nuclear physics, for example, by changing the mass term [3], by
including vector mesons [4] or simply by adding of higher-order terms in derivatives of the pion
fields [5]. Despite such efforts, one of the recurring problems of Skyrme-like Lagrangians is that
they almost inevitably lead to large binding energy for nuclei already at the classical level. A so-
lution may be at hand by constructing effective Lagrangians with soliton solutions that saturate the
Bogomol’nyi bound, i.e. so-called Bogomol’nyi-Prasad-Sommerfield type (BPS) Skyrmions, since
their classical static energy grows linearly with the baryon number A (or atomic number) much like
the nuclear mass. Support for this idea comes from a recent result from Sutcliffe [6] who found
that BPS-type Skyrmions seem to emerge for the original Skyrme model when a large number of
vector mesons are added reaching eventually the saturation of the Bogomol’nyi bound. A different
approach by Adam, Sanchez-Guillen, and Wereszczynski (ASW) [7] and by Bonenfant and L.M.
[8] suggests that the Bogomol’nyi bound could be reached with a model where the mass term and
the term of order six in derivatives of the pion fields dominate. However, a few issues remain to be
addressed before these types of models can be considered viable. Here, we introduce a near BPS
Skyrme model in an attempt to solve two of these issues: (1) obtaining non shell-like configura-
tions for the energy and baryon densities as it is suggested by experimental data and (2) including
the Coulomb energy and the isospin symmetry breaking term in the calculation of nuclear masses
since they are expected to have a significant impact on the predictions binding energies. Adjusting
the four parameters of our model to fit the resulting binding energies per nucleon with respect to
the experimental data leads to a very good agreement [9] .

2. The near-BPS Skyrme model

The model is based on the Lagrangian density of the form

L =−µ
2V (U)−α Tr

[
LµLµ

]
+β Tr

(
fµν f µν

)
− 3

2
λ 2

162 Tr
(

fµν f νλ f µ

λ

)
(2.1)

where fµν =
[
Lµ ,Lν

]
with Lµ = U†∂µU, the left-handed current of the meson fields represented

by the SU(2) matrices U = φ0 + iτiφi which obey the nonlinear condition φ 2
0 +φ 2

i = 1.
The constants µ, α , β , and λ are free parameters of the model and we shall be interested in

the regime where α and β are small. The original Skyrme model corresponds to the case where
µ = λ = 0. The first term, the so-called mass term, is often added to take into account chiral
symmetry breaking so that it generates a pion mass term for small fluctuations of the chiral field
in V (U). Finally, the term of order six in derivatives of the pion fields is equivalent to LJ6 =

− ε6
4 BµBµ that was first proposed by Jackson et al. [5] to take into account ω-meson interactions.

Here, Bµ = 1/(24π2)εµνρσ Tr
(
LνLρLσ

)
is the topological (baryon) current density, whose time
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component serves to characterize solutions by a conserved topological charge identified by baryon
number or mass number in the context of nuclei, A =

∫
d3rB0.

The Lagrangian in (2.1) represents the most general SU(2) model with at most two time deriv-
atives and as a result, the model has been studied extensively. But remarkably, this was done only
for values of parameters µ, α , β , and λ close to that of the original Skyrme model and in this
sector, the model fails to provide an accurate description of the binding energy of heavy nuclei.
Recently, ASW [7] proposed a model (equivalent to setting α = β = 0) whose solutions are BPS-
type solitons and have lower binding energies. A more realistic approach was proposed in Ref. [8]
to analyze the full Lagrangian (2.1) in the sector where α and β are relatively small treating these
two terms as perturbations. However, nuclear matter is believed to be uniformly distributed inside a
nucleus whereas the solutions of the aforementioned models display shell-like configuration for the
baryon and energy densities. We propose a new mass term [9] and demonstrate that it is possible
to construct an effective Lagrangian which leads to non-shell configurations and still preserves and
even improves the agreement with nuclear mass data

V (U) =− 1
576

Tr

[(
2I−U−U†

)(
2I +U +U†

)3

ln((2I +U +U†)/4)

]
. (2.2)

The general static solution of (2.1) can be written in the form

U = ein·τF = cosF + in · τ sinF (2.3)

where n̂ = (sinΘcosΦ,sinΘsinΦ,cosΘ) is a unit vector and in general F,Θ, and Φ depend on
the position variables r,θ , and φ . We consider the model (2.1) in the limit where α and β are
small. It turns out that in the limit α = β = 0, the solutions have axial symmetry and take the form
F = F(r), Θ = θ , and, Φ = nφ where n is an integer that corresponds to the baryon number A.
Using the change in variable x = ar with a =

(
µ

18nλ

)1/3, the minimization of the static energy for
α = β = 0 leads to the differential equation for F :

sin2 F
288x2 ∂x

(
Fx

sin2 F
x2

)
− ∂V

∂F
= 0. (2.4)

where Fx = ∂F/∂x, from which one gets∫
dF

sin2 F
8
√

V
=±

(
x3− x3

0
)

(2.5)

where x0 is an integration constant. Finally, the expression for F(x) can be found analytically
provided the integral on the left-hand side is an invertible function of F. Such solutions saturate the
Bogomol’nyi bound [7] i.e. the corresponding static energy is proportional to the baryon number
A = n. Moreover, the chiral angle F can only be a function of the ratio r/n1/3. Furthermore, it
is interesting to note that for such solutions, the square root of the potential

√
V (x) = π

48nB0(x)
where B0(x) corresponds to the baryon radial density B0(x) =

∫
dΩ B0(x) up to a multiplicative

constant. We see that in order to obtain a non-shell baryon density, it suffices to construct a potential
V that does not vanish at small x. Such a potential would also imply that Fx(0) 6= 0. The potential
(2.2) is the simplest form of potential that leads to an invertible function of F such that Fx(0) 6= 0.
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Solving (2.5) for F one gets a very simple form

F(x) =∓2
∣∣∣cos−1

(
e−x2

)∣∣∣ (2.6)

which possess the desired non-shell like baryon density configurations as observed in nature. The
static energy of the soliton in the small α and β approximation can be easily calculated

Estat =
2π3/2

3

[
4
√

2
(
−3+2

√
3
)

nλ µ +3
(

4
(√

2−1
)(

n2 +1
)
+3
√

2ζ

(
5
2

))
αa−1 (2.7)

+192
((

16
√

2
(√

3−1
)
−15

)
n2 +1

)
βa
]

where ζ is the Riemann ζ−function. The first term in (2.7) receives an equal contribution from the
potential and the sixth order term of the Lagrangian. The remaining parts coming from the small
perturbations have a more complex dependence, i.e. E2 =αA1/3(a2+b2A2) and E4 = βA−1/3(a4+

b4A2). Apart from the overall factor A±1/3 due to the scaling, there are additional factors of A2 that
originates from the axial symmetry of the solution. Note that it is also easy to calculate analyt-
ically the root mean square radius of the baryon density

〈
r2
〉1/2

= (
√
−1+ ln16)/(2a) which is

consistent with experimental observation for the charge distribution of nuclei
〈
r2
〉1/2

= r0A1/3.
In order to represent physical nuclei, we must include the rotational and isorotational ener-

gies. Using the standard semiclassical quantization procedure leads to the lowest eigenvalue of the
(iso)rotational Hamiltonian Hrot for a nucleus that is given by [8]

Erot =
1
2

[
j( j+1)

V11
+

i(i+1)
U11

+ξ κ
2
]

with ξ =
1

U33
− 1

U11
− n2

V11
(2.8)

where i, j and κ = max(|k3|) are the isospin, spin in the space-fixed frame and the maximum value
of the third component of isospin in the body-fixed frame. The axial symmetry of the solutions
requires that κ = 0 or 1

2 for A even or odd respectively. Whereas the spins of the most abundant
isotopes are fairly well known, this is not the case for the isospins so we shall assume that the most
abundant isotopes correspond to states with lowest isorotational energy. Since i ≥ |i3|, the lowest
value that i can take is simply |i3| where i3 = Z−A/2. The (iso)rotational energy of nuclei then
require the explicit calculations of only three moments of inertia V11, U11, and, U33 which can be
obtained analytically [8].

We are interested in a precise calculation of the nuclei masses and an estimate of the Coulomb
energy is desirable. So following Adkins et al. [2], we write the electromagnetic current Jµ

EM =
1
2Bµ +Jµ3

V , where Jµ3
V is the vector current density. The charge density ρ(r) = J0

EM =
(1

2B0 + J03
V

)
where J03

V = k3
U33(r)

U33
with U33,U33, the moment of inertia density for the third component of isospin

and its density respectively. Finally, we obtain the Coulomb energy by computing numerically the
last remaining integral

EC =
1
2

∫
ρ (r)ρ (r′)
4π |r− r′|

d3rd3r′ (2.9)

It is well known that the Coulomb energy alone leads to a neutron-proton mass difference with the
wrong sign. On the other hand, isospin is not an exact symmetry, a fact that may be traced back to
the up and down quark mass difference. Here we shall assume for simplicity an isospin symmetry
breaking term proportional to the third component of isospin EI = aIi3 with the parameter aI fixed
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by setting the neutron-proton mass difference to its experimental value. Summarizing, the mass of
a nucleus reads

E(A, i, j,k3, i3) = Estat(A)+Erot(A, i, j,k3)+EC(A, i3)+EI(A, i3) (2.10)

where the explicit dependence on the relevant quantum numbers is shown for each term. Further
analysis reveals a partial correspondence between the (2.10) and the semiempirical mass formula.

3. Results and discussion

The values of the parameters µ, α,β and λ remain to be fixed. We consider three parame-
trizations: In Set I (pure BPS Skyrmion), we fix α = β = 0 and set the remaining coefficients using
the mass of the nucleon and the Helium-4 nuclei as input. Set II optimizes the four parameters µ ,
α, β and λ to fit the masses of the nuclei of the most abundant 144 isotopes. Set III is obtained
similarly but the fit is performed with respect to the binding energy per nucleon, B/A. A summary
of the results is presented in Fig. 1 which displays the general behavior of B/A as a function of the
baryon number for Set I (α = β = 0), Set II (best fit for nuclear masses), Set III (best fit for B/A),
and experimental values (black circles).

�
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Set II 

Set III 

Expt. B
/A

 (
M
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Figure 1: Binding energy per nucleon B/A as a function of the baryon number A.

Clearly, the model in (2.1) (in the regime where α and β are small) provides a significant
improvement with regard to the properties of the nuclei of nuclear masses. Even for Set I, the least
accurate with respect to the experimental data (black circles), the agreement remains within 0.4%
of the experimental masses which is much better than with the original Skyrme model. Moreover,
since the ratio B/A is quite sensitive to small variation of the nuclear masses, the results for B/A
may be considered as rather good. The second fit (Set II), which is optimized for nuclear masses,
overestimates the binding energies of the lightest nuclei while it reproduces almost exactly the
remaining experimental values ( A & 40). Finally, the least square fit based on B/A (Set III) is the
best fit overall but in order to provide a better representation for light nuclei, it abdicates some of
the accuracy found in Set II for A & 40.
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Set I Set II Set III
µ (104 MeV2) 1.490 80 1.505 71 1.729 55

α (10−3 MeV2) 0 5.881 18 22.0821
β (10−6 MeV0) 0 −1.69031 −5.80989

λ (10−3 MeV−1) 6.413 62 6.339 73 5.536 91

We find that the sets of parameters II and III are very close to Set I (see Table above). The
potential and the sixth order terms remain very large compared to the nonlinear σ and Skyrme
terms. This provides support for our assumption that they can be treated as perturbation. But
despite the very accurate predictions for the nuclear masses, there remain open questions: (1)
Comparing Set II and Set III to the original Skyrme model with a pion mass term, we can identify
Fπ = 4

√
α , e2 = 1/(32β ) and mπ = 1.0621µ/

√
α . These quantities, Fπ ,e2 and mπ take values

which are orders of magnitude away from the experimental values. Although this is expected since
we have assumed from the start that α and β are relatively small, the link established with soft-
pion physics in the original Skyrme model by obtaining realistic values for Fπ and mπ and baryon
masses seems to be lost or at least more obscure here. (2) The predicted value of

〈
r2
〉1/2 is about

twice the experimental value. Also nucleon-delta mass difference is too small due to the rather
small (iso)rotational energy. This is a direct consequence of the choice of potential which leads in
this case to baryon or energy densities spread to a larger volume. Further investigations involving
different potentials are now underway. (3) From a more fundamental point of view, the role of the
ω -meson in the two BPS Skyrmion approaches [6] and [7, 8, 9] seem to be quite different. In the
former approach, the addition of the vector meson moves the energy away from BPS saturation
whereas here the term of order six suggested by ω interactions must be dominant to achieve the
near BPS regime. Note that the two approaches converge to BPS solutions that are quite different.
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