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Abstract:

The Antonsen — Bormann idea was originally proposed by these authors for the computation of the heat
kernel in curved space; it was also used by the author recently with the same objective but for the
Lagrangian density for a real massive scalar field in 2 + 1 dimensional stationary curved space.
Subsequently, it was reworked with advantage — but to determine the zeta function for the said model
using the Schwinger operator expansion. The repetitive nature of that calculation at all higher orders(>
3) in the gravitational constant G suggests the use of the Dirac delta-function and one of its integral
representations — in that it is convenient to obtain answers; in anticipation of its systematic application to
all orders = 3 in G and the exact evaluation of {(s) this paper illustrates in detail the evaluation of some
integrals relevant to the third order calculation.
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1.Introduction

The integral I,, = fon/ ®sin"x dx with n anon— negative integer is a textbook® example of a repetitive
calculation; thus, for n > 2 one gets

n—1 n—1 n-3 (1)
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Continuing in this way one arrives at 1, = % orI; =1 depending on whether n is even or odd; a well
— known byproduct from eq.(1) being the Wallis formula
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We present another example of a repetitive calculation that we shall motivate later on in this paper. Much
of this paper is an adjunct to an earlier version?in that it presents the necessary steps to complete the third
order calculation of the zeta-function discussed therein; being tentative and incomplete it warranted a
second look and a reader-friendly exposition is given here. Parenthetically, the method presented here is
substantial and was not used in Ref.2.

2. Some integrals, their origin and evaluation

Consider the integrals
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with [ in each of the above being short hand for [ d?rd?q,q* =q? +q5, > =1 +r# and x and
z being real and non-negative. Of these K, and K, are easily evaluated as

3 -
Ky=—=(5) pre P (=14 eP){c(pde - p}) — 2(pf — p3)(1 — 7))

T

K, :LG)3P1 : (3)

2w xz(x+z)

with ¢ = z?p? and b = x%p? .The remaining integrals — especially K5 — are tedious to evaluate thus
begging an alternative; while deferring its details to the sequel it pays to briefly recall their origin here:



They are obtained from the momentum space representation of the order G3 term in the Schwinger
operator expansion®>® for e~(*+H1)t namely,
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with the operator H; = —T% [((y? — x¥)p; — 2xyp,] , 2 = x* + y? , 1 = 4GJ, G being the gravitational
constant and one of the matrix elements (p|H,|r) for example being

(p|H)|r) = — ﬁ (7‘1 -2 (pz_rz()rff;r)lz_pm)). Of the eight possible terms in (4) three are zero by symmetry

leaving the five apparently nonzero terms given in eq.(2).The interested reader is referred to Refs.2 and 4
for details.

Returning now to evaluation of the integrals in (2) we begin with K, written as
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with [ now being short hand for [ d?rd?q d?s . The introduction of the Dirac delta-function in (5) is
a point of departure in this paper — for on using the integral representation®
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one can now do the s, g and r integration in (5) easily. Parenthetically, the Dirac delta-function was also
used elsewhere* but with the limit representation®
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Eq.(7) however is ineffectual and is therefore given up in favour of (5) here; on doing the r integration
first one gets
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with a = x2s? , h = u + x; returning to (5) the s integration can now be completed to get
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[h(2b — B?) + u(B? — a?)] the answer after the two integrations being
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with hb = ux , 4c = a® + (2. Itis prudent to complete the a,B integration now prior to the g
integration to get
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with only the q integration left in (11); term-wise one gets (withd =x+z,b=z+pand,c =d + u):
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Thus Ky = _E(E) p1(s1 + s + 53+ 54) (13)

with the s; defined by egs.(12a — d). Repeating the above exercise for K, (p) now written as
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the g integration now yields: (%)2 (—Zizice_g) :and the a.p integration (%)3 L (1 — ") leaving
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only the r — integration the relevant integral for which is
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One finally gets with d = (x + 2) :

2

Ky =—2 (2—2)3 p1 [{—e_;fz (1 + (p%;p%)) + x;Z [Pz + (P21 pZ)] +2 F(O zp )} {_e—;ip (1 +

(P;;Pz)) + L [p + (pzld 7‘12)] + 2 I"(O dp )}] (14)

The remaining integral K3 is too cumbersome to work out below; therefore its calculation will only be
sketched here. By writing it as
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the s integration leads to znje‘i(“tﬁﬁtz) G (a? — B2ty + %aﬂtz) , 4c = a® + B? .Integrating over
a,p gives
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Only the r and g integration now remain; to take up the latter first we have with m = a7 + fp ,
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There now remains the integration over r and a(or ) on each term in (17) ; this will be presented
elsewhere.

3.Summary

The calculation of both K, and K5 in the preceding section has been tedious but has been catalyzed using
the Dirac 3-function and its integral representation; its workout in detail was motivated by the simplicity
of the method and also because to the best of our knowledge this has not been used elsewhere.
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