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1. Introduction

In Ref. [l% Weinberg suggested that the general theor%elativﬁ% may be asymptotically
safe, with an S-matrix that depends on only a finite numberbstosable parameters, due to the
presence of a non-trivial UV fixed point, with a finite dimemsal critical surface in the UV limit.
Strong evidence has been calculated [2—7] using Wilsor8figld-space exact renormalization
group methods to support Weinberg’s asymptotic safety for the Einstein-Hilbert the-
ory. A parallel but independent development #9—11], haswvshfil 2] that the extension of the
amplitude-based, exact resummation theory of Ref. [13h@Einstein-Hilbert theory leads to
UV-fixed-point behavior for the dimensionless gravitaiband cosmological constants and to a
resummed theory, resummed quantum gravity, that is agtUdlfinite. More evidence for Wein-
berg’s asymptotic safety behavior has been calculatedywsinsal dynamical triangulated lattice

methods in Ref. [14]

The results in Refs. [2_—7;1, while impressive, involve cifs@nd some deﬁendence on gauge
Ic_)ar_ameters which remain in the results to varying degreas v products such as that for the UV
imits of the dimensionless gravitational and cosmologicastants. Accordingly, we refer to the
approach in Refs. [2—7] as the 'phenomenological’ asynmptafety approach. The above noted
dependencies are mild enough that the non-Gaussian UV fiiadl found in these references is
probably a physical result. But, the results cannot be dened final until a rigorously cut-off
independent and gauge invariant calculation corrobotags. Our aplla_roach offers such a possi-
bility, as our results are both gauge invariant and cutyudependent. The results from Refs. [14]
involve lattice constant-type artifact issues — to be atergd final they too need to be corroborated
by a rigorous calculation without such issues. Again, oyreach offers a possible answer. The
stage Is therefore prepared for us to try to make contact riment.

Accordingly, we note that, in Refs. [16, 17], it has been atjthat the attendant phenomeno-
logical asymptotic safety approach in Refs. [2—7] to quangravity may indeed provide a real-

izatior? of the successful inflationary model [|19, 20] of cosmologyhaut the need of the inflaton
scalar field: the attendant UV fixed point solution allows eme&levelop Planck scale cosmology
that joins smoothly onto the standard Friedmann-WalkdveRison classical descriptions. One ar-
rives at a quantum mechanical solution to the horizon, finentropy and scale free spectrum
problems. In Ref. [12], we have shown that, in the new resudhtheory ég—ll] of quantum
gravity, we reproduce the properties as used in Refs. [I@otthe UV fixed point of quantum
gravity with “first principles” predictions for the fixed pati values of the respective dimensionless
gravitational and cosmological constants. Here, we cdmeyanalysis forward to arrive at an es-
timate for the observed cosmological constarin the context of the Planck scale cosmology of
Refs. [16,17]. We comment on the reliability of the resudtjtawill be seen already to be relatively
close to the observed value [21, 22]. While we obviously dowant to overdo the closeness to
the experimental value, we feel that this again gives, al , some more credibility to the new
resummed theory as well as to the methods in Refs. [2—7, 1d]aldé show how the closeness of
our estimate to the observed value would constrain SUSY GUdets when this closeness is put
on a more firm basis. More reflections on such matters will kertaup elsewhere [23].

The discussion is organized as follows. We start by rec%niiltlg in the next section the Planck
scale cosmology presented phenomenologically in Refs1yl6We then review briefly in Section
3 our results in Ref. [1241 for the dimensionless gravitagiomnd cosmological constants at the UV
fixed point. In Section 4, we combine the Planck scale cosgyoszenario in Refs. [16, 17] with
%LLJJI’ Srs(sgl'g, _Igo estimate the observed value of the cosmealbgimstani\ and we use it to constrain

S.

2. Planck Scale Cosmology
We recall the Einstein-Hilbert theory
1
LX) = 5 5V=8(R-2A) (2.1)

whereR is the curvature scalag,is the determinant of the metric of space-tig)g, A is the cos-
mological constant ankl = \/8nGy for Newton’s constanGy. The authors in Ref. [16,17], using

Iwe also note that the model in Ref. [15] realizes many aspéthe effective field theory implied by the anomalous
dimension of 2 at the UV-fixed point but it does so at the experiviolating Lorentz invariance.
2The attendant choice of the scile- 1/t used in Refs. [16, 17] was also proposed in Ref. [18].



gnFtEn \r/TV’lat((Ej Or Lambada In resummea Quantum Gravity 1n the Context o ASympltotiC sarety and Flanck SCale Cosmology: Constrain
.F.L. War

the phenomenological exact renormalization group for thisdftian [8] coarse grained effective
average action in field space, have argued that the attenaaming Newton constar®y (k) and
running cosmological constart(k) approach UV fixed points as goes to infinity in the deep
Euclidean regime in the sense thdGy (k) — g., A(K) — A.k? for k — o in the Euclidean regime.
The contact with cosmology proceeds as follows. Using a @memological connection be-

tween the momentum scalkecharacterizing the coarseness of the Wilsonian grainiobtdse av-
erage effective action and the cosmological timehe authors in Refs. [16, 17] show that the
standard cosmological equations admit of the followingaexton:(g)er % = %/\Jr 87’TGNp, p+
3(1+ w)8p =0, A+8mpGy = 0, Gn(t) = Gn(k(t)), A(t) = A(k(t)) in a standard notation for

the densityp and scale factoa(t) with the Robertson-Walker metric representation as

ds? = dt? — a(t)? <

1—Kr2

so thatk = 0,1, —1 correspond respectively to flat, spherical and pseudersah 3-spaces for
constant time t. The equation of state is takernpég = wp(t), wherep is the pressure. The
attendant functional relationship between the respeatismentum scal& and the cosmological

timet is determined phenomenologically két) = % for some positive constar#t determined

from constraints on physically observable predictions.

Using the UV fixed points as discussed aboveki®y (k) = g. andA(k)/k? = A, obtained
from their phenomenological, exact renormalization gr@agymptotic safety) analysis, the authors
in Refs. [16, 17] show that the system given above admitsKfer O, a solution in the Planck
regime where X t < tgass With tassa “few” times the Planck timg, which joins smoothly onto
a solution in the classical regime;> tqass Which coincides with standard Friedmann-Robertson-
Walker phenomenology but with the horizon, flatness, scakeflarrison-Zeldovich spectrum, and
entropy problems all solved purely by Planck scale quanthysips.

While the dependencies of the fixed-point resgisA, on the cut-offs used in the Wilso-
nian coarse-graining procedure, for example, make thegrhenological nature of the analyses
in Refs. [16, 17] manifest, we note that the key propertieg,0fA, used for these analyses are
that the two UV limits are both positive and that the proc%ot* is only mildly cut-off/threshold

+r2(d6? + sir? 9d(p2)> (2.2)

function dependent. Here, we review the predictions in H&t§ for these UV limits as implied
by resummed quantum gravity(RQG) theory as presented id1]%nd show how to use them to
predict the current value @gk. For completeness, we start the next section with a brieéneof
the basic principles of RQG theory.

3. g« and A, in Resummed Quantum Gravity

We start with the prediction fag,, which we already presented in Refs. [9-12]. Given that the
theory we use is not very familiar, we recapitulate the mggpsin the calculation.

As the graviton couples to an elementary particle in theanefl regime which we shall re-
sum independently of the particle’s spin [24], we may useadasdield to develop the required
calculational framework, which we then extend to spinnirgtiples straightforwardl?/. We fol-

ar-

low Feynman in Refs. [25, 26] and start with the Lagrangiansitg for the basic scalar-graviton
system:
1 1
L) =5 5RV=0+5 (9" 9, 00,¢ —M3d?) \/—g
1 . ! /s VA
= 2 {hHVJ\ huv,)\ —2nHH '”I“ hu,\ ,A’”UU hu’ma’}
(3.1)

+ 3 {0 %) [0 + Gréen,

1 = —
_ K2 [Eh/\php)\ (¢’u¢7u _ n%¢2) _ 2r7pp/h“php V¢’u¢,v] 4

Here,¢ (x) can be identified as the physical Higgs field as our repretemtecalar field for matter,
¢ (X),u = dud(x), andgyv(X) = Nuv + 2khyy (x) where we follow Feynman and expand about
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(a) (b)

Figure 1. Graviton loop contributions to the scalar propagagads the 4-momentum of the scalar.

Minkowski space so thaf,, = diag{1,—1,—1,—1}. We have introduced Feynman’s notation

Yuv = % (yw+yvu - nwypp) for any tensory,,ve'. The bare(renormalized) scalar boson mass

here ismy(m) and we set presently the small observed [21, 22] value ofdisenological constant
to zero so that our quantum gravitdw,,, has zero rest mass. We return to the latter point, however,

when we discuss phenomenology. Feynman [25, 26] has eslentorked out the Feynman rules
for (3.1), including the rule for the famous Feynman-Fadeleepov [25,27, 28] ghost contribution
required for unitarity with the fixing of the gauge (we use tfauge of Feynman in Ref. [25],

o#h,, = 0). For this material we refer to Refs. [25,26]. We turn novedily to the quantum loop
corrections in the theory in (3.1).
Referring to Fig. 1, we have shown in Refs. [9-11] that thgdavirtual IR effects in the

respective loop integrals for the scalar propagator in tyrargeneral relativity can be resummed
: i ieBg (k) .
to theexact resultiAk (k) = k2—mz—lzs(k)+is = kz_lrfﬂg_zg+is = iAF (K) [resummedfor (A = k2 —nP)

d4¢ 1

B”(K) = —2i 2k4f_7

g(k) = — 2K K e T T a2 7e
1

(02 +2tk+A+ig)?

kAR (P
e \met k)

where the latter form holds for the UV(deep Euclidean) regiso thatr (K)|resummedialls faster
than any power ofk?| — by Wick rotation, the identification-|k?| = k? in the deep Euclidean
regime gives immediate analytic continuation to the resuthe last line of (3.2) when the usual
—ig, £ | 0, is appended to?. An analogous result [9] holds for m=0. HereiZq(k) is the 1PI
scalar self-energy function so that- (k) is the exact scalar propagator. Esstarts ing'(k?), we
may drop it in calculating one-loop effects. When the reipeanalogs oiA’F(k)\resummeé are
used for the elementarﬁ/ particles, one-loop correctioadiaite. In fact, the use of our resummed

propagators renders all quantum gravity loops UV finite E'_]I is this attendant representation
of the quantum theory of general relativity that we hav kEsummed quantum gravity (RQG).

(3.2)

30ur conventions for raising and lowering indices in the seciine of (3.1) are the same as those in Ref. [26].
4These follow from the observation [9,24] that the IR limitbé coupling of the graviton to a particle is independent
of its spin.
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Indeed, when we use our resummed propagator results, asdegteo all the particles in
the SM Lagrangian and to the graviton itself, working nowhatihe complete theory? (x) =
2_;%2 —g(R—2A) +/—gLg, () whereLg,(x) is SM Lagrangian written in diffeomorphism in-
variant form as explained in Refs. [9, 11], we show in the R@s11] that the denominator for the
propagation of transvcerse-traceless modes of the graliéoomesNip, is the Planck massy +
ST(oP) +ie=qf— q436%—.;|fvf|gla where we have definet et = 3 sm particles Njl2(Ac()) = 2.56 % 10*
with I, defined [9-11] byta(A¢) = [ dxx3(1+x)~4~** and withA¢(j) = jM—mz and [9-11]n; equal

Pl

to the number of effective degrees of parti¢lerhe details of the derivation of the numerical value
of Coef are given in Refs. [9]. These results allow us to identify (v8eGy for Gy (0)) Gn (k) =

Gn/(1+ ;é&;\:z ) and to compute the UV limig. asg. = lime_., kG (k?) = 229 =~ 0.0442
Pl €

For the prediction foi,, we use the Euler-Lagrange equations to get Einstein’stiequas

Guv +A\Quv = _KZTuv (3.3)

in a standard notation whe@,, = R,y — 3Rg,v, Ryy is the contracted Riemann tensor, i is
the energy-momentum tensor. Working then with the reptasen g, = nuv + 2khy, for the flat
Minkowski metricn,, = diag(1,—1,—1,—1) we see that to isolatd in Einstein’s equation (3.3)
we may evaluate its VEV(vacuum expectation value of botesidOn doing this as described in
Refs. [9], we see that a scalar makes the contributioh given by

[ d% (Zkg)e—)\c(kz/(Zmz))In(kz/rnz+1) - e 1
2(2m)? K2+ P - N[G,z\,64p2

Ns = —8nGy 1, (3.4)

wherep =In A% and we have used the calculus of Refs. [9-11]. The standatttbose[9] then show
that a Dirac fermion contributes4 timesAg to A, so that the deep UV limit of\ then becomes,
allowing Gy (K) to run, A(K) —e_. k2., A = — 5555 5 j(—1)Finj /p? = 0.0817 whereF is the
fermion number ofj, n; is the effective number of degrees of freedomj @nd p; = p(Ac(m;)).
We note thai\, would vanish in an exactly supersymmetric theory.

For reference, the UV fixed-point calculated hei@,, A, ) = (0.04420.0817), can be com-
pared with the estimatdg,,A,) ~ (0.27,0.36) in Refs. [16,17]. In making this comparison, one

must keep in mind that the analysis in Refs. [16, 17] did noluide the specific SM matter action
and that there is definitely cut-off function sensitivityttee results in the latter analyses. What is
important is that the qualitative results tlgatand A, are both positive and are less than 1 in size
are true of our results as well. See Refs. [9] for furtherulsen of the relationship between our
{0., A} predictions and those in Refs. [16, 17].

4. An Estimate of A and Constraintson SUSY GUTS

The results here, taken together with those in Refs. [16dliw us to estimate the value of
N\ today. We take the normal-ordered form of Einstein’s equmati

The coherent state representation of the thermal densityixnthen gives the Einstein equa-
tion in the form of thermally averaged quantities withgiven by our result in (3.4) summed
over the degrees of freedom as specified above in lowest. otdeRef. [17!), it is argued that
the Planck scale cosmology description of inflation givesttansition time between the Planck
regime and the classical Friedmann-Robertson-Walker(JFiegime ad;, ~ 25p. (We discuss in

SWe note the use here in the integrand &§ 2ather than the &2 +m?) in Ref. [12], to be consistent wit =
—1 [29] for the vacuum stress-energy tensor.
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Refs. [9]on the uncertainty of this choicetgf) We thus start with the quantip (tir) = 87%(3'(2") =
_Mg'jk") Yi (*;)_ZFn" and employ the arguments in Refs. [3@Y, (s the time of matter-radiation equal-

ity) to get the first principles field theoretic estimate

—MB (1+Coer kG /(360nME))?  (=1)7
o4 2 o
2 3’
X = X (573)
ENE (4.2)
. —M3(1.0362%(—9.194x 10°3) (25)
- 64 t2

>~ (2.4x 10 3ev)*.

where we take the age of the universe totpe 13.7 x 10° yrs. In the latter estimate, the first
factor in the second line comes from the period frignto teq which is radiation dominated and
the second factor comes from the period frgto to which is matter dominate®l This estimate
should be compared with the experimental result {2%](to) [expt = ((2.3740.05) x 10-3eV)*.

To sum up, we believe our estimate@f(tp) represents some amount of progress in the long
effort to understand its observed value in quantum field rghe&vider_\tlz, the estimate is not a
precision prediction, as hitherto unseen degrees of fragdach as a high scale GUT theory, may
exist that have not been included in the calculation. _ _

~ We now comment on what would happen to our estimate if theneldvoe a GUT theory at
high scale. As is well-known, the main viable approacheslie/susy GUT’s and for definiteness,
we will use the susy SO(10) GUT model in Ref. [32] to illustréiow such theory might affect our
estimate of\. In this model, the break-down of the GUT gauge symmetry éddiv energy gauge
symmetry occurs with an intermediate stage with gauge glyp x SUor x U; x SJ(3)¢ where
the final break-down to the Standard Model [33, 34] gaugemr8u,_ x U; x SJ(3)¢, occurs at a
scaleMr 2 2TeV while the breakdown of global susy occurs at the (EW) sh&devhich satisfies
Mg > Ms. For our purposes the key observation is that susy mulipletnot contribute to our for-
mula for pa(tiy) when susy is not broken — there is exact cancellation betfezemons and bosons
in a given deghenerate susy multiplet. Thus only the the rakesy multiplets can contribute. In
the model at hand, these are just the multiplets associaitétive known SM particles and the
extra Higgs multiplet required by susy in the MSSM [35]. lewiof recent LHC results [36], we
take for illustration the valueldlr = 4Ms ~ 2.0TeV and set the following susy partner valueg:=
1.5(10)TeV =~ 15TeV, my = 1.0TeV, m; = 0.5TeV, myo = 04TeV, 1=1 my: &

. 5 5= L. 5 g — L1 5 ;= Y. 5 ¥0 — 5 yt =

e s ‘ X 05TeV,i=2,34" X

0.5TeV, i =1,2, mg= .5TeV, S=A°, H*, Hy, where we use a standard notation for the susy
partners of the known quarksé §), leptons{ < ¢) and gluonsG — G), and the EW gauge and
Higgs bosongf, %, W+, H, A%, H*, H, — ¥) with the extra Higgs particles denoted as usual [35]
by A%(pseudo-scalar)i*(charged) andHy(heavy scalar).g Ts the gravitino, for which we show
two examples of its mass for illustration. These particlesntgenerate the extra contribution

—_1)Fn; ~ . —_1)Fn;
A\Np7GUT = Zje{MSSM low energy susy partne}rs(p% = 1-13(1'12) x 102 tothe faCtONVP = Zj %
on the RHS of our equation fa (t;) for the two respective values of; called out by the paren-
theses. The corresponding valuepgfare—(1.67x 103eV)*(—(1.65x 10-3eV)*), respectively.
The sign of these results would appear to put them in conflitit the positive observed value

6The method of the operator field forces the vacuum energitesloov the same scaling as the non-vacuum excita-
tions.

’See also Ref. [31] for an analysis that suggests a valugaftip) that is qualitatively similar to this experimental
result.
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guoted above by many standard deviations, even when we #ilothie considerable uncertainty
in the various other factors multiplying), in our formula forpa (t;), all of which are positive in

our framework. This may be alleviated either by adding nertiglas to the model, approach (A),
or by allowing a soft susy breaking mass term for the grawitimat resides near the GUT scale

McuT, which is~ 4 x 10*GeV here [32], approach (B). In approach (A), we double the numbe
of quarks and leptons, but we invert the mass hierarchy legtvgeisy partners, so that the new
squarks and sleptons are lighter than the new quarks arwhkepThis can work as long as as we

increaseMg, Ms so that we have the new quarks and leptonigliagn ~ 3.4(3.3) x 10°TeV while
leaving their partners &l o, ~ .5TeV. For approach (B), the mass of the gravitino soft bregki
term should be set oy ~ 2.3 x 10'5GeV. More generally, our estimate in (4.2) can be used as a
constraint of general susy GUT models and we hope to explarie is more detail elsewhere.

Realistically, as we explain in Refs. [9], we stress that wiialy do not know the precise
value oft;, at this point to better than a couple of orders of magnitudiehvtranslate to an uncer-

tainty at the level of 1Hon our estimate ab,. We caution the reader to keep this in mind.

There is one further important matter that we have not meatlo the effect of the various
spontaneous symmetry vacuum energies orpgugstimate. From the standard methods we know
for example that the energy of the broken vacuum for the EW¥ castributes an amount of order

My, to pa. If we consider the GUT symmetry breaking we expect an amaisgontribution from
spontaneous symmetry breaking of ortiégt ;. When compared to the RHS of our equation for

pa(ter), which is ~ (—(1.03622W, /64)M3, ~ %Mél, we see that adding these effects thereto
) . ME Mt ~

would make relative changes in our results at the Ievei%é;M—‘gl’ >~ 1x 10 % and &, T

7 x 1077, respectively, where we use our valueMgyr given above in the latter evaluation for

definiteness. We ignore such small effects here.

We want however to stress again that the model Planck scalmatogy of Bonanno and
Reuter which we use is just that, a model. More work needs tiobe to remove from it the type
of uncertainties which we just elaborated in our estimat&.dfVe thank Profs. L. Alvarez-Gaume
and W. Hollik for the support and kind hospitality of the CERM Division and the Werner-
Heisenberg-Institut, MPI, Munich, respectively, whereaat of this work was done.
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