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Towards Relativistic Skyrmions Marcus A. C. Torres

1. Introduction

Skyrmions are solitons, classical, static solution from NLσM of pions [1] and they are identi-
fied as baryons in such model. It is a model with chiral Lagrangean and spontaneous chiral symm
breaking. It has attracted renewed interest as a simplified description of baryons in the large Nc

limit of QCD. Here we review the work presented in [2] where we show a simple way to overcome
its static or slow moving condition, extending it to a relativistic framework.

The static properties of baryons in the Skyrme model (skyrmions) have been studied in [3]
, where baryonic quantum states emerge from a canonical quantization of the soliton moduli. In
[4], Sakai and Sugimoto derive the Skyrme model as the 3 + 1 dimensional pion effective theory
descending from the dynamics of the gauge fields living on flavor D8-branes that probe the D4-
brane geometry generated by a stack of color branes.

Here, after introducing the Skyrme model and the soliton canonical quantization in section 2,
we calculate relativistic baryon wave functions in their helicity eigenstates (section 3) generalizing
the results of [3] by boosting wave functions in the momentum direction. We show that the state
representation is in a form compatible with the Dirac spinor representation. In section 4, as an
example we show how to obtain form factors from the Lorentz tensorial decomposition of matrix
elements of baryonic currents in our relativistic approach.

2. Skyrme Model

Skyrmions are soliton solutions of a nonlinear effective field theory of pions. The action of the
Skyrme model is given by

S =
∫

d4x
(

f 2
π

4
tr
(
U−1

∂µU
)2

+
1

32e2 tr
[
U−1

∂µU,U−1
∂νU

]2)
(2.1)

where the pion fields π(xµ) are encoded in the SU(2) valued Skyrme field,

U(xµ) =
σ(xµ)I+π i(xµ) · τ i

fπ

= eiπ(xµ )/ fπ (weakpionfield limit),

where σ2(xµ)+~π2(xµ) = f 2
π . U transforms as U(xµ)→ gLU(xµ)g−1

R under the chiral symmetry
SU(2)L×SU(2)R present in the Lagrangian.

The Skyrmion is a static solution that goes to unity value at infinity breaking chiral symmetry
to the diagonal subgroup. In this case U becomes a map

U : R3 +{∞}= S3→ SU(2)≡ S3 (2.2)

and a topological charge nB ∈ π3(SU(2)) = Z is identified with the baryon number.

2.1 SU(2) collective coordinates

We begin by reviewing the moduli space approximation method to quantize Skyrmions. The
fundamental idea [3] is to realize that there is a moduli of soliton solution given by SU(2) rotations
of a given one, U0, and define a slowly moving soliton by a time dependent rotation,

U(t,xM) = VU0(xM,XM(t))V−1, (2.3)
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where V = V (t,xM) is an SU(2) element and XM, M = {1, . . . ,3}, represents the position of the
soliton in the spatial R3. Introducing the collective coordinates aaa(t) = a4(t)+ iaa(t)τa as a point
in S3 representing the SU(2) orientation, we note V (t,x)→ aaa(t) as x→ ∞.

When aaa(t)Uoaaa−1(t) is replaced in the original Lagrangian, a new Lagrangian emerge,

L =−M +2λ

4

∑
i=1

(ȧi)2 (2.4)

Introducing conjugate momenta πi = ∂L/∂ ȧi =−i ∂

∂ai
, we find the Hamiltonian:

H = M +λ∇
2
S3 (2.5)

The eigenstates (wavefunctions) are factorized into radial and spherical harmonics compo-
nents. On the S3, they are scalar spherical harmonics and are known to be homogenous polynomi-
als

T (l)(aI) = CI1···Il aI1 · · ·aIl , (2.6)

where CI1···Il is a traceless symmetric tensor of rank l.
The dimension of the tensor C and therefore the dimension of the space of spherical harmonics

of degree l, Hl is (l + 1)2. The space Hl is a representation of the rotation group SO(4) and
corresponds to the (Sl/2,Sl/2) representation of (SU(2)× SU(2))/Z2 ' SO(4). Sl/2 denotes the
spin l/2 representation of SU(2), with dimSl/2 = l +1. Under group rotation aaa transforms as

aaa→ gI aaagJ , gI,J ∈ SU(2)I,J . (2.7)

where SU(2)I and SU(2)J are identified with the isospin rotation and the spatial rotation, respec-
tively.

3. Static and Relativistic Baryons

The collective state is quantized considering slowly moving solitons. We will extend it to
relativistic baryons by simply treating them as static solitons boosted in a given direction. First,
we review the spherical harmonics tensors to static nucleons. The lowest states are at l = 1 and the
tensors become linear in aI coordinates. They correspond to states with spin and isospin 1/2 and
we identify them with protons and neutrons. In spinorial notation we write the particle states as

|N,h〉= χ
N⊗χh =: χ

N
h , (3.1)

where N = {p,n}, h = {+,−} and

χ
p = χ+ =

(
1
0

)
, χ

n = χ− =

(
0
1

)
. (3.2)

The isospin I3 and spin J3 operators in this representation read

Ia =
i
2

(
a4

∂

∂aa
−aa

∂

∂a4
− εabc ab

∂

∂ac

)
, Ja =

i
2

(
−a4

∂

∂aa
+aa

∂

∂a4
− εabc ab

∂

∂ac

)
, (3.3)

and their eigenstates are given by

|p,+〉= a1 + ia2

π
, |p,−〉=− i(a4− ia3)

π
, |n,+〉= i(a4 + ia3)

π
, |n,−〉=−(a1− ia2)

π
. (3.4)
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3.1 Nucleon relativistic wavefunctions

In generalizing the expressions aboveto the relativistic case, we initially restrict the discussion
to proton and neutron states separately and disregard the isospin information. We introduce a
relativistic spinor for a fermion with a given momentum ~p,

u(p,h) =
1√
2E

(
f χh

~p·~σ
f χh

)
, with f =

√
E +mB. (3.5)

Here χh is a helicity eigenstate, which means ~p ·~σ χh = h|~p|χh where h = ±1. This yields the
eigenstates

χ+(~p) =
1√

2|~p|(|~p|+ p3)

(
|~p|+ p3

p1 + ip2

)
, χ−(~p) =

1√
2|~p|(|~p|+ p3)

(
−p1 + ip2

|~p|+ p3

)
. (3.6)

Notice that χ
†
h χh = 1 and |~p| =

√
p2

1 + p2
2 + p3

3. Hence we expect the proton and neutron linear
(l = 1) spherical harmonic tensors (equivalent to χh(~p) helicity eigenstates) to be

χ
p
+(ai,~p)=

(|~p|+p3)(a1+ia2)−i(p1+ip2)(a4−ia3)
π
√

2|~p|(|~p|+ p3)
, χ

p
−(ai,~p)=

(−p1+ip2)(a1+ia2)−i(p3+|~p|)(a4−ia3)
π
√

2|~p|(|~p|+ p3)
,

χ
n
+(ai,~p)=

(|~p|+p3)i(a4+ia3)−(p1+ip2)(a1−ia2)
π
√

2|~p|(|~p|+ p3)
, χ

n
−(ai,~p)=

(−p1+ip2)i(a4+ia3)−(p3+|~p|)(a1−ia2)
π
√

2|~p|(|~p|+ p3)
.

(3.7)

The expression above is not valid for p1 = p2 = 0 and p3 = −p and in that case we recall that
helicity changes sign when momentum changes in sign to the opposite direction,

χ
N
h (ai,−~p)≡ χ

N
−h(ai,~p), (3.8)

After some algebra we can verify that (3.7) are eigenfunctions of ~p .~J operators (3.3):

~p .~J χ
N
+(ai,~p) = +

1
2
|~p|χN

+(ai,~p) and ~p.~J χ
N
−(ai,~p) =−1

2
|~p|χN

−(ai,~p). (3.9)

Similarly to Dirac 4-spinors (3.5),The relativistic nucleon SU(2) wavefunctions are

uN(ai,~p ,+) =
1√
2E

(
f χN

+(ai,~p)
|~p|
f χN

+(ai,~p)

)
, uN(ai,~p ,−) =

1√
2E

(
f χN
−(ai,~p)

− |~p|f χN
−(ai,~p)

)
. (3.10)

The explicit dependence on aI ∈ S3 is not directly observable and the integration in S3 moduli
recovers the 4D Dirac spinor with appropriate isospin.

3.2 Dirac equation and spin sum

In order to work with relativistic SU(2) wavefunctions instead of Dirac spinorial notation, we
define the substitutes of gamma matrices in the SU(2) collective space by simply replacing the
Pauli matrices σ i with 2Ji operators (3.3). Hence, the new 2×2 gamma matrices are

γ
0 =−i

(
1 0
0 −1

)
, γ

i =−i

(
0 2Ji

−2Ji 0

)
. (3.11)

4



P
o
S
(
R
i
o
 
d
e
 
J
a
n
e
i
r
o
 
2
0
1
2
)
0
2
0

Towards Relativistic Skyrmions Marcus A. C. Torres

Such operators act only on spin and we will disregard the isospin index for now. Upon such
substitution we can verify the validity of the Dirac equation:

(i 6 p+mB)uN(ai,~p ,h) = 0. (3.12)

uN(ai,~p ,h)(i 6 p+mB) = 0. (3.13)

Since Ji operators have real eigenvalues and behave like Pauli matrices, we define their operation
to the left by transpose conjugation: ψ

†
h (~p.~J) = (~p.~Jψh)† = |~p|h2 ψ

†
h .

As mentioned before, the spinor normalization is given by an integration of the ai moduli,

u(~p ,h′)u(~p ,h) =
∫

S3
u(ai,~p ,h′)u(ai,~p ,h) (3.14)

Working out the integrand,

u(ai,~p ,h′)u(ai,~p ,h) =
1

2E
( f χ

∗
h′(ai,~p) |~p |

f h′χ∗h′(ai,~p))

(
1 0
0 −1

)(
f χ

ai
h (~p)

|~p|
f hχh(ai,~p)

)

=
1

2E

(
f 2−h′h

|~p |2

f 2

)
χ
∗
h′(ai,~p)χh(ai,~p) (3.15)

In order to integrate (3.15) over S3 we write (a1,a2,a3,a4) in spherical coordinates:

a1 = sinθ0 sinθ1 sinθ2, a2 = sinθ0 sinθ1 cosθ2, a3 = sinθ0 cosθ1, a4 = cosθ0.

The volume element is dΩ3 = sin2
θ0 sinθ1dθ0dθ1dθ2. Using (3.7), the integration over (3.15)

turns out to be∫
S3

u(ai,~p ,h′)u(ai,~p ,h) =
1

2E

(
(E +mB)−h′h(E−mB)

)∫
S3

χ
ai∗
h′ (~p)χ

ai
h (~p) =

mB

E
δh′h. (3.16)

The spin sum is given by

∑
h

u(~p ,h)u(~p ,h) = ∑
h

∫
S3

u(ai,~p ,h)u(ai,~p ,h), (3.17)

where the integrand of (3.17) reads

u(ai,~p ,h)u(ai,~p ,h) =
1

2E

(
f χ

ai
h (~p)

2~J.~p
f χ

ai
h (~p)

)
( f χ

ai∗
h (~p) − 2~J.~p

f χ
ai∗
h (~p))

=
1

2E

(
E +mB −2~J.~p
2~J.~p −E +mB

)
|χai

h (~p)|2 =
1

2E
(−i 6 p+mB)|χai

h (~p)|2. (3.18)

Integrating over (3.18) we get the spin sum (3.17),

∑
h

∫
S3

u(ai,~p ,h)u(ai,~p ,h) =
1

2E
(−i 6 p+mB)∑

h

∫
S3
|χai

h (~p)|2 =
1
E

(−i 6 p+mB). (3.19)
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4. Application: elastic form factors

The SU(2) vector current integrated over the unit sphere of spatial R3 [3] behave as∫
dΩ

2J0,c
V ∼ Tr[(∂0aaa)aaa−1

τ
c] , and ε

i jk
∫

dΩ
2x jJk,c

V ∼ Tr[τ iaaa−1
τ

caaa], (4.1)

where it should be noted that the SU(2)V currents were decomposed as Jµ

V = Jµ,c
V τc. Since the

collective coordinates do not depend on the position in R3, general vector currents read

J0,c
V (~k) = e−i~k·~X Ic , Ji,c

V (~k) = ie−i~k·~X
Λεi jaq j Tr

(
τ

caaaτ
aaaa−1) (4.2)

where q j := p′j− p j. When calculating the vector current proton-proton matrix elements, we are
only interested in the c = 3 components (see above). We define the Dirac and Pauli form factors
according to the following decomposition of current matrix elements,

〈pX ,BX ,sX |Jµ,a
V (0)|p,B,s〉=

i(τa)IX
3 I3

2(2π)3 (ηµν − qµqν

q2 )ū(pX ,sX)
[
γνFD,a

BBX
(q2)+κBσνλ qλ FP,a

BBX
(q2)
]
u(p,s)

(4.3)
In the elastic case, in the Breit frame, with ~p =−~p ′ =−q

2
ẑ, the expression (4.3) becomes

〈pX ,BX ,sX |J0,a
V (0)|p,B,s〉= 1

2(2π)3 (τa)IX
3 I3

(mB

E

)
δsX ,−s

[
FD,a

B (q2)− q2

4m2
B

FP,a
B (q2)

]
(4.4)

〈pX ,BX ,sX |Ji,a
V (0)|p,B,s〉=− 1

2(2π)3 (τa)IX
3 I3

(
i

2E

)
ε

i jkq j(σk)sX ,−s

[
FD,a

B (q2)+FP,a
B (q2)

]
(4.5)

The equations above contain a relativistic correction not present in Skyrme Models.
We need to calculate the vevs of Tr(τaaaa−1τ3aaa) in (4.2) in order to find the form factors.

In spherical coordinates the traces become (a=3):

Tr(τ3aaa−1
τ

3aaa) = 2(cos(θ0)2 + cos(2θ1)sin(θ0)2). (4.6)

The general result for baryon states (a=1,2,3) is

〈Tr(τaaaa−1
τ

3aaa)〉 ≡ 〈BX ,~p ′,h′|Tr(τaaaa−1
τ

3aaa)|B0,~p ,h〉=∫
S3
dΩ

3 uX(ai,~p ′,h′)Tr(τaaaa−1
τ

3aaa)u0(ai,~p ,h)= −1
3
√

EX E ( f fX−hh′|~p ||~p ′|
f fX

)χ
†
h′(~p

′)σa
χh(~p) (4.7)

where fX =
√

EX +mBX and χh′(~p ′) and χh(~p) are the helicity spinors (3.6). The equation
above plays an important role in the calculation of the electromagnetic proton form factors [4]. In
the elastic case, in Breit frame, ~p =−~p ′ =−q

2
ẑ and (4.7) takes the form

〈Tr(τaaaa−1
τ

3aaa)〉= (E +mB−h′h(E−mB))
2E

(−2
3
)σa

h′,−h=


−2

3
mB
E σ1

h′,−h for a = 1.

−2
3

mB
E σ2

h′,−h for a = 2.

−2
3 σ3

h′,−h for a = 3.

(4.8)

where we used the substitution (3.8). This amounts to a relativistic correction in the direction of
movement ẑ w.r.t. the static case [3], of a factor of mB

E .
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Using (4.8) in the vector currents (4.2) , the current matrix elements can be written as

〈q
2

ẑ,BX ,h′|J0,3
V (0)|− q

2
ẑ,B,h〉 =

1
2(2π)3

(mB

E

)
δ−h′h (4.9)

〈q
2

ẑ,BX ,h′|Ji,3
V (0)|− q

2
ẑ,B,h〉 = − 1

2(2π)3

(
i

2E

)
8mB

3
Λεi3aq3σ

a
−h′h (4.10)

where we utilized eq. (3.16) and noted that 〈2I3〉+1/2,+1/2 = (τ3)+1/2,+1/2 = 1 for the proton-proton
matrix elements. Employing eqs. (4.9), (4.10) and eqs. (4.4), (4.5) we arrive at

FD,3
B (q2) =

(
1+

q2

4m2
B

)−1(2
3

Λq2

mB
+1
)

, FP,3
B (q2) =

(
1+

q2

4m2
B

)−1(8
3

mBΛ−1
)

. (4.11)

They are proton form factors for τ3 isovector current .

5. Conclusion

Here we presented a relativistic generalization for non-static baryons in Skyrme models. The
correct relativistic normalization for currents and the vacuum expectation values appears quite
naturally in our approach.
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