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For the last decade, the AdS/CFT correspondence, which appeared as a formal duality between
the N = 4 super Yang–Mills theory and quantum gravity in the AdS background, has become a
powerful tool for studying various properties of real physical systems in the strong-coupling limit.
An important branch of these investigations is the analysis of the quark–gluon plasma from the
standpoint of AdS holography.
We review a particular application of the AdS/CFT correspondence to the analysis of the ther-
malization of matter and entropy production after the collision of relativistic heavy ions. The
appearance of the quark-gluon plasma after the heavy-ion collision in dual terms is described as
formation of a black hole. We discuss mainly two holographic dual models of thermalization.
In the first one colliding ions are described by gravitational shock waves in AdS and the formation
of the black hole is provided of the formation of a trapped surface. In the dual language, the mul-
tiplicity of the ion collision process is estimated as the area of the trapped surface. The charged
gravitational shock waves correspond to nonzero chemical potential and a nonzero chemical po-
tential reduces the multiplicity.
The second holographic model for quark-gluon plasma formed in the heavy ion collisions is based
on AdS-Vaidya model. In the model the process of thermalization is described also as formation
of the black hole in AdS space while dethermalization process, related with the freeze-out, as the
black hole evaporation due to the Hawking radiation that is modeled by the Vaidya metric with a
negative mass. In this model the thermalization takes place only at small scales and absent in the
infrared region.
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1. Introduction

There are many attempts to describe the process of heavy ion collisions and quark-gluon
plasma formation (QGP) [1]-[9] in the QCD framework [10]-[12]. One of difficulties is that one
has to compute the time depended correlation functions in the strong coupling regime since the
QGP is a strong coupling system.

In the recent years a powerful approach to QGP is pursued which is based on a holographic
duality between the strong coupling quantum field in d-dimensional Minkowski space and classi-
cal gravity in d + 1-dimensional anti-de Sitter space (AdS) [13, 14, 15]. In particular, there is a
considerable progress in the holographic description of equilibrium QGP [16]. The holographic
approach is also applied to non-equilibrium QGP. Within this holographic approach thermalization
is described as a process of formation of a black hole in AdS.

In these lectures we are going to describe applications of the holographic approach to the
thermalization problem in heavy ion collisions.

2. Quark-Gluon Plasma - a new state of matter

2.1 Main characteristics of QGP

The quark-gluon plasma is a state of matter formed from deconfined quarks, antiquarks, and
gluons at high temperature. We know that quarks and gluons are described by QCD. In QCD we
have quark confinement and asymptotic freedom.

It is known (mainly due to lattice calculations, [17]) that if the temperature T increases, or the
density nuclear matter ε increases then nuclear matter undergoes to a phase transition to deconfined
phase. The temperature-chemical potential phase diagram of QCD is not well known either exper-
imentally or theoretically. The chemical potential µ is a measure of the imbalance between quarks
and antiquarks in the system. A commonly conjectured form of the phase diagram, temperature T
vs quark chemical potential µ , is shown in Fig.1, see for example [11].
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Figure 1: A. Oversimplified QCD phase diagram. B. QCD phase diagram with more details.
.

The phase transition is not sharp and it is supposed to be the 1-st order. At a critical point
T ∼ 200 MeV and ε ∼ 1GeV/ f m3 (here ε is the energy density). Ordinary nuclear matter in this
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diagram is at µ = 310 MeV and T close to zero. If we increase the quark density, i.e. increase
µ , keeping the temperature low, we go into a phase of more and more compressed nuclear matter
(neutron stars).

Above the blue smeared line there is a transition to the quark-gluon matter, where colored
particles are free to propagate over macroscopic distances, giving rise to a non-trivial collective
dynamics. At ultra-high densities one expects to find the phase of color-superconducting quark
matter. In ultra-relativistic heavy ion collisions one studies this matter in the regime of extreme
energy density. In Fig.1 the typical values of µ and T in heavy-ion in heavy-ion collisions are
shown by a blue region.

2.2 QGP in Heavy Ion Collision and Early Universe

One of the fundamental questions in physics is: what happens to matter at extreme densities
and temperatures, T ∼ 1012 K, as may have existed in the first microseconds, t ∼ 10−5 sec, after
the Big Bang. One can say that one of the aim of heavy-ion physics is to collide nuclei at very high
energies and create such a state of matter in the laboratory.

One can think of a heavy ion collision as a “little bang", replaying the history of the big bang
in a small volume [18]. In the right part of Fig.2 we plot the collision of two Lorentz contracted
nuclei. At t = 0 when these contracted nuclei are coincident and the entire energy of the two nuclei
is found within a smaller volume, the density becomes very higher. Just after collision the quarks
and gluons undergo multiple interactions and the system will thermalize and form the QGP. Elliptic
flow data indicate that by ∼ 1 fm/c after the collision, matter is flowing collectively like a fluid in
local equilibrium [1]-[3], see also the recent review [9] and refs therein. Then, as in the early
universe, the hot and dense system created in a heavy ion collision will expand and cool down and
eventually it becomes enough dilute to hadronize.

The analogue of the cosmological epoch of nucleosynthesis, the time at which the composition
of the final state hadron gas stops changing, in heavy ion collisions is a kinetic freeze-out.

3. Physics of Heavy Ions Collisions

In a heavy ion collision experiment, large nuclei are collided at an ultra-relativistic center of
mass energy. At the Brookhaven Alternating Gradient Synchrotron (AGS), started in the 1990’s, the
s-parameter per one nucleon is

√
sNN = 4.75GeV , at the CERN Super Proton Synchrotron (SPS),

√
sNN = 17.2GeV , at the Brookhaven Relativistic Heavy-Ion Collider (RHIC),

√
sNN = 200GeV

and at the LHC collider at CERN,
√

sNN = 2.76TeV . At RHIC the ions of Au are collided and at
LHC the ions of Pb are collided. Schematically the picture of heavy ion collisions is presented in
Fig.2.

There are strong experimental evidences that RHIC or LHC have created some medium, see
Fig.3, which behaves collectively [1]-[9]:

• modification of particle spectra (compared to p+p),

• high pT -suppression of hadrons,

• jet quenching, i.e. behavior if RAA,
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Figure 2: QGP in Heavy Ion Collision and in Early Universe.
.

• elliptic flow

• suppression of quarkonium production,

• temperature measurement by direct photons,
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Figure 3: A.Perturbative QCD factorization in hadronic collisions. B. Perturbative QCD factorization in
heavy ion collisions. Yellow waves indicate the presence of a media.

It is now widely appreciated that the experiments at the RHIC [1, 2] and at the LHC[3] produce
the quark-gluon plasma that behaves as a strongly coupled fluid, but not as a weakly coupled gas of
quarks and gluons [4, 5]. This means that we cannot use perturbative methods to describe QGP. The
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lattice QCD is also inapplicable since it is not well suited for studying real-time phenomena. This
has provided a strong motivation for understanding the dynamics of strongly coupled non-Abelian
plasmas through the gauge/string duality [13, 14, 15].

In the process of collision of two ions one observes a rapid local thermalization of the system
of partons with further expansion and cooling of system which leads to hadronization and multiple
production of particles. Experiments indicate to a very short thermalization time, τtherm ∼ 1 fm/c
for the quark-gluon plasma(QGP) formed in heavy ion collisions, while the freeze-out time is of
order 20 fm/c [1, 10, 5, 12, 8, 20].

In more details, the time schedule of the process is the following. Up to a time ∼ 0.02 fm/c
"hard" processes take place and they are responsible for "hard" particles, which can be observed
at detectors. Up to a time ∼ 0.2 fm/c "semi-hard" processes take place and they produce the most
of the "multiplicity" in the final state. Then at the thermalization time of order τtherm ∼ 1 fm/c
the system reaches a local thermal equilibrium state, called QGP. After that the evolution of QGP
is described by equations of hydrodynamics and after the time of order τhadr ∼ 10 fm/c, when
due to the separation of the colliding ions the temperature becomes lower than the deconfinement
temperature, a hot hadron gas is formed. Upon the further expansion and cooling, around the
freeze-out time τdet ∼ 20 fm/c, the density of the hadron gas become sufficiently low and the
system decays into free hadrons, which can be observed at detectors. Therefore in experiments on
heavy ion collisions there is the following hierarchy of time scales:

τtherm < τhydro < τhadr < τ f r−out . (3.1)

One can interpret the freeze-out time as the dethermalization time τ f r−out ∼ τdet [21]. There are
many attempts to describe the process of heavy ion collisions and QGP formation in the QCD
framework. One of difficulties is that one has to compute the time depended correlation functions
in the strong coupling regime since the QGP is a strong coupling system [10]. In the recent years a
new approach to non-equilibrium QGP has been initiated. This approach, also uses a holographic
duality between the strong coupling quantum field in d-dimensional Minkowski space and clas-
sical gravity in d + 1-dimensional anti-de Sitter space (AdS). Within this holographic approach
thermalization process is described as a process of formation of a black hole in AdS.

4. Dual description of QGP as a part of Gauge/string duality

The Gauge/Gravity duality [13, 14, 15] gives a correspondence between the quantum gauge
field theory in 4-dimensional Minkowski space-time and the 5-dimensional supergravity (weak
curvature) approximation of the 10-dimensional string theory. Or in others words, the properties of
the gauge theory in (physical) Minkowski space in 3+1 dimensions are in one-to-one relation with
properties of the bulk theory. The best known example of such theories is N = 4 super Yang-Mills,
a superconformal field theory with matter in the adjoint representation of the gauge group SU(Nc)

which is dual to the IIB superstring theory on AdS5 ×S5.
However, there is not yet found a gravity dual to QCD. Differences between N = 4 SYM and

QCD are less significant, when quarks and gluons are in the deconfined phase (because of the
conformal symmetry at the quantum level N = 4 SYM theory does not exhibit confinement.)
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Figure 4: Results [19] from a lattice calculation of QCD thermodynamics with physical quark masses
(N f = 3, with appropriate light and strange masses). Energy density ε/T 4 (full curve) and pressure 3P/T 4

(dashed curve) as a function of temperature T from lattice calculations. The arrow indicates the Boltzmann
limit of the energy density. Figure is taken from Ref. [9].

Lattice calculations [19] show that QCD exhibits a quasi-conformal behavior at temperatures
T >300 MeV and the equation of state can be approximated by ε = 3 p (a traceless conformal
energy-momentum tensor), see Fig.4.

The above observations, have motivated to use the AdS/CFT correspondence as a tool to get
non-perturbative dynamics of QGP.

There is the considerable success in description of the static quark-gluon plasma, in partic-
ular in the evaluation of η/s [22]-[25], see also paper[26] about discussion of violation of the
holographic bulk viscosity bound.

4.1 Mapping of parameters

• Gauge theory has two parameters:

– Coupling constant (elementary charge) g

– Number of colors Nc

Whether the theory is weakly or strongly coupled depends on g2Nc

• String theory side has three parameters

– String length ls, i.e. a typical size of string vibrations

– String coupling gst

– Curvature of space R

Mapping between the parameters is:

g2 = 4gst (4.1)

g2Nc =
R4

l4
s

(4.2)
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Strong coupling limit in field theory g2Nc >> 1,

string length << curvature radius (4.3)

and we can use Einstein gravity instead of string theory.

4.2 AdS/CFT in simple examples

4.2.1 AdS/CFT in Euclidean space

For simplicity, we shall consider here the correspondence between the d-dimensional quantum
conformal Euclidean field theory and classical gravity on AdSD, D = d+1. The Euclidean version
of the AdSD metric has the form

ds2 =
R2

z2 (dτ2 + d⃗x 2 +dz2) , (4.4)

which is a solution to the Einstein equations. In the AdS/CFT correspondence, the d-dimensional
quantum field theory lives on the boundary of the AdSD space at z = 0. Suppose that a bulk field ϕ
is coupled to an operator O on the boundary in such a way that the interaction Lagrangian is ϕ O .
In this case, the AdS/CFT correspondence is formally stated as the equality [14, 15]

⟨e
∫

∂M ϕ0O ⟩= e−S[ϕcl(ϕ0)] , (4.5)

where the left-hand side is the generating functional for correlators of in the boundary field theory
(i.e. the d-dimensional conformal field theory), and the exponent on the right-hand side is the
action of the classical solution to the equation of motion for ϕ in the bulk metric with the boundary
condition

δS[ϕcl] = 0, ϕcl|z=0 = ϕ0. (4.6)

Let us consider as an example the scalar massless field in AdSD. The action is given by

I =
1
2

∫ ∞

ε
dz
∫

Rd
dx

1
zd−1

d

∑
i=0

(∂iϕ)2, x = (τ , x⃗) (4.7)

Here ε > 0 is a cut-off, see [14]. The solution to the Dirichlet problem(
∂ 2

∂ z2 +
d

∑
i=1

∂ 2

∂x2
i
− (d −1)

z
∂
∂ z

)
ϕ = 0, ϕ |z=0 = ϕ0(x) (4.8)

can be represented in the form

ϕ(z,x) = czd/2
∫

Rd
dpeipx|p|

d
2 K d

2
(|p|z)Φ̃0(p), (4.9)

where K d
2
(y) is the modified Bessel function. By integrating by parts, one can rewrite (4.7) as

I =− 1
2

∫
Rd

dx
ϕ∂zϕ
zd−1

∣∣∣∣
z=ε

(4.10)
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Using the asymptotic expansion of the modified Bessel function one gets a regularized expression
for the action. For d = 4 one has for z → 0

Φ(z,x) =C
∫

R4
dpeipx[2− 1

2
(z|p|)2 − (z|p|)4

8
log

z|p|
2

+ c(z|p|)4 + ... ]Φ̃0(p). (4.11)

The action (4.10) for ε → 0 behaves as

I =C
∫

R4
dp|Φ̃0(p)|2[−

1
ε2 |p|

2 − |p|4

2
log

ε |p|
2

+ c1|p|4 + ... ]. (4.12)

The renormalized action

Iren =

∫
R4

dp|Φ̃0(p)|2[ap4 log |p|2 +b|p|4]. (4.13)

can be written in term of distribution |x−y|−2d [27],

Iren =
∫

Rd

Φ0(x)Φ0(y)
|x−y|2d dxdy (4.14)

for d = 4, since, according to [28],

|̃x|−8 = ap4 log |p|+b|p|4. (4.15)

4.2.2 BHAdS/TCFT

To compute the Matsubara correlator at finite temperature, one uses (4.5) with a replacement
of the metric (4.4) by the following metric

ds2 =
R2

z2

(
f (z)dτ2 + d⃗x 2 +

dz2

f (z)

)
, (4.16)

where
f (z) = 1− zd/zd

H (4.17)

and
zH = (4πT/d)−1, (4.18)

and T is the Hawking temperature. The Euclidean time coordinate τ is periodic, τ ∼ τ +T−1, and
z runs between 0 and zH .

The Minkowski version of the AdS/CFT could be the equivalence

⟨ei
∫

∂M ϕ0O ⟩= eiScl[ϕ ] . (4.19)

However, this conjecture does nor work straitforwardly [29]. In the Euclidean version, the classical
solution ϕ is uniquely determined by its value ϕ0 at the boundary z= 0 and the requirement of regu-
larity at the horizon z = zH . Therefore, Euclidean correlators obtained by using the correspondence
are unique. In the Minkowski space, the requirement of regularity at the horizon is insufficient to
select a solution. This fact is related with the multitude of real-time Green’s functions (Feynman,

8
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retarded, advanced) in finite-temperature field theory. The classical action is reduced to the surface
term

S =
∫ d4k

(2π)4 ϕ0(−k)F (k,z)ϕ0(k)
∣∣∣z=zH

z=zB
, (4.20)

and a viable recipe is
GR(k) =−2F (k,z)

∣∣∣
zB
, (4.21)

see the original paper [29] for the definition of F and for details.

4.2.3 AdS/CFT with geodesic approximation

It is more convenient to follow [30] and to observe that the Green function for space-like
separated points can be computed via a path integral as

⟨O∆L(t, x⃗)O∆L(t ′, x⃗ ′)⟩=
∫

DP ei∆L(P) ≈ ∑
geodesics

e−∆L . (4.22)

Here the path integral is over all paths that begin and end at the boundary points (t, x⃗) and (t ′, x⃗ ′),
L(P) is the proper length of the path. L(P) is imaginary for space-like trajectories. The second
expression means a saddlepoint approximation to the path sum as a sum over geodesics. Here L is
the real length of the geodesic between the boundary points. This approximation is effective when
∆ ≫ 1.

In d = 2 case it is easy to check explicitly that in AdS space, this formula gives the correct
conformally invariant equal-time two point function of the renormalized operator

⟨O ren
∆ (t,−ℓ/2)O ren

∆ (t, ℓ/2)⟩= e−∆ lnℓ2
. (4.23)

Indeed, let us consider the Lorentz version of the metric (4.16) for d = 2, R = 1 in (r, t,x)-
coordinates, r = 1/z,

ds2 =− f (r)dt2 +
1

f (r)
dr2 + r2 dx2 (4.24)

Introducing as usual the conjugated momenta along the geodesic

Pi ≡ Ẋ i, X i = {t,r,x}, Pi = {pt , pr, px} ≡ {ṫ, ṙ, ẋ}, Pi = gikPk, Pi = {pt , pr, px} (4.25)

we get

pt =− f ṫ, pr =
1
f

ṙ, px = r2ẋ (4.26)

Two of these conjugated momenta, pt and , px conserve and we denote them as

E ≡−pt , J ≡ px (4.27)

The affine parameter condition
gµν Ẋ µ Ẋν = 1, (4.28)

leads to

ṙ2 = f +E2 − J2 f
r2 (4.29)

9



P
o
S
(
I
C
M
P
 
2
0
1
2
)
0
2
5

Holography for QGP formation Irina Aref’eva

or

r′2 =
r4 f
J2 +

r4 E2

J2 − f r2 (4.30)

Here the dot means the derivative in respect to the affine parameter, meanwhile the prime denote
the derivative in respect to x along the geodesic.

In the case of equal time geodesic ṫ = 0 and therefore, E = 0. In the case of AdS3, f (r) = r2

and we have a turning point r∗ on a geodesic

r∗ = |J| (4.31)

One can calculate the proper length L and the expansion ℓ along x,

LAdS =
∫

dτ =
∫

dr/ṙ = 2
∫ r∞

r∗
dr√

r2−p2
x

= 2log(r+
√

r2 − p2
x)
∣∣∣r∞

r∗
= 2ln(2r∞)−2ln px,

ℓAdS =
∫

dx =
∫

dr/r′ = 2
∫ r∞

r∗
dr

r2
√

r2

p2x
−1

=
2
r

√
r2/p2

x −1
∣∣∣r∞

r∗
=

2
px
. (4.32)

It is clear that
LAdS = 2ln(2r∞)+2ln

lAdS

2
. (4.33)

The geodesic length LAdS diverges due to contributions near the AdS boundary. Therefore,
we define a renormalized length δL ≡ L − 2ln(r∞), in terms of the cut-off r∞, by removing
the divergent part of the geodesic length in pure AdS (compare with the action renormalization
considered in [27]). The renormalized equal-time two-point function is

⟨O ren
∆ (t,x)O ren

∆ (t,x′)⟩ ∼ e−∆δL = e−∆ lnℓ2
, (4.34)

that obviously coincides with (4.23).

4.2.4 BHAdS/TCFT with geodesic approximation

As in the previous subsection one can easily calculate the length of an equal time geodesic in
BHAdS. The metric is given by (4.24) witt

f = r2 −1 (4.35)

In this case E = 0 and the turning point is also defined as r∗ = |J|. One can calculate the proper
length L and the expansion ℓ along x,

LBHAdS =
∫

dτ =
∫ dr

ṙ
= 2

∫ r∞

r∗

rdr√
(r2 −1)(r2 − J2)

= 2log(r+
√

r2 − J2)
∣∣∣r∞

r∗
= 2ln(2r∞)− ln(p2

x −1),

ℓBHAdS =
∫

dx =
∫ dr

r

′
= 2

∫ r∞

r∗

dr

r
√

(r2 −1)( r2

J2 −1)
= 22 arctanhJ+ iπ. (4.36)

One could find the relation,

LBT Z = 2log(2r∞)+2log
(

sinh
(
ℓBT Z

2

))
. (4.37)

10
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and using the notion of renormalized length we get

δLBT Z = 2ln
(

sinh
(
ℓBT Z

2

))
. (4.38)

This answer can be understand from the CFT side in the following way. The two-point function
of a scalar operator O(z, z̄) in 2d CFT is fixed by the conformal invariance up to a normalization
constant:

⟨O(z1, z̄1)O(z2, z̄2)⟩=
C12

(z1 − z2)2hL(z̄1 − z̄2)2hR
. (4.39)

To find the expression for the correlator at finite temperature T , one considers a conformal map
w = ln(z)/2πT from the infinite plane to the cylinder with circumference L = 1/T . The correlator
(4.39) becomes

⟨O(w1, w̄1)O(w2, w̄2)⟩=
C12(πT )2hL(πT )2hR

sinh2hL [πT (w1 −w2)]sinh2hR [πT (w̄1 − w̄2)]
. (4.40)

We see that for the case w1 = ℓ/2, w2 = −ℓ/2, and hL = hR = ∆/2 this answer reproduces the
geometrical answer for the case of 2πT = 1.

4.3 Black holes and the AdS/CFT correspondence for a strongly coupled QGP

The idea of using the AdS/CFT correspondence to describe the QGP is based on the possibility
of establishing a one-to-one correspondence between phenomenological/thermodynamic plasma
parameters (T , E, P, and µ) and the parameters characterizing AdS5 deformations. In the dual
gravity setting, the source of temperature and entropy are attributed to the gravitational horizons.
The relation between the energy density and temperature typical for the BH in the AdS according
to [31, 32] is

E =
3π3L3

16G5
T 4. (4.41)

In the phenomenological model of a QGP, such as the Landau or Bjorken hydrodynamic mod-
els [33, 34], the plasma is characterized by a space–time profile of the energy–momentum tensor
Tµν(xρ), µ,ν ,ρ = 0, . . . ,3. This state has its counterpart on the gravity side as a modification of
the geometry of the original AdS5 metric. This follows the general AdS/CFT line: operators in
the gauge theory correspond to fields in SUGRA. In the case of the energy–momentum tensor,
the corresponding field is just the five-dimensional metric. It is convenient to parameterize the
corresponding five-dimensional geometry as

ds2 = L2 gµν(xρ ,z)dxµdxν +dz2

z2 , (4.42)

which is the five-dimensional Fefferman–Graham metric [35]. The flat case gµν = ηµν parameter-
izes AdS5 in Poincaré coordinates. The conformal boundary of the space–time is at z = 0 and

gµν(xρ ,z) = ηµν + z4g(4)µν(x
ρ)+ . . . . (4.43)

The AdS/CFT duality leads to the relation

g(4)µν(x
ρ) =

N2
c

2π2 ⟨Tµν(xρ)⟩, (4.44)
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where Nc is a number of colors (see [?] for a brief review).
Applying the AdS/CFT correspondence to the hydrodynamic description of the QGP is based

on the fact that the energy–momentum tensor can be obtained directly from the expansion of the
BH in AdS5 metric (4.43) corresponding to the simple hydrodynamic model

⟨Tµν⟩ ∝ g(4)µν = diag
(

3
z4

0
,

1
z4

0
,

1
z4

0
,

1
z4

0

)
. (4.45)

The AdS5 BH in the Fefferman–Graham coordinates has form (4.42) with the following nonzero
components of gµν(xρ ,z) (see [36] and the references therein):

g00 =−
(1− z4/z4

0)
2

1+ z4/z4
0

, gii =

(
1+

z4

z4
0

)
. (4.46)

The change of coordinates z̃ = z/(1+ z4/z4
0)

1/2 transforms (4.42) into the standard metric form of
the AdS–Schwarzschild static BH

z̃2 ds2 =−
(

1− z̃4

z̃4
0

)
dt2 + d⃗x2 +

1
1− z̃4/z̃4

0
dz̃2, (4.47)

where z̃0 = z0/
√

2 is the horizon location.

4.4 The chemical potential in a QGP via the AdS/CFT correspondence

The Reissner–Nordström (RN) metric in the AdS space has the form

ds2 =−g(R)dT 2 +g(R)−1dR2 +R2dΩ2
D−2, (4.48)

g(R) = 1− 2M
R2 +

Q2

R4 +
Λ
3

R2, (4.49)

where Λ is a cosmological constant, Λ/3 ≡ 1/a2, M and Q are related to the Arnowitt–Deser–
Misner mass m and the charge σ ,

M =
4πG5m

3π2 , Q2 =
4πG5σ 2

3
. (4.50)

and σ is the charge of the electromagnetic field (purely electric) with only one nonzero component

A = AT dT =

(
−
√

3
4

Q
R2 +Φ

)
dT, (4.51)

where Φ is the constant

Φ =

√
3

2
Q

R2
+

and R+ is the largest real root of g(R). The thermodynamics of the charged BH is described by
the grand canonical potential (free energy) W = I/β , the Hawking temperature T = 1/β , and the
chemical potential [37, 38] given by

I =
πβ

8G5a2

(
a2R2

++R4
+− Q2a2

R2
+

)
, T =

1
4π

g′(R+), µ =

√
3Q

2R2
+

, (4.52)

12
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where R+ is the outer horizon, g(R+) = 0, and I is given by the value of the action at (4.49)
and (4.51). The relation to the first law of thermodynamics, dE = T dS +µ dQ, is obtained under
the identifications

W = E −TS −ΦQ, E = m, S =
SH

4G5
, Q = q, µ = Φ. (4.53)

We note that just the asymptotic value of a single gauge field component gives the chemical poten-
tial [39]–[42]

µ = lim
r→∞

At(r). (4.54)

The QGP is characterized at least by two parameters: the temperature and the chemical poten-
tial. Generally speaking, quantum field theories can have nonzero chemical potentials for any or
all of their Noether charges. In the AdS/CFT context, two different types of chemical potential are
considered: related to the R-charge and to the baryon number.

The baryon number charge can only occur when we have a theory containing fundamental
flavors. Introducing flavors into the gauge theory via a D7 brane leads to the appearance of a U(Nf)

global flavor symmetry. The flavor group contains U(1)B, i.e., a baryon number symmetry, and a
chemical potential µB is added for this baryon number [43]. To calculate the free energy, we must
calculate the Dirac–Born–Infeld action for a D7 brane. We note that there is a divergence in the
formal definition, and we must hence go through the renormalization process (see, e.g., the lectures
in [44] and also see [27]).

5. Holographic Thermalization

5.1 BH formation in AdS. General

By thermalization of some class of space-time geometries we mean that space-time geome-
tries without an event horizon evolve to space-times with an event horizons. In particular, we can
consider geometries of deformed AdS space-times (space-times that are asymptotical AdS) and ask
under which conditions they evolve to the AdS space with a black hole, or black branes. We have
the following picture of geometry evolutions in asymptotically AdS spaces.

• The Schwarzschild AdS is an equilibrium "point" in a space of asymptotically AdS space-
times geometries, the point BH AdS in Fig.5.A.

• Black branes AdS are stable under "some fluctuations" (constrained equilibrium) and other
fluctuations push them to evolve to black brane configurations, the point BB AdS in Fig.5.
A.

• AdS is stable under small fluctuations and is unstable under large nonlinear fluctuations, the
point AdS in Fig.5.A. The picture in the circle AdS in Fig.5.A. schematically represents large
chaotic deformations.

Let us first make more comments about pictures presented in Fig.5 and then give them an
interpretation within the AdS/CFT dual approach. Note that these pictures are based on conjectures,
supported by numerical calculations.
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AdS

AdS

BB AdS

τ

BH AdS

A.

BB M

BH M
M

B.

Figure 5: Schematics pictures of deformations of the AdS space-time (A) and the Minkowski space-time
(B). A. Blue curves near points AdS, BB AdS (black brane in AdS) and BH AdS (black hole in AdS)
show deformations in different directions. The picture in the circle A schematically represents chaotic
deformations. B. A schematical picture of asymptotically Minkowski space-times geometries with black
holes (BH M) and black branes (BB M).

The picture presented in Fig. 5.A radically differs from the picture in Fig. 5.B, describing sit-
uation in the Minkowski space-time. The point M is stable under rather "large" fluctuations, since
the Minkowski space is stable under finite perturbations [45, 46]. But this is not so in AdS. AdS
might be nonlinearly unstable to transferring energy to smaller and smaller scales and eventually
forming a small black hole [47, 48, 49, 50, 51]. This is considered as a turbulence instability of
AdS. One can say that after a sufficiently long time, any finite excitation of AdS eventually finds
itself inside its Schwarzschild radius and collapses to a black hole.

The decay of small perturbations of an AdS black brane/black hole geometry (deformations
near the points BB AdS and BH AdS) are well studied. In particular, the quasi-normal modes
of fields propagating in the black brane background are studied [52]-[58]. In the context of dual
approach to relativistic heavy-ion collisions, this is relevant for the study of viscous corrections to
hydrodynamics and other transport processes in the presence of a thermal gauge theory plasma (see
e.g. [59] for a review).

The gravitational collapse of matter injected into Minkowski space-time and the formation of
an event horizon are old problems in general relativity [60, 61, 62]. One can ask the same question
in AdS and investigate what deformations of AdS metric ends up by the BH formation.

In the context of AdS/CFT we interesting to deformations that can be interpreted as dual to
the initial state of a relativistic heavy-ion collision, which contains two highly energetic nuclei,
and therefore these deformation have to inject energy into the AdS geometry at high momentum or
short distance scales. Examples of such deformations are

• colliding gravitational shock waves [63]-[75],

• drop of a shell of matter with vanishing rest mass ("null dust") [76]-[82]
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• sudden perturbations of the metric near the boundary that propagate into the bulk [83, 84]

The interesting question is how long is the time of BH formation. This question has a particular
interest for plasma formation within AdS/CFT.

In [50, 51] was concludes that BH formation occurs very rapidly, close to the causal bound for
a very wide range of black hole masses.

In this context let us mention the previous works studied the gravitational collapse in AdSd+1

and also estimated the time of collapse, see [84] and refs therein. The counterpart to Chandrasekhar
limit for a gravitational collapse of a degenerate star to a black hole in AdS/CFT has been inves-
tigated in [85]. Appearance of EH due to change in couplings or other background fields than the
bulk metric has studied [86, 87].

Advantages of two first cases listed above that one can perform at list a part of estimations
analytically. We consider these estimations in the next two sections.

6. BH formation in AdS in collision of shock waves

6.1 Shock waves in AdS5

Shock waves propagating in the AdS space have the form [91]-[96]

ds2 = L2−dudv+dx2
⊥+ϕ(x⊥,z)δ (u)du2 +dz2

z2 , (6.1)

where u and v are light-cone coordinates and x⊥ is the coordinate transverse to the direction of
motion of the shock wave and to the z direction. This metric is sourced by the stress–energy–
momentum tensor TMN with only one nonzero component T SW

uu ,

T SW
uu = Juu(z,x⊥)δ (u). (6.2)

and the Einstein equation of motion reduces to(
�H3 −

3
L2

)
Φ(z,x⊥) =−16πG5

z
L

Juu(z,x⊥), (6.3)

where
Φ(z,x⊥)≡

L
z

ϕ(z,x⊥) (6.4)

and

�H3 =
z3

L2
∂
∂ z

z−1 ∂
∂ z

+
z2

L2

(
∂ 2

∂x2
⊥

)
. (6.5)

Different forms of the shock waves correspond to different forms of the source Juu(z,x⊥). The
most general O(3)-invariant shock wave in the AdS space located at u = 0 corresponds to

ΦO(3)(z,x⊥) = F(q), (6.6)

where q is the chordal distance

q =
(x1

⊥)
2 +(x2

⊥)
2 +(z− z0)

2

4zz0
, (6.7)
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In this case ρ , related to Juu as
z
L

Juu(z,x⊥)≡ ρ(z,x⊥), (6.8)

has the form
ρO(3)(z,x⊥) = ρ(q), (6.9)

and the Einstein equation of motion becomes(
�H3 −

3
L2

)
F =−16πG5ρ(q) (6.10)

or, explicitly,
q(q+1)F ′′

qq +(3/2)(1+2q)F ′
q −3F =−16πG5L2ρ(q). (6.11)

Point shock wave

The point shock wave shape Fp is given by the solution of (6.3) with

Juu = Eδ (u)δ (z−L)δ (x1)δ (x2) (6.12)

and has the form

Fp(z,x⊥) =
8L2G5Ez3

(x2
⊥+(z−L)2)3 . (6.13)

This point shock wave shape is in fact equal to Fp(q), Φp(z,x⊥) = Fp(q), which is a solution
of (6.11) with

ρp(q) =
E
L3

δ (q)√
q(1+q)

. (6.14)

It has the form

Fp =
2G5E

L

(
(8q2 +8q+1)−4(2q+1)

√
q(1+q)√

q(1+q)

)
. (6.15)

Charged point shock wave

The shape of the charged point shock wave is a sum of two components

F = Fp +FQ, (6.16)

where Fp is given by (6.15) and FQ is the solution of (6.11) with

ρpQ =
5Q̄2

32 ·64L5G5

1
[q(q+1)]5/2 =

5Q2
n

π24 ·64L5
1

[q(q+1)]5/2 (6.17)

or, explicitly,

FQ =
5G5Q2

n

48L3
144q2+16q−1+128q4+256q3−64(2q+1)q(q+1)

√
q(1+q)

q(1+q)
√

q(1+q)
. (6.18)

More complicated shock waves in AdS were considered in [92]-[97].
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Plane shock wave
A much simpler dual description of the colliding nuclei using a wall-on-wall collision in the

bulk was proposed in [68]. The Einstein equation for the profile of the wall shock wave [68] has
the form (

∂ 2
z − 3

z
∂z

)
ϕ(z) = JWP

uu , JWP
uu =−16πG5

E
L2

z3
0

L3 δ (z− z0). (6.19)

However, the wall shock wave approach requires a special attention to the regularization problem,
since the trapped surface is assumed to be smooth and compact by definition, while the solution in
[68] is nonsmooth and noncompact, see [75] for discussion of this problem.

6.2 Multiplicity and GYP dual conjecture

Gubser, Yarom, and Pufu (GYP) proposed the following holographic picture for colliding
nuclei dual to QCD [63]:

• the bulk dual of the boundary nuclei is the shock waves of form (6.1) propagating in the AdS
space;

• the bulk dual of two colliding nuclei in the bulk is the line element for two identical shock
waves propagating towards one another in the AdS space,

ds2 = L2−dudv+dx2
⊥+ϕ1(x⊥,z)δ (u)du2+ϕ2(x⊥,z)δ (v)dv2+dz2

z2 ; (6.20)

• when the shock waves collide in the bulk, a BH should form, signifying the formation of a
QGP.

The TS technic [62, 98] is usually used to estimate the BH formation.1 A TS is a surface
whose null normals all propagate inward [60]. There is no rigorous proof that the TS formation in
the asymptotically AdS space–time provides the BH formation, but there is a common belief that
TSs must lie behind an event horizon and that a lower bound on the entropy SAdS of the BH is given
by the TS area Atrapped,

SAdS ≥ Strapped ≡
Atrapped

4G5
. (6.21)

The relations between the bulk parameters G5, L, and E and the QGP phenomenological pa-
rameters must be fixed to make the proposed duality prescription more precise. According to [63],
one of these relations is

L3

G5
=

16E ·T 4

3π3 =
11 ·16

3π3 ≈ 1.9. (6.22)

The arguments supporting (6.22) are as follows. Lattice calculations for the QGP in [17] showed
that ET 4 is a slowly varying quantity and

E
T 4 ≈ 11. (6.23)

1This estimate can be also obtained using the so-called capture arguments [99, 97].
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Just to match BH equation of state (4.41) to (6.23), GYP assumed (6.22) (see [63]). It is important
that an identification of the total energy of each nucleus with the energy of the corresponding
shock wave is assumed here. We can modify this identification and assume that only a part of the
gravitational shock wave energy is related to the total energy of the nucleus.

The AdS/CFT dual relation (4.44) between the expectation value of the gauge theory stress
tensor and the AdS5 metric deformation by the shock wave was used in [63] to fix the dimensionless
parameter EL:

⟨Tuu⟩=
L2

4πG5
lim
z→0

1
z3 Φ(z,x⊥)δ (u). (6.24)

For the point shock wave Φp given by (6.13), we obtain the stress tensor in the boundary field
theory

⟨Tuu⟩=
2L4E

π(L2 +(x1)2 +(x2)2)3 δ (u). (6.25)

The right-hand side of (6.25) depends on the total energy E and L, and L has the meaning of
the root-mean-square radius of the transverse energy distribution. It was assumed in [63] that L
is equal to the root-mean-square transverse radius of the nucleons, which in accordance with a
Woods–Saxon profile for the nuclear density [100, 101] is of the order of a few fm. In particular, it
is equal to L ≈ 4.3 fm for Au and L ≈ 4.4 fm for Pb.

The RHIC collides Au nuclei (A=197) at
√

sNN = 200 GeV. This means that each nucleus has
the energy E = 100 GeV per nucleon, for a total of about E = Ebeam = 19.7 TeV for each nucleus.

The LHC will collide Pb nuclei (A=208) at
√

sNN = 5.5 TeV, which means E = Ebeam =

570 TeV.
The estimates in [63] for the dimensionless values EL for Au-Au and Pb-Pb collisions are

EL
∣∣
Au−Au,

√
sNN=200GeV ≈ 4.3×105, (6.26)

EL
∣∣
Pb−Pb,

√
sNN=5.5TeV ≈ 1.27×107. (6.27)

We note that tuning the scale L or z0 of the bulk colliding object to the size of the nucleus or
to the “saturation scale” Qs in the “color glass” models was proposed in [68].

The calculations in [63] show that in the limit of a very large collision energy E, the entropy
increases as E2/3,

Strapped ≈ π
(

L3

G5

)1/3

(2EL)2/3. (6.28)

Considering off-center collisions of gravitational shock waves in the AdS space do not change the
scaling E2/3. But a critical impact parameter, beyond which the TS does not exist, was observed
in [68] (cf. the result in [66]). Experimental indications for a similar critical impact parameter in
real collisions had been noted [68].

The relation of the total multiplicity SQGP (given by experimental data) to the entropy SAdS

produced in the gravitational wave collision in AdS5 has some subtleties [63]. Phenomenological
considerations [102, ?, 63] lead to estimating the total multiplicity SQGP by the number Nch of
charged particles times a factor ∼ 7.5,

SQGP ≈ 7.5Nch. (6.29)
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(a) (b)

Figure 6: (color on-line) Plots of the total number of charged particles versus energy: the red lines represent
estimate (2.45). The plots in (a) and (b) differ by the overall factor M . The blue lines correspond to
the prediction of the Landau model, and the dotted green lines schematically represent the curves that fit
the experimental data. The dashed lines correspond to corrections to the GYP multiplicity via a nonzero
chemical potential (see Sect. 3).

The TS analysis does not give the produced entropy, but it provides a lower bound,

Strapped ≤ SAdS. (6.30)

Taking into account that in the calculations in [63], the gravitational shock wave energy was
identified with the energy of colliding ions and L was identified with the nucleus size, we can
introduce proportionality constants between these quantities and obtain

M ·Strapped < Nch, (6.31)

where all proportionality factors are included in the overall factor M . We can take M to fit the
experimental data at some point. But the scaling Strapped ∝ s1/3

NN implied by (6.28) differs from the
observed scaling, which is closer to the dependence S ∝ s1/4

NN , which is predicted by the Landau
model [33] (see Fig. 6). Obviously, we can avoid a conflict between [63] and the experiment if
E < Emax, but if E can be arbitrary large, then the conflict arises.

In Fig. 6, we plot the dependence of entropy bound (6.28) on the energy together with the
curve schematically representing the realistic curve that fits the experimental data [103]. It can be
seen that by changing the coefficient M , we can avoid the conflict only for energy up to some
Emax. We chose the overall coefficient of the numerical plot to fit the RHIC data [103], which are
indicated by dots in Fig. 6.

In the above estimate, the energy of each shock wave is identified with the energy of colliding
beams. As was noted in [64], the fit to the data can be improved by identifying the energy of each
shock wave with the fraction of the energy of the nucleus carried by a nucleus participating in
the collision. This gives an extra parameter for fitting the data. But a conflict still arises at high
energies. It was proposed in [64] to solve this problem by removing a UV part of the AdS bulk.
Shock waves corresponding to the BH with a nonzero dilaton field [104] were considered in [73],
where it was shown that the lower bound on Nch scales is closer to s1/4

NN .
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7. BH formation in AdS by falling shell

The (d +1)-dimensional infalling matter shell in AdS in Poincaré coordinates is described by
the Vaidya metric

ds2 =
1
z2

[
−
(

1−m(v)zd
)

dv2 −2dzdv+dx2
]
, (7.1)

where v is the null coordinate, x = (x1, . . . ,xd−1) are the spatial coordinates on the boundary z = 0
and we have set the AdS radius equal to 1. We take m(v) in the form

m(v) = Mθ(v), (7.2)

where M is a constant and θ(v) is the Heaviside function. This function can be regularized as

m(v) =
M
2

(
1+ tanh

v
µ

)
, (7.3)

µ characterizes the thickness if the shell at the point v = 0. One gets (7.2) from (7.3) under µ → 0.
For m(v) = M the change of variables

dv = dt − dz
1−M zd (7.4)

brings (7.1) to the standard metric of the black hole in AdS in the Poincare coordinates

ds2 =
1
z2

[
−
(

1−Mzd
)

dt2 +
dz2

1−Mzd +dx2
]
. (7.5)

For v < 0 the metric (7.1) with m(v) in the form (7.2) is just the AdS metric.
For metrics (7.1),(7.2) for d = 2,3,4 the geodesics, stated and ended on the boundary at points

(−l/2, t0,0) (l/2, t0,0), respectively, are studied in papers [105, 79, 77, 78, 80]. In this calculations
the regularization (±l/2, t0,0)→ (±l/2, t0,z0) has been used, here z0 is the parameter of the ulta-
violet cut-off (compare with [27]). For AdS3 the renormalized length is δL = 2ln(l/2).

The length of geodesic relating points in AdS3 (±l/2, t0,z0) and crossing the shell (see Fig.
7.B ) is given by the parametrical formula [77, 78, 80]

δL (t0, ℓ) = 2ln
[

sinh(rHt0)
rHs(ℓ, t0)

]
, (7.6)

here s(ℓ, t0) ∈ [0,1] is a parameter defined from the condition

ℓ=
1

rH

[
2c
sρ

+ ln
(

2(1+ c)ρ2 +2sρ − c
2(1+ c)ρ2 −2sρ − c

)]
(7.7)

è

2ρ = coth(rHt0)+

√
coth2(rHt0)−

2c
c+1

. (7.8)

here s =
√

1− c2, ρ = 1/(rHzc), rH =
√

M, zc is a coordinate of the shell crossing point, c is an
arbitrary parameter less then 1. It is clear that for any ℓ, for a time large enough the geodesic related
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the points (±⃗l/2, t0,z0) will become inside the black hole, see Fig.7.C, and in this case the geodesic
length is given by the expression

δLthermal(ℓ) = 2ln[
1

rH
sinhrHℓ/2], (7.9)

that means the thermalization for large enough ℓ. For later times the geodesic length does not
change, see Fig.7.D.
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Figure 7: Cartoon of the process describing the appearance of the black hole. A. The geodesic is in the
empty AdS space; the horizontal line images the regularization. B. The geodesic connected points ±l/2 is
partially in the black hole region. C. The same geodesic is totally in the black hole region. D. The geodesic
is in the black hole region in all later times

To describe the Hawking radiation we can use the Vadya AdS metric with negative energy
(with negative mass function), compare with [106]. The process of evaporation of the black hole
is presented in Fig.8 and the process of creation of the black hole and the subsequence radiation is
presented in Fig.9.
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Figure 8: Cartoon of the black hole evaporation: A. The geodesic connected points ±l/2 is totally in the
black hole region. B. A partial evaporation of the black hole from the point of view of two points ±ℓ⃗/2
correlator, i.e. the geodesic is partially in the black hole region. C. The total evaporation of the black hole
from the point of view of this correlator, i.e. the geodesic totally abandons the black hole region. D. The
geodesic is totally in the empty region in all subsequent momenta of time.

The metric of this process is given by the formula (7.1) with m(v)

m(v) = Mθ(v)−M1θ(v− v1), (7.10)

The case of the full determalization corresponds to M = M1 and will be considered in what follows.
If the distance ℓ is essential less then v1, then in the given moment of time the geodesic cross no
more then 2 point of the shell. This case is schematically presented in Fig.8. As we can see
form the figures, for 0 < t < v1 the length of the geodesic connected the points (±l/2, t0,z0) and
crossing the shell (see Fig. 7. B ) is given by formula (7.6), (7.7) and (7.8). Then the length of the
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Figure 9: Cartoon of the black formation and the subsequent black hole evaporation: transition from A
to B shows the black hole creation; C shows the black hole evaporation and D shows the total black hole
evaporation.

geodesic does not change till t∗ < t < v1, Fig.8. B. Starting from v1 = t the geodesic crosses the
shell at 2 points, Fig.8. C, and the length of the geodesic is given by new (as compare with (7.6),
(7.7)) formula. These formula we obtain considering relations between the change of the value of
the affine paremeter and the value of the change of the coordinate x on the different part of the
geodesic. These relations have the form

l = lAdS,1 + lAdS,2 + lBHAdS,1 + lBHAdS,2

=
4

pxrc

(
rc −

√
r2

c − p2
x

)
−2p2

x ln

(
r2

t (2− r2
c G++2

√
F(rc))

r2
c(2− r2

t G++2
√

F(rt))

)
(7.11)

è

Lren = δLren +LAdS,1 +LAdS,2 +LBHAdS,2 +LBHAdS,2 (7.12)

= −4log(rc +
√

r2
c − p2

x)+ ln

(
−(p2

x +1−E2
B)+2r2

c +2
√

D(rc)

−(p2
x +1−E2

B)+2r2
t +2

√
D(rt)

)
here ren means the renormalized length and the following notations are introduced

G+ = p2
x +1−E2

B, G− =−p2
x +1+E2

B (7.13)

D(r) = r4 +(E2
B −1− p2

x)r
2 + p2

x (7.14)

F(r) = p2
xr4 − (p2

x +1− E2
B p2

x)r
2 +1 (7.15)

and we consider the case when in the empty AdS space the geodesic has zero energy (the case of
nonzero energy corresponds to non-equal time correlator), and the energy in the black space (in
BHAdS space) is defined from the refraction condition

EB =− 1
2r2

c

√
r2

c − p2
x . (7.16)

here rc is the coordinate of the crossing point, px is the angular momentum that is the integral
of motion and has no a junction under crossing the geodesic (as opposed to the energy, that has
according to (7.16) a junction under a crossing of the shell), rt is the turning point of the geodesic.
We have a relation

r2
t± =

(1+ p2
x −E2

B)±
√

(1+ p2
x −E2

B)
2 −4p2

x

2
(7.17)
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Let us clarify the meaning of (7.11), (7.13), (7.16) and (7.17). Here rc is a free parameter that
specifies the position of the shell, px is a parameter that does not change in shell moving, EB is
given by (7.16), and rt given by formula (7.17). Therefore, under rc and px fixed, formula (7.11)
and (7.13) give the relation between renormalized geodesic length Lren and the distance l.

As it is seen from 8.D, starting from t ≥ t∗1 the geodesic related the points (±l/2, t0,z0) occurs
totaly outside the black hole and the geodesic length will be given by formula δL = 2ln(ℓ/2).

In [21] it has been proposed to estimate the ratio of the thermalization time over the freeze-out
time using a holographic AdS-Vaidya model. In the model the freeze-out is described as the black
hole evaporation due to the Hawking radiation that is modeled by the Vaidya metric with a negative
mass.

Let us consider the AdS-Vadiya metric (7.1) with

m(v) = M(θ(v)−θ(v− v1)), (7.18)

where M > 0 and v1 is larger than the thermalization time, v1 > tther.
Let us suppose that the vector l⃗, characterizing the equal times two points on the boundary, at

which the geodesic states and ends, has only one nonzero component, l1 ≡ ℓ, and denote J1 = J.
The thermalization time for the correlation function at for these two points is given by

τtherm =

∫ ∞

J

dr
r2(1− M

rd )
, (7.19)

here J is the first component of the conserved angular momentum related with ℓ

ℓ = 2J
∫ ∞

J

dr

r2
√

(r2 − J2)(1− M
rd )

. (7.20)

From these formulas we get that
τther

ℓ
= F(m2,d), (7.21)

where m2 = M/Jdρd and F(m2,d) is given by

F(m2,d) =

∫ ∞
1

dρ
ρ2(1−m2

ρd )

2
∫ ∞

1
dρ

ρ2
√
(ρ2−1)(1−m2

ρd )

. (7.22)

Now, in the 4-dimensional Minkowski space, i.e. for d = 4 for the function F(m2,4) as a
function of m, 0 < m < 1, we have the bound

0.39 ≤ F(m2,4)≤ 0.5, (7.23)

see Fig.10. Therefore we obtain the bound for the thermalization time (d=4)

0.39 ≤ τther

ℓ
≤ 0.5, (7.24)

The similar bounds take place for other d > 2 [77, 79, 80].
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The dethermalization time, under assumption that v1 > τth and for the same points on the
boundary, is defined by the formulas (7.19) and (7.20) with M = 0. Since F(0,d) = 1/2 we have

τdet

ℓ
=

1
2

(7.25)

Note, that (7.25) does not depend on the space time dimension d.
From (7.24), (7.25) we obtain the following relation between thermalization and dethermal-

ization times for observables at the same distance:

0.78 <
τther

τdet
< 1 (7.26)

We see that this ratio is universal and does not depend on the distance between two points till the
distance is less then v1.

Therefore, the minimal ratio of thermalization time to determalization time, that can be real-
ized in the d = 4 AdS-Vadiya model is 0.78. Increasing d one gets a possibility to decrease this
ratio, see 10.B. As it has been noted in [81, 82] involving the nonzero chemical potential one in-
creases the ratio of τtherm to ℓ, and therefore, in our model, this increases τtherm/τder. One can also
try to add by hands an effective locking potential, for example, the quadratic one. This corresponds
to a change (1−m2/ρd)→ (1−m2/ρd +qρ2) in (7.22). This locking potential decreases the ratio
F(m,q,4) = τtherm/τder, see Fig.10.C.

It is known that the experimental data on heavy ion collisions determine the thermalization
time as τther ∼ 1 fm/c and the dethermalization time as τdet ∼ 10− 20 fm/c, so τther/τdet ∼ 0.1−
0.05 . It seems at the first sight that it is difficult to explain this data using our model. This is in
fact so, if one thinks that thermalization and the dethermalization have to be happen at the same
scale, but it is not so if the scales of thermalization and the dethermalization are different. For the
thermalization time, the relevant length scale according [77] can be taken about ℓ ∼ 0.6 fm, that
is the thermal scale l ∼ h̄/T for the temperature value T ∼ 300− 400MeV at heavy ion collider
energies, and one obtains the estimate τtherm ∼ 0.3fm/c, which is smaller then the experimental
data.

One can fit better the experimental data using the scale l ∼ 2 fm. One of possible explanations
of this scale is a classical estimation of the distance between the nucleons inside the nucleus. One
gets this estimation by taking into account that the radius of the nucleus of Pb is about rPb ≈7 fm,
and in the sphere with this radius one can pack 208 (A=208 for Pb) balls with radius

rn =
3
√

ηK

208
rPb ≈ 1.07fm. (7.27)

Here ηK is the Kepler number ηK = π/
√

18 ≈ 0.74. From this consideration it seems natural to
take l = 2rn ∼ 2 fm as a typical scale of the thermalization. In this case one has τtherm ∼ 1 fm/c.

For an estimation of the dethermalization time, one can take as the typical scale the size of the
nucleus, i.e. ldet ∼ 2rPb ∼ 14 fm. Then one gets the dethermalization time τdet ∼ 7fm/c. Note that
this estimation gets a low bound, since in the model we have the free parameter v1. For the ratio
one gets

τther

τdet
=

τther

0.5 · lther
· lther

ldet
= 0.39 · 2

14
≈ 0.056, (7.28)
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A. B. C.

Figure 10: A. The plot of F(m2,4) as function of m. B. The plot shows the dependence of the below bound
of F(m2,d) on dimension d. d=2 corresponds to the red line, d=4,6,8 to blue, green and magenta lines,
respectively. C. The plot of F(m2,q,4) as function of q and m2 = 0.99.

which is in agreement with the experimental data.
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