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1. Introduction

In Ref. [1], Weinberg suggested that the general theory of relativity may be asymptotically
safe, with an S-matrix that depends on only a finite number of observable parameters, due to the
presence of a non-trivial UV fixed point, with a finite dimensional critical surface in the UV limit.
Strong evidence has been calculated [2–7] using Wilsonian [8] field-space exact renormalization
group methods to support Weinberg’s asymptotic safety hypothesis for the Einstein-Hilbert the-
ory. A parallel but independent development [9–11], has shown [12] that the extension of the
amplitude-based, exact resummation theory of Ref. [13] to the Einstein-Hilbert theory leads to
UV-fixed-point behavior for the dimensionless gravitational and cosmological constants and to a
resummed theory, resummed quantum gravity, that is actually UV finite. More evidence for Wein-
berg’s asymptotic safety behavior has been calculated using causal dynamical triangulated lattice
methods in Ref. [14]1.

The results in Refs. [2–7], while impressive, involve cut-offs and some dependence on gauge
parameters which remain in the results to varying degrees even for products such as that for the UV
limits of the dimensionless gravitational and cosmological constants. Accordingly, we refer to the
approach in Refs. [2–7] as the ’phenomenological’ asymptotic safety approach. The above noted
dependencies are mild enough that the non-Gaussian UV fixed point found in these references is
probably a physical result. But, the results cannot be considered final until a rigorously cut-off
independent and gauge invariant calculation corroboratesthem. Our approach offers such a possi-
bility, as our results are both gauge invariant and cut-off independent. The results from Refs. [14]
involve lattice constant-type artifact issues – to be considered final they too need to be corroborated
by a rigorous calculation without such issues. Again, our approach offers a possible answer. The
stage is therefore prepared for us to try to make contact withexperiment.

Accordingly, we note that, in Refs. [16,17], it has been argued that the attendant phenomeno-
logical asymptotic safety approach in Refs. [2–7] to quantum gravity may indeed provide a real-
ization2 of the successful inflationary model [19,20] of cosmology without the need of the inflaton
scalar field: the attendant UV fixed point solution allows oneto develop Planck scale cosmology
that joins smoothly onto the standard Friedmann-Walker-Robertson classical descriptions. One ar-
rives at a quantum mechanical solution to the horizon, flatness, entropy and scale free spectrum
problems. In Ref. [12], we have shown that, in the new resummed theory [9–11] of quantum
gravity, we reproduce the properties as used in Refs. [16, 17] for the UV fixed point of quantum
gravity with “first principles” predictions for the fixed point values of the respective dimensionless
gravitational and cosmological constants. Here, we carry the analysis forward to arrive at an es-
timate for the observed cosmological constantΛ in the context of the Planck scale cosmology of
Refs. [16,17]. We comment on the reliability of the result, as it will be seen already to be relatively
close to the observed value [21, 22]. While we obviously do not want to overdo the closeness to
the experimental value, we feel that this again gives, at theleast, some more credibility to the new
resummed theory as well as to the methods in Refs. [2–7, 14]. We also show how the closeness of
our estimate to the observed value would constrain SUSY GUT models when this closeness is put
on a more firm basis. More reflections on such matters will be taken up elsewhere [23].

The discussion is organized as follows. We start by recapitulating in the next section the Planck
scale cosmology presented phenomenologically in Refs. [16,17]. We then review briefly in Section
3 our results in Ref. [12] for the dimensionless gravitational and cosmological constants at the UV
fixed point. In Section 4, we combine the Planck scale cosmology scenario in Refs. [16, 17] with
our results to estimate the observed value of the cosmological constantΛ and we use it to constrain
SUSY GUTs.

2. Planck Scale Cosmology

We recall the Einstein-Hilbert theory

L (x) =
1

2κ2

√−g(R−2Λ) (2.1)

whereR is the curvature scalar,g is the determinant of the metric of space-timegµν , Λ is the cos-
mological constant andκ =

√
8πGN for Newton’s constantGN . The authors in Ref. [16,17], using

1We also note that the model in Ref. [15] realizes many aspectsof the effective field theory implied by the anomalous
dimension of 2 at the UV-fixed point but it does so at the expense of violating Lorentz invariance.

2The attendant choice of the scalek ∼ 1/t used in Refs. [16,17] was also proposed in Ref. [18].
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the phenomenological exact renormalization group for the Wilsonian [8] coarse grained effective
average action in field space, have argued that the attendantrunning Newton constantGN(k) and
running cosmological constantΛ(k) approach UV fixed points ask goes to infinity in the deep
Euclidean regime in the sense thatk2GN(k)→ g∗, Λ(k)→ λ∗k2 for k → ∞ in the Euclidean regime.

The contact with cosmology proceeds as follows. Using a phenomenological connection be-
tween the momentum scalek characterizing the coarseness of the Wilsonian graininessof the av-
erage effective action and the cosmological timet, the authors in Refs. [16, 17] show that the
standard cosmological equations admit of the following extension:( ȧ

a )2 + K
a2 = 1

3Λ+ 8π
3 GNρ , ρ̇ +

3(1+ ω) ȧ
a ρ = 0, Λ̇ + 8πρĠN = 0, GN(t) = GN(k(t)), Λ(t) = Λ(k(t)) in a standard notation for

the densityρ and scale factora(t) with the Robertson-Walker metric representation as

ds2 = dt2−a(t)2
(

dr2

1−Kr2 + r2(dθ2 +sin2θdφ2)

)

(2.2)

so thatK = 0,1,−1 correspond respectively to flat, spherical and pseudo-spherical 3-spaces for
constant time t. The equation of state is taken asp(t) = ωρ(t), where p is the pressure. The
attendant functional relationship between the respectivemomentum scalek and the cosmological
time t is determined phenomenologically viak(t) = ξ

t for some positive constantξ determined
from constraints on physically observable predictions.

Using the UV fixed points as discussed above fork2GN(k) ≡ g∗ andΛ(k)/k2 ≡ λ∗ obtained
from their phenomenological, exact renormalization group(asymptotic safety) analysis, the authors
in Refs. [16, 17] show that the system given above admits, forK = 0, a solution in the Planck
regime where 0≤ t ≤ tclass, with tclassa “few” times the Planck timetPl, which joins smoothly onto
a solution in the classical regime,t > tclass, which coincides with standard Friedmann-Robertson-
Walker phenomenology but with the horizon, flatness, scale free Harrison-Zeldovich spectrum, and
entropy problems all solved purely by Planck scale quantum physics.

While the dependencies of the fixed-point resultsg∗,λ∗ on the cut-offs used in the Wilso-
nian coarse-graining procedure, for example, make the phenomenological nature of the analyses
in Refs. [16, 17] manifest, we note that the key properties ofg∗, λ∗ used for these analyses are
that the two UV limits are both positive and that the productg∗λ∗ is only mildly cut-off/threshold
function dependent. Here, we review the predictions in Refs. [12] for these UV limits as implied
by resummed quantum gravity(RQG) theory as presented in [9–11] and show how to use them to
predict the current value ofΛ. For completeness, we start the next section with a brief review of
the basic principles of RQG theory.

3. g∗ and λ∗ in Resummed Quantum Gravity

We start with the prediction forg∗, which we already presented in Refs. [9–12]. Given that the
theory we use is not very familiar, we recapitulate the main steps in the calculation.

As the graviton couples to an elementary particle in the infrared regime which we shall re-
sum independently of the particle’s spin [24], we may use a scalar field to develop the required
calculational framework, which we then extend to spinning particles straightforwardly. We fol-
low Feynman in Refs. [25, 26] and start with the Lagrangian density for the basic scalar-graviton
system:

L (x) = − 1
2κ2R

√−g+
1
2

(

gµν∂µϕ∂νϕ −m2
oϕ2)√−g

=
1
2

{

hµν ,λ h̄µν ,λ −2η µµ ′
ηλλ ′

h̄µλ ,λ ′ησσ ′
h̄µ ′σ ,σ ′

}

+
1
2

{

ϕ,µϕ ,µ −m2
oϕ2}−κhµν

[

ϕ,µϕ,ν +
1
2

m2
oϕ2ηµν

]

−κ2
[

1
2

hλρ h̄ρλ (

ϕ,µϕ ,µ −m2
oϕ2)−2ηρρ ′hµρ h̄ρ ′νϕ,µϕ,ν

]

+ · · ·

(3.1)

Here,ϕ(x) can be identified as the physical Higgs field as our representative scalar field for matter,
ϕ(x),µ ≡ ∂µϕ(x), and gµν(x) = ηµν + 2κhµν(x) where we follow Feynman and expand about
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Figure 1: Graviton loop contributions to the scalar propagator.q is the 4-momentum of the scalar.

Minkowski space so thatηµν = diag{1,−1,−1,−1}. We have introduced Feynman’s notation
ȳµν ≡ 1

2

(

yµν + yν µ −ηµνyρ
ρ)

for any tensoryµν
3. The bare(renormalized) scalar boson mass

here ismo(m) and we set presently the small observed [21, 22] value of thecosmological constant
to zero so that our quantum graviton,hµν , has zero rest mass. We return to the latter point, however,
when we discuss phenomenology. Feynman [25,26] has essentially worked out the Feynman rules
for (3.1), including the rule for the famous Feynman-Faddeev-Popov [25,27,28] ghost contribution
required for unitarity with the fixing of the gauge (we use thegauge of Feynman in Ref. [25],
∂ µ h̄ν µ = 0). For this material we refer to Refs. [25,26]. We turn now directly to the quantum loop
corrections in the theory in (3.1).

Referring to Fig. 1, we have shown in Refs. [9–11] that the large virtual IR effects in the
respective loop integrals for the scalar propagator in quantum general relativity can be resummed

to theexact resulti∆′
F(k) = i

k2−m2−Σs(k)+iε = ieB′′g (k)

k2−m2−Σ′
s+iε ≡ i∆′

F(k)|resummedfor (∆ = k2−m2)

B′′
g(k) = −2iκ2k4

∫

d4ℓ

16π4

1
ℓ2−λ 2+ iε

1
(ℓ2 +2ℓk + ∆ + iε)2

=
κ2|k2|
8π2 ln

(

m2

m2 + |k2|

)

,

(3.2)

where the latter form holds for the UV(deep Euclidean) regime, so that∆′
F(k)|resummedfalls faster

than any power of|k2| – by Wick rotation, the identification−|k2| ≡ k2 in the deep Euclidean
regime gives immediate analytic continuation to the resultin the last line of (3.2) when the usual
−iε , ε ↓ 0, is appended tom2. An analogous result [9] holds for m=0. Here,−iΣs(k) is the 1PI
scalar self-energy function so thati∆′

F(k) is the exact scalar propagator. AsΣ′
s starts inO(κ2), we

may drop it in calculating one-loop effects. When the respective analogs ofi∆′
F(k)|resummed

4 are
used for the elementary particles, one-loop corrections are finite. In fact, the use of our resummed
propagators renders all quantum gravity loops UV finite [9–11]. It is this attendant representation
of the quantum theory of general relativity that we have called resummed quantum gravity (RQG).

3Our conventions for raising and lowering indices in the second line of (3.1) are the same as those in Ref. [26].
4These follow from the observation [9,24] that the IR limit ofthe coupling of the graviton to a particle is independent

of its spin.
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Indeed, when we use our resummed propagator results, as extended to all the particles in
the SM Lagrangian and to the graviton itself, working now with the complete theoryL (x) =

1
2κ2

√−g(R−2Λ)+
√−gLG

SM(x) whereLG
SM(x) is SM Lagrangian written in diffeomorphism in-

variant form as explained in Refs. [9,11], we show in the Refs. [9–11] that the denominator for the
propagation of transverse-traceless modes of the gravitonbecomes (MPl is the Planck mass)q2 +
ΣT (q2)+ iε ∼= q2−q4 c2,e f f

360πM2
Pl

, where we have definedc2,e f f = ∑SM particles jn jI2(λc( j))∼= 2.56×104

with I2 defined [9–11] byI2(λc) =
∫ ∞

0 dxx3(1+x)−4−λcx and withλc( j) =
2m2

j

πM2
Pl

and [9–11]n j equal

to the number of effective degrees of particlej. The details of the derivation of the numerical value
of c2,e f f are given in Refs. [9]. These results allow us to identify (weuseGN for GN(0)) GN(k) =

GN/(1+
c2,e f f k2

360πM2
Pl

) and to compute the UV limitg∗ asg∗ = limk2→∞ k2GN(k2) = 360π
c2,e f f

∼= 0.0442.

For the prediction forλ∗, we use the Euler-Lagrange equations to get Einstein’s equation as

Gµν + Λgµν = −κ2Tµν (3.3)

in a standard notation whereGµν = Rµν − 1
2Rgµν , Rµν is the contracted Riemann tensor, andTµν is

the energy-momentum tensor. Working then with the representationgµν = ηµν +2κhµν for the flat
Minkowski metricηµν = diag(1,−1,−1,−1) we see that to isolateΛ in Einstein’s equation (3.3)
we may evaluate its VEV(vacuum expectation value of both sides). On doing this as described in
Refs. [9], we see that a scalar makes the contribution toΛ given by5

Λs = −8πGN

∫

d4k
2(2π)4

(2k2
0)e

−λc(k2/(2m2)) ln(k2/m2+1)

k2 + m2
∼= −8πGN [

1

G2
N64ρ2

], (3.4)

whereρ = ln 2
λc

and we have used the calculus of Refs. [9–11]. The standard methods [9] then show
that a Dirac fermion contributes−4 timesΛs to Λ, so that the deep UV limit ofΛ then becomes,
allowing GN(k) to run,Λ(k)−→k2→∞ k2λ∗, λ∗ = − c2,e f f

2880 ∑ j(−1)Fj n j/ρ2
j
∼= 0.0817 whereFj is the

fermion number ofj, n j is the effective number of degrees of freedom ofj andρ j = ρ(λc(m j)).
We note thatλ∗ would vanish in an exactly supersymmetric theory.

For reference, the UV fixed-point calculated here,(g∗,λ∗) ∼= (0.0442,0.0817), can be com-
pared with the estimates(g∗,λ∗) ≈ (0.27,0.36) in Refs. [16, 17]. In making this comparison, one
must keep in mind that the analysis in Refs. [16, 17] did not include the specific SM matter action
and that there is definitely cut-off function sensitivity tothe results in the latter analyses. What is
important is that the qualitative results thatg∗ andλ∗ are both positive and are less than 1 in size
are true of our results as well. See Refs. [9] for further discussion of the relationship between our
{g∗, λ∗} predictions and those in Refs. [16,17].

4. An Estimate of Λ and Constraints on SUSY GUTS

The results here, taken together with those in Refs. [16, 17], allow us to estimate the value of
Λ today. We take the normal-ordered form of Einstein’s equation

: Gµν : +Λ : gµν := −κ2 : Tµν : . (4.1)

The coherent state representation of the thermal density matrix then gives the Einstein equa-
tion in the form of thermally averaged quantities withΛ given by our result in (3.4) summed
over the degrees of freedom as specified above in lowest order. In Ref. [17], it is argued that
the Planck scale cosmology description of inflation gives the transition time between the Planck
regime and the classical Friedmann-Robertson-Walker(FRW) regime asttr ∼ 25tPl . (We discuss in

5We note the use here in the integrand of 2k2
0 rather than the 2(~k2 + m2) in Ref. [12], to be consistent withω =

−1 [29] for the vacuum stress-energy tensor.

5
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Refs. [9]on the uncertainty of this choice ofttr.) We thus start with the quantityρΛ(ttr)≡ Λ(ttr)
8πGN (ttr)

=

−M4
Pl (ktr)
64 ∑ j

(−1)F n j

ρ2
j

and employ the arguments in Refs. [30] (teq is the time of matter-radiation equal-

ity) to get the first principles field theoretic estimate

ρΛ(t0) ∼=
−M4

Pl(1+ c2,e f f k2
tr/(360πM2

Pl))
2

64 ∑
j

(−1)F n j

ρ2
j

× t2
tr

t2
eq
× (

t2/3
eq

t2/3
0

)3

∼= −M2
Pl(1.0362)2(−9.194×10−3)

64
(25)2

t2
0

∼= (2.4×10−3eV )4.

(4.2)

where we take the age of the universe to bet0 ∼= 13.7× 109 yrs. In the latter estimate, the first
factor in the second line comes from the period fromttr to teq which is radiation dominated and
the second factor comes from the period fromteq to t0 which is matter dominated6. This estimate
should be compared with the experimental result [22]7 ρΛ(t0)|expt

∼= ((2.37±0.05)×10−3eV )4.
To sum up, we believe our estimate ofρΛ(t0) represents some amount of progress in the long

effort to understand its observed value in quantum field theory. Evidently, the estimate is not a
precision prediction, as hitherto unseen degrees of freedom, such as a high scale GUT theory, may
exist that have not been included in the calculation.

We now comment on what would happen to our estimate if there would be a GUT theory at
high scale. As is well-known, the main viable approaches involve susy GUT’s and for definiteness,
we will use the susy SO(10) GUT model in Ref. [32] to illustrate how such theory might affect our
estimate ofΛ. In this model, the break-down of the GUT gauge symmetry to the low energy gauge
symmetry occurs with an intermediate stage with gauge groupSU2L × SU2R ×U1× SU(3)c where
the final break-down to the Standard Model [33,34] gauge group, SU2L ×U1×SU(3)c, occurs at a
scaleMR & 2TeV while the breakdown of global susy occurs at the (EW) scaleMS which satisfies
MR > MS. For our purposes the key observation is that susy multiplets do not contribute to our for-
mula forρΛ(ttr) when susy is not broken – there is exact cancellation betweenfermions and bosons
in a given degenerate susy multiplet. Thus only the the broken susy multiplets can contribute. In
the model at hand, these are just the multiplets associated with the known SM particles and the
extra Higgs multiplet required by susy in the MSSM [35]. In view of recent LHC results [36], we
take for illustration the valuesMR

∼= 4MS ∼ 2.0TeV and set the following susy partner values:mg̃
∼=

1.5(10)TeV, mG̃
∼= 1.5TeV, mq̃

∼= 1.0TeV, mℓ̃
∼= 0.5TeV, mχ̃0

i

∼=
{

0.4TeV, i = 1

0.5TeV, i = 2,3,4
, mχ̃±

i

∼=

0.5TeV, i = 1,2, mS = .5TeV, S = A0, H±, H2, where we use a standard notation for the susy
partners of the known quarks(q ↔ q̃), leptons(ℓ ↔ ℓ̃) and gluons(G ↔ G̃), and the EW gauge and
Higgs bosons(γ , Z0, W±, H, A0, H±, H2 ↔ χ̃) with the extra Higgs particles denoted as usual [35]
by A0(pseudo-scalar),H±(charged) andH2(heavy scalar). ˜g is the gravitino, for which we show
two examples of its mass for illustration. These particles then generate the extra contribution

∆Wρ,GUT = ∑ j∈{MSSM low energy susy partners}
(−1)F n j

ρ2
j

∼= 1.13(1.12)×10−2 to the factorWρ ≡∑ j
(−1)F n j

ρ2
j

on the RHS of our equation forρΛ(ttr) for the two respective values ofmg̃ called out by the paren-
theses. The corresponding values ofρΛ are−(1.67×10−3eV)4(−(1.65×10−3eV)4), respectively.
The sign of these results would appear to put them in conflict with the positive observed value

6The method of the operator field forces the vacuum energies tofollow the same scaling as the non-vacuum excita-
tions.

7See also Ref. [31] for an analysis that suggests a value forρΛ(t0) that is qualitatively similar to this experimental
result.
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quoted above by many standard deviations, even when we allowfor the considerable uncertainty
in the various other factors multiplyingWρ in our formula forρΛ(ttr), all of which are positive in
our framework. This may be alleviated either by adding new particles to the model, approach (A),
or by allowing a soft susy breaking mass term for the gravitino that resides near the GUT scale
MGUT , which is∼ 4×1016GeV here [32], approach (B). In approach (A), we double the number
of quarks and leptons, but we invert the mass hierarchy between susy partners, so that the new
squarks and sleptons are lighter than the new quarks and leptons. This can work as long as as we
increaseMR, MS so that we have the new quarks and leptons atMHigh ∼ 3.4(3.3)×103TeV while
leaving their partners atMLow ∼ .5TeV. For approach (B), the mass of the gravitino soft breaking
term should be set tomg̃ ∼ 2.3×1015GeV. More generally, our estimate in (4.2) can be used as a
constraint of general susy GUT models and we hope to explore such in more detail elsewhere.

Realistically, as we explain in Refs. [9], we stress that we actually do not know the precise
value ofttr at this point to better than a couple of orders of magnitude which translate to an uncer-
tainty at the level of 104 on our estimate ofρΛ. We caution the reader to keep this in mind.

There is one further important matter that we have not mentioned: the effect of the various
spontaneous symmetry vacuum energies on ourρΛ estimate. From the standard methods we know
for example that the energy of the broken vacuum for the EW case contributes an amount of order
M4

W to ρΛ. If we consider the GUT symmetry breaking we expect an analogous contribution from
spontaneous symmetry breaking of orderM4

GUT . When compared to the RHS of our equation for

ρΛ(ttr), which is∼ (−(1.0362)2Wρ/64)M4
Pl ≃ 10−2

64 M4
Pl, we see that adding these effects thereto

would make relative changes in our results at the level of64
10−2

M4
W

M4
Pl

∼= 1× 10−65 and 64
10−2

M4
GUT

M4
Pl

∼=
7× 10−7, respectively, where we use our value ofMGUT given above in the latter evaluation for
definiteness. We ignore such small effects here.

We want however to stress again that the model Planck scale cosmology of Bonanno and
Reuter which we use is just that, a model. More work needs to bedone to remove from it the type
of uncertainties which we just elaborated in our estimate ofΛ. We thank Profs. L. Alvarez-Gaume
and W. Hollik for the support and kind hospitality of the CERNTH Division and the Werner-
Heisenberg-Institut, MPI, Munich, respectively, where a part of this work was done.
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