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1. Introduction

The 3+1 dimensional SU(2) Yang-Mills-Higgs (YMH) field theory, with the Higgs field in the
adjoint representation possess magnetic monopole configurations [1]-[3]. The ’t Hooft-Polyakov
monopole solution of unit magnetic charge is spherically symmetric and possesses finite energy
[1]. However, finite energy monopole configurations with either a magnetic charge greater than
one [1] or possessing more than one pole cannot be spherical symmetric. They can however
possess axial symmetry. Exact monopole solutions are known only in the Bogomol’nyi-Prasad-
Sommerfield (BPS) limit [2]-[3]. Outside this limit, only numerical solutions are known. Numeri-
cal finite energy monopole solutions include the monopole-antimonopole-pair (MAP), monopole-
antimonopole-chain (MAC), and vortex ring solutions [4] and they possess axial symmetry.

Recently we have constructed some exact singular one-half monopole configurations which
are axially symmetric and possess a Dirac string along one-half of the z-axis [5]. Harikumar et
al. [6] demonstrated the existence of generic smooth YM potentials of one-half monopoles but no
exact or numerical solutions are given. In this paper, we discuss numerical, finite energy monopole
solutions that possess one-half magnetic monopole charge.

The SU(2) YMH Lagrangian considered is L = −1
4 Fa

µνFaµν − 1
2 DµΦaDµΦa− 1

4 λ (ΦaΦa−
µ2

λ
)2, where µ is the Higgs field mass and λ is the strength of the Higgs potential. The vacuum

expectation value of the Higgs field is ξ = µ/
√

λ . The covariant derivative of the Higgs field is
DµΦa = ∂µΦa+gεabcAb

µΦc and the gauge field strength is Fa
µν = ∂µAa

ν−∂νAa
µ +gεabcAb

µAc
ν , where

g is the gauge field coupling constant. The metric used is gµν = (−+++). The SU(2) internal
group indices a,b,c = 1, 2, 3 and the space-time indices are µ,ν ,α = 0,1,2,3 in Minkowski space.
The equations of motion that follow from the Lagrangian are

DµFa
µν = ∂

µFa
µν +gε

abcAbµFc
µν = gε

abc
Φ

bDνΦ
c, DµDµΦ

a = λΦ
a(Φb

Φ
b−ξ

2). (1.1)

In the limit of vanishing µ and λ , but non-vanishing expectation value, where ξ = µ/
√

λ tends to
a nonzero constant, the Higgs potential vanishes and self-dual solutions can be obtained by solving
the first order partial differential Bogomol’nyi equation, Ba

i ±DiΦ
a = 0, where Ba

i = −1
2 εi jkFa

jk.
The Abelian electromagnetic field suggested by ’t Hooft [1] upon symmetry breaking is Fµν =

Φ̂aFa
µν − 1

g εabcΦ̂aDµΦ̂bDνΦ̂c = Gµν +Hµν , where Gµν = ∂µAν − ∂νAµ , is the gauge part and
Hµν = −1

g εabcΦ̂a∂µΦ̂b∂νΦ̂c, is the Higgs part of the electromagnetic field. Here Aµ = Φ̂aAa
µ , the

Higgs unit vector, Φ̂a = Φa/|Φ|, and the Higgs field modulus |Φ|=
√

ΦaΦa.
The axially symmetric magnetic ansatz [4] with θ -winding number m = 1 and φ -winding

number n = 1 used for our numerical construction of the one-half monopole is

gAa
i = −1

r
ψ1(r,θ)n̂a

φ θ̂i +
1

r sinθ
P1(r,θ)n̂a

θ φ̂i +
1
r

R1(r,θ)n̂a
φ r̂i−

1
r sinθ

P2(r,θ)n̂a
r φ̂i,

gAa
0 = 0, gΦ

a = Φ1(r,θ) n̂a
r +Φ2(r,θ)n̂a

θ , (1.2)

where P1(r,θ) = sinθψ2(r,θ), P2(r,θ) = sinθR2(r,θ). Here ψ1(r,θ), ψ2(r,θ), R1(r,θ), and
R2(r,θ) are the axially symmetric profile functions of the gauge potential Aa

i and the isospin unit
vectors are n̂a

r = sinθ cosφ δ a
1 + sinθ sinφ δ a

2 +cosθ δ a
3 , n̂a

θ
= cosθ cosφ δ a

1 +cosθ sinφ δ a
2 −

sinθ δ a
3 , n̂a

φ
= −sinφ δ a

1 + cosφ δ a
2 . In the rectangular coordinate system, the Higgs unit vector
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is Φ̂a = sinα cosφ δ a1 + sinα sinφ δ a2 + cosα δ a3, where cosα = Φ1
|Φ| cosθ − Φ2

|Φ| sinθ . The ’t
Hooft magnetic field is then reduced to Bi = BG

i +BH
i = −εi jk∂ jAk where the gauge part, gBG

i =

−nεi jk∂ j cosκ ∂kφ , and the Higgs part, gBH
i = −nεi jk∂ j cosα∂ kφ , with cosκ = Φ2

|Φ|P1 − Φ1
|Φ|P2.

Here Ai is the ’t Hooft’s gauge potential. The magnetic field lines of the configuration is plotted
by drawing the contour lines of (cosα + cosκ) = constant on the vertical plane φ = 0.

2. The Numerical Construction of the One-Half Monopole

The numerical finite energy one-half monopole solutions here are constructed by using the
four exact one-half monopole solutions, the Type A1, A2, B1, and B2 of Teh et al. [5] as asymptotic
solutions at large r and connecting them numerically to the YMH trivial vacuum at small r. The
exact asymptotic Type A1 one-half monopole solution at r = ∞ is given by [5]

P1 = sinθ − 1
2

sin
1
2

θ(1+ cosθ), P2 = cosθ − 1
2

cos
1
2

θ(1+ cosθ),

ψ1 =
1
2
, R1 = 0, Φ1 = ξ cos

1
2

θ , Φ2 =−ξ sin
1
2

θ . (2.1)

Since the magnetic ansatz (1.2) is form invariant under the gauge transformation ω = exp
(

i
2 σan̂a

φ
f (r,θ)

)
,

where σa are the Pauli matrices, we can generate the other three solutions from the transformation,

ψ
′
1 = {ψ1−∂θ f}, P′1 = {P1 cos f +P2 sin f +n[sinθ − sin( f +θ)]} ,

R′1 = {R1 + r∂r f}, P′2 = {P2 cos f −P1 sin f +n[cosθ − cos( f +θ)]} ,
Φ
′
1 = (Φ1 cos f +Φ2 sin f ), Φ

′
2 = (Φ2 cos f −Φ1 sin f ), (2.2)

where f{A1→A2} = θ , f{A1→B1} =−π

2 , and f{A1→B2} = θ + π

2 , will generate the Type A2, B1, and B2
solutions respectively. We also note that f{A2→B2} =

π

2 , f{B1→B2} = θ +π , and f{B1→A2} = θ + π

2 .
Hence the transformations between the Type 1 and 2 solutions are non trivial transformations and
they exist in different topological sectors. These solutions possess a magnetic charge, 1

2g , at r = 0,
gauge potential, Ai =

{ cosθ±1
2r sinθ

}
φ̂i, and magnetic fields, gBi =

r̂i
2r2 ∓2πδ (x1)δ (x2)θ(±x3)δ

3
i , for

the Type A and B solutions respectively. They therefore carry a positive one-half monopole at the
origin and a semi-infinite Dirac string which is a delta function line singularity of magnetic flux 2π

g
going into the origin. Hence the net magnetic charge of the configuration is zero.

The magnetic ansatz (1.2) reduces the equations of motion (1.1) to six coupled nonlinear sec-
ond order partial differential equations which are solved asymptotically first at small and then at
large distances. The numerical one-half monopole solutions are constructed by joining the exact
asymptotic solutions at large distances (2.1) - (2.2) to the trivial vacuum solution at small r and
by fixing the boundary conditions for all the profile functions (1.2) along the z-axis and near the
origin. Since the function R2(r,θ) is singular along one-half of the z-axis, we choose to perform
our numerical analysis with the functions, P1(r,θ), and P2(r,θ).

Near the origin, we have the common trivial vacuum solution for all the four solutions. The
asymptotic solutions and boundary conditions at small distances that will give rise to finite energy
one-half monopole solutions are

ψ1 = P1 = R1 = P2 = 0, Φ1 = ξ0 cosθ , Φ2 =−ξ0 sinθ , (2.3)

sinθΦ1(0,θ)+ cosθΦ2(0,θ) = 0, ∂r(cosθΦ1(r,θ)− sinθΦ2(r,θ))|r=0 = 0. (2.4)

3
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The boundary conditions imposed along the positive (negative) and negative (positive) z-axis for
the profile functions (1.2) of the Type A (B) solutions are

∂θ Φ1(r,θ)|θ=0(π) = Φ2(r,θ)|θ=0(π) = ∂θ ψ1(r,θ)|θ=0(π) = 0,

R1(r,θ)|θ=0(π) = P1(r,θ)|θ=0(π) = P2(r,θ)|θ=0(π) = 0,

Φ1(r,θ)|θ=π(0) = ∂θ Φ2(r,θ)|θ=π(0) = ∂θ ψ1(r,θ)|θ=π(0) = 0,

R1(r,θ)|θ=π(0) = P1(r,θ)|θ=π(0) = ∂θ P2(r,θ)|θ=π(0) = 0. (2.5)

In our numerical calculation we set ξ = g = 1. The numerical one-half monopole solutions
connecting the asymptotic solutions (2.1) - (2.2) at large distances to the trivial vacuum solution
(2.3) at small distances and subjected to the boundary conditions (2.4), and (2.5) together with
the gauge fixing condition, [4] r∂rR1−∂θ ψ1 = 0, are solved using Maple and MATLAB [7]. The
reduced six partial differential equations of motion are then transformed into a system of nonlinear
equations using the finite difference approximation. The numerical calculations are performed
with the system of nonlinear equations been discretized on a non-equidistant grid of size 90× 80
covering the integration regions 0 ≤ x̄ ≤ 1 and 0 ≤ θ ≤ π . Here x̄ = r

r+1 is the finite interval
compactified coordinate. The partial derivative with respect to the radial coordinate is then replaced
accordingly by ∂r→ (1− x̄)2∂x̄ and ∂ 2

∂ r2 → (1− x̄)4 ∂ 2

∂ x̄2 −2(1− x̄)3 ∂

∂ x̄ . We first used Maple to find
the Jacobian sparsity pattern for the system of nonlinear equations. After that we provide this
information to MATLAB to run the numerical computation. The system of nonlinear equations
are then solved numerically using the trust-region-reflective algorithm by providing the solver with
good initial guess. The second order equations of motion are solved when 0≤ λ ≤ 12. For values
of λ exceeding 12 the numerical accuracy decreases. In our calculations, the overall error estimate
is 10−4.

The numerical profile functions, ψ1,P1,R1,P2,Φ1, and Φ2 of all the four one-half monopole
solutions are regular functions of r and θ . However the function R2 =

P2
sinθ

possesses a string sin-
gularity along the negative (positive) z-axis for the Type A (B) solutions. The ’t Hooft’s gauge
potential at large r, tends to Ai = (cosα + cosκ)∂iφ |r→∞ = φ̂i

r sinθ

{
1
2(cosθ ±1)+ FG(θ)

r

}
, where

FG(θ) = r
{

Φ2
|Φ|(P1− sinθ)− Φ1

|Φ|(P2− cosθ)− 1
2(cosθ ±1)

}∣∣∣
r→∞

. From the graphs of FG(θ) ver-

sus angle θ , we find that FG(θ) = µm sin2
θ , where the dimensionless magnetic dipole moment,

µm is read from the graphs at θ = π

2 . The graphs of µm1 and µm2 of the Type A solutions versus
λ 1/2 are shown in Figure 1 (a) and their values are given in Table 1. The magnetic moment, µm, is
positive for the Type A solutions and negative for the Type B solutions. We calculate numerically
for the net magnetic charge M = MG +MH , and plot the graphs of M, MG and MH versus x̄-axis as
shown in Figure 1 (b). We note that we are only able to obtain the magnetic charge of the one-half
monopole from the numerical data. The numerical data cannot account for the magnetic charge
carried by the Dirac string. We also notice from the plots of Figure 1 (b) that M = 1

2 when r ≥ 4
and its value vanishes as r tends to zero.

The total dimensionless energy, E = g
8πξ

∫
{Ba

i Ba
i +DiΦ

aDiΦ
a + λ

2 (Φ
aΦa− ξ 2)2}d3x, when

λ = 0 is about two percent higher than the BPS value of EBPS =
1
2 . The total energies E1 and E2

are plotted versus λ 1/2 as shown in Figure 1 (c) and their values are given in Table 1. The 3D
surface and contour line plots of E , the energy density weighted by a factor r2 sinθ of the Type A1

4
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λ 0 0.04 0.20 0.40 0.60 0.80 1.00 2.00 4.00 8.00 12.00
µm1 1.32 1.22 1.15 1.11 1.09 1.07 1.06 1.02 0.98 0.94 0.92
µm2 1.04 0.96 0.91 0.88 0.86 0.85 0.84 0.81 0.78 0.74 0.73
E1 0.51 0.54 0.56 0.57 0.58 0.59 0.59 0.61 0.63 0.66 0.67
E2 0.53 0.55 0.58 0.59 0.60 0.60 0.61 0.63 0.65 0.67 0.69

Table 1: The magnetic dipole moments µm1, µm2, and total energies E1, E2, of the Type A1 and A2 solutions
for 0≤ λ ≤ 12.

Figure 1: (a) Plot of the magnetic dipole moments µm1 and µm2 versus λ 1/2 for the Type A solutions. (b)
Plot of the magnetic charges M, MG and MH versus x̄ when λ = 1. (c) Plots of the total energies E1 and E2

versus λ 1/2.

solution along the x-z plane at y = 0 when λ = 1 are shown in Figure 2 (a). The one-half monopole
is shaped like a rugby ball (prolate spheriod) with its energy concentrated along the negative z-axis
near r = 0 for the Type A solutions. The 3D surface and contour plots of the Higgs field modulus,
|Φ|, of the Type A1 solution along the x-z plane at y = 0 when λ = 1, show that there is a point zero
of the Higgs field modulus at the origin, Figure 2 (b). Hence the one-half monopoles is located at
r = 0 where the Higgs field vanishes. The shape of the 3D surface plots for the one-half monopole
is that of a flatten cone and there is a double zero of |Φ| at r = 0 along the negative z-axis for the
Type A solutions. The magnetic field lines contour plot of the Type A1 solution along the x-z plane
at y = 0 is shown in Figure 2 (c) when λ = 1.

3. Remarks

From our analysis, we conclude that the Type A and B solutions are gauge equivalent as they
are connected by constant gauge transformations, f{A1(A2)→B1(B2)} = ∓π

2 . They are just a 180o

rotation of each other about the origin, r = 0. The Type 1 and 2 solutions are connected by non
trivial gauge transformations, f{A1(B1)→A2(B2)} = θ + 0(π), and they exist in different topological
sectors of the YMH theory. Theoretically, they should possess the same gauge invariant quantities.
Our numerical analysis however shows that they possess slightly different (about three percent)
total energies and magnetic dipole moments. We believe that the differences are due to the lack
of symmetry of the large r exact asymptotic solutions in the m = 1 gauge. We have repeated
our numerical constructions of the one-half monopole solutions in the m = +1

2 (Type 1) and m =

5
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Figure 2: 3D surface and contour (inset) plots of (a) the weighted energy density, E , and (b) the Higgs field
modulus, |Φ|. (c) The contour plot of the magnetic field lines. The plots here are for the Type A1 solution
along the x-z plane at y = 0 when λ = 1.

−1
2 (Type 2) gauges and found that the differences between E1 and E2 and between µ1 and µ2

are negligible. This is because in the m = ±1
2 gauges the large r exact asymptotic solutions are

symmetrical [8] and the numerical accuracy of both Type 1 and 2 solutions are the same. Hence
the Type 1 and 2 solutions are one-half monopole existing in different topological sectors of the
YMH theory.

The authors would like to thank Universiti Sains Malaysia for the RU research grant (account
number: 1001/PFIZIK/811180).
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