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We present a formulation of the operator product expansion that is infrared finite to all orders in

the attendant massless non-Abelian gauge theory coupling constant, which we will often-times

associate with the QCD theory, the theory that we actually have as our primary objective in view

of the operation of the LHC at CERN. We make contact in this waywith the recently introduced

IR-improved DGLAP-CS theory and point-out phenomenological implications accordingly, with

an eye toward the precision QCD theory for LHC physics.
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1. Introduction

The sucessful operation of the LHC at both 7 and 8 TeV cms energies has opened the era of
precision QCD, which features predictions for QCD processes at the total precision tag of 1% or
better. The need for exact, amplitude-based resummation oflarge higher order effects is becoming
more and more acute. Here, we revisit the pioneering use of Wilson operator product expansion
(OPE) methods, as presented and applied by the authors in Refs. [1, 2] for short-distance limits of
physical processes especially as it is realized in the DGLAP-CS [3, 4] theory. We do this from the
standpoint of resummation of the attendant large infrared effects insofar as they afford application
of the corresponding parton model representation to LHC precision physics. We thus make contact
with the IR-improved DGLAP-CS theory in Refs. [5–7].

The infrared divergent nature of the usual formulation of Wilson’s expansion in massless gauge
theory is well-known [8–10] to some; for, already at one-loop, the respective leading twist operator
matrix elements between fundamental particle states are ingeneral infrared divergent and must
be evaluated at off-shell (Euclidean) points in massless gauge theory as shown in Refs. [8–10].
The attendant coefficient functions in the OPE which encode the leadingQ2 dependence of the
expansion are in general infrared divergent order-by-order in renormalized perturbation theory.
All such infrared divergences cancel in physically observable (hadronic) matrix elements of the
expansion so that, from the standpoint of such observables,the issue is one of optimizing, from the
standpoint of precision, the rearrangement of the large infrared effects that remain after all infrared
divergences have canceled. We choose to resum these large infrared effects so that we reformulate
the OPE in such away that the respective expansion components are infrared finite. In addition, we
show how the new IR-improved DGLAP-CS theory in Ref. [5–7] arises naturally in this context.
For a givenexactorder in the loop expansion for the coefficient functions andrespective operator
matrix elements the IR-improved expansion should be closerto experiment.

The discussion proceeds as follows. In the next section, we briefly review the formulation of
the OPE following the arguments used in Refs. [8–10] for the analysis of the proto-typical physical
application of the method, deep-inelastic lepton-nucleonscattering [11]. In Section 3, we improve
it so that its hard coefficient functions are IR finiteand we make contact with the IR-improved
DGLAP-CS theory [5–7]. In Section 3, we also give our phenomenological summary remarks.

2. Recapitulation of the OPE

We use the deep inelastic electron-proton scattering problem treated by Bjorken [12] as our
starting point:e−(ℓ)+ p(pp) → e−(ℓ′)+X(pX) in an obvious notation as illustrated in Fig. 1. We
usex≡ xB j = Q2/(2mpν) for Bjorken’s scaling variable which has the parton model interpretation
as the struck parton’s momentum fraction whenν = qpp/mp with q = ℓ− ℓ′, Q2 = −q2. In the
Fig. 1, the parton momenta arepi(p′i) before(after) the hard interaction process. Our interest is the
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Figure 1: Deep inelastic electron-proton scattering:q = ℓ− ℓ′, ν = qpp/mp, x≡ xB j = −q2/(2mpν), ℓ(ℓ′)

is the four-momentum of the initial(final)e−, pA is the four-momentum ofA, A = a, p, wherea is a parton.

limit of Bjorken, limB j, in which we takeQ2 → ∞ with x fixed. In this limit, where for reasons
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of pedagogy we focus on the photon exchange in Fig. 11, the standard methods can be used to
represent the imaginary part of the respective current-proton forward scattering amplitude as

WEM
αβ (pp,q) =

1
2π

∫

d4yeiqy < p|[JEM
β (y),JEM

α (0)]|p >

= (−gαβ +qαqβ /q2)W1(ν ,q2)

+
1

m2
p
(pp−qqpp/q2)α(pp−qqpp/q2)βW2(ν ,q2)

(2.1)

Here, JEM
α (y) is the hadronic electromagnetic current andW1,2 are the usual deep inelastic the

structure functions, which exhibit [11] Bjorken scaling already atQ2∼= 1+GeV2, precocious scaling
– we return to this point below. Henceforward we drop the superscript onJEM and we always
understand the average over the spin of the proton. In Bjorken’s limit, we have limB j mpW1(ν ,q2) =
F1(x), limB j νW2(ν ,q2) = F2(x) for the scaling limitsF1,2. The QCD theory of Gross, Wilczek and
Politzer [2] provides an explanation of the observed Bjorken scaling behavior via Wilson’s OPE.

In Bjorken’s limit, the value of the integral in (2.1) is dominated the regions which are well-
known to correspond to the tip of the light-cone [13]. In thisregime, we get the Wilson OPE [8–10]

Jβ (y)Jα(0) =
1
2

gβ α

(

∂
∂y

)2 1
y2− iεy0

∞

∑
n=0

∑
j

C(n)
j ,1(y2− iεy0)O

j
µ1···µn(0)yµ1 · · ·yµn

+
1

y2− iεy0

∞

∑
n=0

∑
j

C(n)
j ,2(y2− iεy0)O

j
β αµ1···µn

(0)yµ1 · · ·yµn + · · · ,

(2.2)

where we have neglected gradient terms without loss of content for our purposes here and as usual
ε ↓ 0. We also note that{O j

µ1···µn(y)} are traceless, symmetric of twist = dimension -spin = 2 [13].
The · · · represent operators that are suppressed by powers ofq2 to any finite order in perturbation
theory. The dimensionless coefficient c-number functions{C(n)

j,k} can be computed in renormalized
perturbation theory.

If we define

< p|O j
µ1···µn(0)|p > |spin averaged= in

1
mp

ppµ1
· · · ppµn

Mn
j + · · · , (2.3)

where the second· · · denotes trace-terms, we get [8–10,14]
∫ 1

0
dxxnF1(x,q

2) = ∑
j

C̄(n+1)
j,1 (q2)Mn+1

j ,

∫ 1

0
dxxnF2(x,q

2) = ∑
j

C̄(n)
j,2(q2)Mn+2

j ,

(2.4)

where [8]

C̄(n)
j,k (q2) =

1
2

i(q2)n+1
(

−
∂

∂q2

)n∫

d4yeiqy
C(n)

j,k (y2)

y2− iεy0
. (2.5)

TheC̄(n) satisfy the Callan-Symanzik equation [4]:
[(

µ
∂

∂ µ
+ β (g)

∂
∂g

)

δi j − γ(n)
i j (g)

]

C(n)
j,k = 0 (2.6)

1As it is well-known, adding in the effects of the Z exchange isstraightforward and does not require any essentially
new methods that are not already exhibited by what we do for the photon exchange case.
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whereµ denotes the renormalization scale,β (g) = µ ∂g
∂ µ for the renormalized couplingg, and the

anomalous dimension matrixγ(n)
i j (g) is given by

γ(n)
i j (g) =

(

Z−1
O µ

∂
∂ µ

ZO

)

i j
|g0,regularization fixed (2.7)

where the operatorsO(n)
j ≡ O j

µ1···µn are renormalized via [8,9]

O(n)
i ≡ O(n)

i,R = ∑
j

O(n)
j,bare

(

Z−1
O

)

ji (2.8)

in a standard notation. The implied behavior from the solution of (2.6) for the RHS of (2.4) in
Bjorken’s limit in the asymptotically free theory QCD in Ref. [2] agrees with experiment [11].
Here, we discuss the IR-improvement of theC(n)

j,k , Mn
j .

3. IR-Improved OPE

To facilitate isolation of the infrared aspects of theC(n)
j,k we focus on the parton level ver-

sion [15–20] of hadronic tensorWαβ which for definiteness we associate with a fermionF in the
underlying asymptotically free theory(QCD):

WF
αβ (pF ,q) =

1
2π

∫

d4yeiqy < pF |[Jβ (y),Jα (0)]|pF >

= (2π)3∑
X

δ (q+ pF − pX) < pF |Jβ (0)|pX >< pX|Jα(0)|pF >,
(3.1)

where we use the fact thatq0 > 0 to drop the remaining term in the commutator and we always
average over the spin of the fermionF, as we do for the protonp. The RHS of (3.1) and that of
(2.1) involve the same OPE.

We first isolate [5,6] the dominant incoming line virtual IR divergences in the matrix element
MX,α ≡< pX|Jα(0)|pF > via the formula

MX,α = eαs BQCD < pX|Jα(0)|pF >IRI−virt , (3.2)

whereBQCD is given in Refs. [5,6]. One computes< pX|Jα(0)|pF >IRI−virt from < pX|Jα(0)|pF >
by comparing the coefficients of the powers ofαs ≡ g2/(4π) on both sides of (3.2) iteratively.

Introducing (3.2) into (3.1), we get

WF
αβ (pF ,q) = (2π)3∑

X
δ (q+ pF − pX)e2αsℜBQCD

IRI−virt < pF |Jβ (0)|pX >

< pX|Jα(0)|pF >IRI−virt .
(3.3)

To isolate the leading soft, spin independent incoming linereal emission infrared function we
separate{X} into its multiple gluon subspaces via

{X} = {X : X = X′⊗{G1⊗ . . .⊗Gn}, for somen≥ 0,X′ is non-gluonic}. (3.4)

This allows us to write

e2αsℜBQCD
IRI−virt < pF |Jβ (0)|pX > < pX|Jα(0)|pF >IRI−virt

= e2αsℜBQCD

[

S̃QCD(k1) · · · S̃QCD(kn) IRI−virt < pF |Jβ (0)|pX′ >

< pX′ |Jα(0)|pF >IRI−virt + · · ·+ IRI−virt& real < pF |Jβ (0)|pX′ ,k1, · · · ,kn >

< pX′ ,k1, · · · ,kn|Jα(0)|pF >IRI−virt& real

]

,

(3.5)
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where the real infrared functioñSQCD(k) is given in Refs. [5, 6]. The IR-improved quantities
IRI−virt& real < pF |Jβ (0)|pX > < pX |Jα(0)|pF >IRI−virt& real are defined iteratively from (3.2),(3.5)
to all orders inαs and they no longer contain the infrared singularities associated toBQCD and to
S̃QCD, although, because of the non-Abelian infrared algebra of the theory, they do contain other
IR singularities which cancel in the structure functions bythe KNL theorem for massless and
massive [21] fundamental fermions.

Using (3.5) in (3.1) we get

WF
βα(pF ,q) = (2π)3∑

X

δ (q+ pF − pX)e2αsℜBQCD

[

S̃QCD(k1) · · · S̃QCD(kn)

IRI−virt < pF |Jβ (0)|pX′ > < pX′ |Jα(0)|pF >IRI−virt + · · ·

+ IRI−virt& real < pF |Jβ (0)|pX′ ,k1, · · · ,kn >

< pX′ ,k1, · · · ,kn|Jα(0)|pF >IRI−virt& real

]

=
1

2π

∫

d4y∑
X′

∑
n

∫

Πn
j=1

d3k j

k0
j

eSUMIR(QCD)ei(q+pF−pX′−∑ j kj )+DQCD

IRI−virt& real < pF |Jβ (0)|pX′ ,k1, · · · ,kn >

< pX′ ,k1, · · · ,kn|Jα(0)|pF >IRI−virt& real

=
1

2π

∫

d4yeiqyeSUMIR(QCD)+DQCD

IRI−virt& real < pF |[Jβ (y),Jα (0)]|pF >IRI−virt& real,

(3.6)

where
SUMIR(QCD) = 2αsℜBQCD+2αsB̃QCD(Kmax),

2αsB̃QCD(Kmax) =
∫

d3k
k0 S̃QCD(k)θ(Kmax−k),

DQCD =
∫

d3k
k

S̃QCD(k)
[

e−iy·k−θ(Kmax−k)
]

, (3.7)

and we note that (3.6) does not depend onKmax. Using the standard partonic view, where

Wβα = ∑
a

∫ 1

0

dx
x

Fa(x)W
a

βα (3.8)

for appropriately defined parton distribution functions{Fa}, we introduce (2.2) into (3.6) and use
(2.1) to get the IR-improved results

∫ 1

0
dxxnF1(x,q

2) = ∑
j

˜̄Cn+1
j,1 (q2)M̃n+1

j ,

∫ 1

0
dxxnF2(x,q

2) = ∑
j

˜̄Cn
j,2(q

2)M̃n+2
j ,

(3.9)

where [8]

˜̄C(n)
j,k (q2) =

1
2

i(q2)n+1
(

−
∂

∂q2

)n∫

d4yeiqyeSUMIR(QCD)+DQCD
C̃(n)

j,k (y2)

y2− iεy0
(3.10)
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and now

< p|Õ j
µ1···µn(0)|p > |spin averaged≡

IRI−virt& real < p|O j
µ1···µn(0)|p >IRI−virt& real |spin averaged= in

1
mp

ppµ1
· · · ppµn

M̃n
j

+ · · · ,

(3.11)

where the second· · · again denotes trace-terms and the{C̃(n)
j,k} are the respective (new) IR-improved

OPE coefficient functions. These latter functions satisfy the analogous Callan-Symanzik equa-
tion [4] to (2.6) with a new anomalous dimension matrixγ̃(n)

i j (g) determined by the renormalization
properties of the IR-improved matrix elements in (3.11). Inwriting (3.10) we work to one-loop
order in the various coefficients in this paper.

The new matrix̃γ(n)
i j (g) can be obtained from the pioneering analysis of the authors in Ref. [19,

20]. Working from (3.8, the authors in Ref. [19] make contactwith the unimproved matrixγ(n)
i j (g)

as follows. For the non-singlet operator [8]NOF,b(x)= 1
2 iN−1Sψ̄(y)γµ1∇µ2 · · ·∇µNλ bψ(y)− trace terms,

where∇µ = ∂µ + igτaAa
µ is the covariant derivative,λ b is a flavor group generator andSdenotes

symmetrization with respect to the indicesµ1 · · ·µn, the authors in Ref. [19] show that the following
relation holds:

−γ(N)(αs) = 2
∫ 1

−1
dxxN−1[Pqq(x,αs)θ(x)−Pqq̄(−x,αs)θ(−x)]

= 2[Pqq(N,αs)+ (−1)NPqq̄(N,αs)]

(3.12)

where

F(N) =

∫ 1

0
dxxN−1F(x)

and thePBA are the usual DGLAP-CS [3,4] splitting kernels defined in theconvention of Ref. [19]
andγ(N)(αs) is the respective anomalous dimension of the operatorNOF,b.

In Ref. [22], we show that one can apply our IR-improvement calculus as illustrated above to
the arguments in Refs. [19] to get the respective IR-improved anomalous dimension as

−γ̃(N)(αs) = 2
αs

2π
[Pexp

qq (N,αs)+ (−1)NPexp
qq̄ (N,αs)] (3.13)

where thePexp
qq , Pexp

qq̄ are the respective IR-improved kernels as introduced in Refs. [5,6], where we
advise that the notation of Ref. [19] differs from that in Refs. [5,6] by whether or not one includes
the factorαs/(2π) on the RHS of (3.12) in the definition of the kernels. This yields at IR-improved
one-loop level the identifications

−γ̃(N)(αs)i j = 2
αs

2π
Pexp

i j (N) (3.14)

where the labelsi, j span the usual values for the one-loop anomalous dimension matrix for the
evolution of the parton distributions as given in Refs. [3, 4, 8–10] for example. This establishes
in a rigorous way the connection between the IR-improved DGLAP-CS theory in Ref. [5, 6] and
the OPE methods of Wilson as used by Refs. [8–10] in the study of deep inelastic lepton-nucleon
scattering.

Evidently, this connection may be manifested in the analysis of other physical processes as
well. We refer the reader to Refs. [6, 7] wherein the new precision-baseline MC Herwiri1.031
which realizes the IR-improved DGLAP-CS kernels has been introduced and compared to the
Tevatron data [23, 24] on single Z production. Its application to the various physical processes at
LHC is in progress [25], where we need to stress that Herwiri1.031 can be applied toany process
to which Herwig6.5 [26] can be applied and that it interfacesto MC@NLO [27] thesame way
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that does Herwig6.5. As we have shown in Refs. [6, 7], we have an improved agreement between
the IR-improved MC’s shower and the Tevatron data with no need of an abnormally large intrinsic
transverse momentum parameter, PTRMS∼ 2GeV in the notation of Herwig [26], as it is required
for similar agreement with Herwig6.5 [28]. We point-out that, consistent with the precociousness
of Bjorken scaling, the IR-improved MC Herwiri.031 gives usa paradigm for reaching a precision
QCD MC description of the LHC data, on an event-by-event basis with realistic hadronization from
the Herwig6.5 environment, that does not involve an ad hoc hard scale parameter, where we define
“hard” relative to the observed precociousness of Bjorken scaling. The discussion above shows
that this paradigm has a rigorous basis in quantum field theory. In closing, we thank Prof. Ignatios
Antoniadis for the support and kind hospitality of the CERN TH Unit while part of this work was
completed.
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