
P
o
S
(
C
o
r
f
u
2
0
1
2
)
0
0
2

The QCD Running Coupling and its Measurement

Guido Altarelli∗†
Dipartimento di Fisica ‘E. Amaldi’, Università di Roma Tre
INFN, Sezione di Roma Tre, I-00146 Rome, Italy

and
CERN, Department of Physics, Theory Division
CH-1211 Geneva 23, Switzerland

E-mail: guido.altarelli@cern.ch

In this lecture, after recalling the basic definitions and facts about the running coupling in QCD,

I present a critical discussion of the methods for measuringαs and select those that appear to me

as the most reliably precise

RM3-TH/13-3; CERN-PH-TH/2013-059
Proceedings of the Corfu Summer Institute 2012 "School and Workshops on Elementary Particle Physics
and Gravity"
September 8-27, 2012
Corfu, Greece

∗Speaker.
†I am very grateful to George Zoupanos and the Organising Committee of the Corfu Summer Institute 2012 for their

invitation and hospitality. This work has been partly supported by the Italian Ministero dell’Università e della Ricerca
Scientifica, under the COFIN program (PRIN 2008), by the European Commission, under the networks “LHCPHE-
NONET” and “Invisibles”

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
C
o
r
f
u
2
0
1
2
)
0
0
2

Measurements ofαs Guido Altarelli

1. Introduction

The modern theory of strong interactions, QCD (Quantum Chromo-Dynamics) [1, 2, 3], has a
simple structure but a very rich dynamical content (for books and reviews, see for example [4, 5]).
It gives rise to a complex spectrum of hadrons, implies the striking properties of confinement and
asymptotic freedom, is endowed with an approximate chiral symmetry which is spontaneously
broken, has a highly non trivial topological vacuum structure (instantons,U(1)A symmetry break-
ing, strong CP violation (which is a problematic item in QCD possibly connected with new physics,
like axions, ...), an intriguing phase transition diagram (colour deconfinement, quark-gluon plasma,
chiral symmetry restoration, colour superconductivity, ...).

How do we get testable predictions from QCD? On the one hand there are non perturbative
methods. The most important at present is the technique of lattice simulations (for a recent review,
see ref. [6]): it is based on first principles, it has producedvery valuable results on confinement,
phase transitions, bound states, hadronic matrix elementsand so on, and it is by now an estab-
lished basic tool. The main limitation is from computing power and therefore there is continuous
progress and a lot of good perspectives for the future. Another class of approaches is based on
effective lagrangians which provide simpler approximations than the full theory, but only valid in
some definite domain of physical conditions. Typically at energies below a given scaleL particles
with mass larger thanL cannot be produced and thus only contribute short distance effects as vir-
tual states in loops. Under suitable conditions one can write down a simplified effective lagrangian
where the heavy fields have been eliminated (one says "integrated out"). Virtual heavy particle
short distance effects are absorbed into the coefficients ofthe various operators in the effective
Lagrangian. These coefficients are determined in a matchingprocedure, by requiring that the ef-
fective theory reproduces the matrix elements of the full theory up to power corrections. Important
examples of effective theories are chiral lagrangians, based on soft pion theorems [7] and valid for
suitable processes at energies below 1 GeV (for a recent, concise review see ref. [8] and references
therein); heavy quark effective theories [9], obtained from expanding in inverse powers of the heavy
quark mass, mainly important for the study of b and, to less accuracy, c decays (for reviews, see, for
example, ref. [10]); soft-collinear effective theories (SCET) [11], valid for processes where quarks
with energy much larger than their mass appear. On the other hand, the perturbative approach,
based on asymptotic freedom, still by far remains the main quantitative connection to experiment,
due to its wide range of applicability to all sorts of "hard" processes.

The crucial ingredient of perturbative QCD is the "running"couplingαs(Q), the scale depen-
dent effective coupling that decreases logarithmically with increasing values of the energy scale
Q and tends towards zero at infinity ("asymptotic freedom"). At large scales the detailed form of
the running is prescribed by the QCD theory. The running coupling is a property of the theory
and it enters in the perturbative expansion of any hard process. Some particularly simple and clear
hard processes must be used to measure the running coupling at a suitable energy scale. Once the
running coupling is measured it can be used to predict all observables related to a variety of hard
processes. In particular QCD plays a crucial role in the physics at hadron colliders where many
important processes, like jets at largepT , heavy quark pair production, Higgs production and many
more have rates that start at orderα2

s . It is clear that the measurements ofαs are very important to
work out the relevant predictions of the theory. The error onthe measured value ofαs is a main

2



P
o
S
(
C
o
r
f
u
2
0
1
2
)
0
0
2

Measurements ofαs Guido Altarelli

component of the theoretical error in all perturbative QCD predictions. In this article after recall-
ing the basic definitions and facts about the running coupling we go to our main focus which is a
critical discussion of the methods for precisely measuringαs and the corresponding results.

2. The QCD running coupling

In the QCD lagrangian the only parameters with the dimensionof energy are the quark masses
(in units h̄ = c = 1). Thus at the classical level massless QCD is scale invariant. But the scale
invariance of massless QCD does not remain true in the quantum theory. The scale symmetry of
the classical theory is unavoidably destroyed by the regularization and renormalization procedure
which introduce a dimensional parameter in the quantum version of the theory. When a symmetry
of the classical theory is necessarily destroyed by quantization, regularization and renormalization
one talks of an "anomaly". So, in this sense, scale invariance in massless QCD is anomalous.

While massless QCD is finally not scale invariant, the departures from scaling are asymptot-
ically small, logarithmic and computable. In massive QCD there are additional mass corrections
suppressed by powers of m/E, where E is the energy scale (for processes that are non singular in
the limit m→ 0). At the parton level (q and g) we can conceive to apply the asymptotic predictions
of massless QCD to processes and observables (we use the word"processes" for both) with the
following properties ("hard processes"). (a) All relevantenergy variables must be large:

Ei = ziQ, Q >> mj ; zi : scaling variables o(1) (2.1)

(b) There should be no infrared singularities (one talks of "infrared safe" processes). (c) The pro-
cesses concerned must be finite form→ 0 (no mass singularities). To possibly satisfy these criteria
processes must be as "inclusive" as possible: one should include all final states with massless gluon
emission and add all mass degenerate final states (given thatquarks are massless alsoq− q̄ pairs
can be massless if "collinear", that is moving together in the same direction at the common speed
of light).

In perturbative QCD one computes inclusive rates for partons (the fields in the lagrangian, that
is, in QCD, quarks and gluons) and takes them as equal to ratesfor hadrons. Partons and hadrons
are considered as two equivalent sets of complete states. This is called "global duality" and it is
rather safe in the rare instance of a totally inclusive final state. It is less so for distributions, like
distributions in the invariant mass M ("local duality") where it can be reliable only if smeared over
a sufficiently wide bin in M.

For the derivation of the running coupling the basic framework is the renormalization group
formalism. In this section we denote withα eitherαs in the case of QCD or its analogue in QED.
For a sufficiently well defined Green functionG, the renormalization group equation (RGE) in
massless QCD can be written as:

[
∂

∂ logµ2 + β (α)
∂

∂α
+ γG(α)]Gren = 0 (2.2)

whereα is the renormalized coupling defined at the scaleµ (µ cannot be zero because of infrared
divergences) and

β (α) =
∂α

∂ logµ2 (2.3)
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and

γG(α) =
∂ logZG

∂ logµ2 (2.4)

Note thatβ (α) does not depend on which Green functionG we are considering; actually it is a
property of the theory and of the renormalization scheme adopted, whileγG(α) also depends on
G. Strictly speaking the RGE as written above is only valid in the Landau gauge (λ = 0). In other
gauges an additional term that takes the variation of the gauge fixing parameterλ should also be
included. We omit this term, for simplicity, as it is not relevant at the 1-loop level.

Assume that we want to apply the RGE to some hard process at a large scaleQ, related to a
Green function G that we can always take as dimensionless (bymultiplication by a suitable power
of Q). Since the interesting dependence onQ will be logarithmic we introduce the variablet as :

t = log
Q2

µ2 (2.5)

Then we can writeGren ≡ F(t,α ,xi) wherexi are scaling variables (we often omit to write them in
the following). In the naive scaling limitF should be independent oft, according to the classical
intuition that massless QCD is scale invariant. To find the actual dependence ont, we want to solve
the RGE

[−
∂
∂ t

+ β (α)
∂

∂α
+ γG(α)]Gren = 0 (2.6)

with a given boundary condition att = 0 (or Q2 = µ2): F(0,α). The solution of this general
equation is given by:

F(t,α) = F [0,α(t)]exp
∫ α(t)

α

γ(α ′)

β (α ′)
dα ′ (2.7)

where the "running coupling"α(t) is defined by:

t =

∫ α(t)

α

1
β (α ′)

dα ′ (2.8)

Note that from this definition it follows thatα(0) = α , so that the boundary condition is also
satisfied. To prove thatF(t,α) in eq. 2.7 is indeed the solution, we first take derivatives with
respect oft andα (the two independent variables) of both sides of eq. (2.8). By taking d/dt we
obtain

1 =
1

β (α(t)
∂α(t)

∂ t
(2.9)

We then taked/dα and obtain

0 = −
1

β (α)
+

1
β (α(t)

∂α(t)
∂α

(2.10)

These two relations make explicit the dependence of the running coupling ont andα :

∂α(t)
∂ t

= β (α(t)) (2.11)

∂α(t)
∂α

=
β (α(t))

β (α)
(2.12)
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Using these two equations one immediately checks thatF(t,α) is indeed the solution. In fact the
sum of the two derivatives acting on the factorF[0,α(t)] vanishes and the exponential is by itself a
solution of the complete equation. Note that the boundary condition is also satisfied. The important
point is the appearance of the running coupling as the quantity that determines the asymptotic
departures from scaling.

The next step is to study the functional form of the running coupling. From eq. (2.11) we see
that the rate of change witht of the running coupling is determined by theβ function. In turnβ (α)

is determined by theµ dependence of the renormalized coupling through eq. (2.3).Clearly there is
no dependence onµ of the basic 3-gluon vertex in lowest order (ordere). The dependence starts at
1-loop, that is at ordere3 (one extra gluon has to be emitted and reabsorbed). Thus we obtain that
in perturbation theory:

∂e
∂ logµ2 ∝ e3 (2.13)

Recalling thatα = e2/4π, we have:

∂α
∂ logµ2 ∝ 2e

∂e
∂ logµ2 ∝ e4 ∝ α2 (2.14)

Thus the behaviour ofβ (α) in perturbation theory is as follows:

β (α) = ±bα2[1 + b′α + ...] (2.15)

Since the sign of the leading term is crucial in the followingdiscussion, we stipulate that always
b > 0 and we make the sign explicit in front.

By direct calculation at 1-loop one finds:

QED : β (α) ∼ +bα2 + ..... b = ∑
i

NCQ2
i

3π
(2.16)

whereNC = 3 for quarks andNC = 1 for leptons and the sum runs over all fermions of chargeQie
that are coupled. Also, one finds:

QCD : β (α) ∼ −bα2 + ..... b =
11NC−2nf

12π
(2.17)

where, as usual,nf is the number of coupled (see below) flavours of quarks (we assume here
that nf ≤ 16 so thatb > 0 in QCD). If α(t) is small we can computeβ (α(t)) in perturbation
theory. The sign in front ofb then decides the slope of the coupling:α(t) increases with t (or
Q2) if β is positive at smallα (QED), or α(t) decreases with t (orQ2) if β is negative at small
α (QCD). A theory like QCD where the running coupling vanishesasymptotically at largeQ2 is
called (ultraviolet) "asymptotically free". An importantresult that has been proven [12] is that in 4
spacetime dimensions all and only non-abelian gauge theories are asymptotically free.

Going back to eq. (2.8) we replaceβ (α) ∼ ± bα2, do the integral and perform a simple
algebra. We find

QED : α(t) ∼
α

1−bα t
(2.18)

and
QCD : α(t) ∼

α
1+bα t

(2.19)
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A slightly different form is often used in QCD. DefiningΛQCD by 1/α = blogµ2/Λ2
QCD, we can

write:

α(t) ∼
1

1
α + bt

=
1

blog µ2

Λ2
QCD

+ blog Q2

µ2

=
1

blog Q2

Λ2
QCD

(2.20)

The parameterµ has been traded for the parameterΛQCD. We see thatα(t) decreases logarith-
mically with Q2 and that one can introduce a dimensional parameterΛQCD that replacesµ . Often
in the following we will simply writeΛ for ΛQCD. Note that it is clear thatΛ depends on the
particular definition ofα , not only through the defining scaleµ but also on the renormalization
scheme adopted. It also depends on the numbernf of coupled flavours through the parameterb,
and in general through theβ function. It is very important to note that QED and QCD are theories
with "decoupling": up to the scaleQ only quarks with massesm<< Q contribute to the running
of α . This is clearly very important, given that all applications of perturbative QCD so far apply to
energies below the top quark massmt . For the validity of the decoupling theorem [13] it is neces-
sary that the theory where all the heavy particle internal lines are eliminated is still renormalizable
and that the coupling constants do not vary with the mass. These requirements are true for heavy
quarks in QED and QCD, but are not true in the electroweak theory where the elimination of the
top would violateSU(2) symmetry (because the t and b left-handed quarks are in a doublet) and the
quark couplings to the Higgs multiplet (hence to the longitudinal gauge bosons) are proportional
to the mass. In conclusion, in QED and QCD, quarks withm >> Q do not contribute tonf in
the coefficients of the relevantβ function. The effects of heavy quarks are power suppressed and
can be taken separately into account. For example, ine+e− annihilation for 2mc < Q < 2mb the
relevant asymptotics is fornf = 4, while for 2mb < Q < 2mt nf = 5. Going accross theb threshold
the β function coefficients change, so theα(t) slope changes. Butα(t) is continuous, so thatΛ
changes so as to keepα(t) constant at the matching point atQ∼ o(2mb). The effect onΛ is large:
approximatelyΛ5 ∼ 0.65Λ4 whereΛ4,5 are fornf = 4,5.

Note the presence of a pole in eqs.(2.18,2.19) at±bαt = 1, called the Landau pole, who
realized its existence in QED already in the ’50’s. Forµ ∼ me, in QED, the pole occurs beyond
the Planck mass. In QCD the Landau pole is located for negative t or at Q < µ in the region of
light hadron masses. Clearly the issue of the definition and the behaviour of the physical coupling
(which is always finite, when defined in terms of some physicalprocess) in the region around the
perturbative Landau pole is a problem that lies outside the domain of perturbative QCD.

The non leading terms in the asymptotic behaviour of the running coupling can in principle
be evaluated going back to eq. (2.15) and computingb′ at 2-loops and so on. But in general the
perturbative coefficients ofβ (α) depend on the definition of the renormalized couplingα (the
renormalization scheme), so one wonders whether it is worthwhile to do a complicated calculation
to getb′ if then it must be repeated for a different definition or scheme. In this respect it is interest-
ing to remark that actually one can easily prove that, due to the definition ofβ (α), bothb andb′

are independent of the definition ofα , while higher order coefficients do depend on that.

In QCD (NC = 3) one has obtained [16]:

b′ =
153−19nf

2π(33−2nf )
(2.21)
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By takingb′ into account one can write the expression of the running coupling at next to the leading
order (NLO):

α(Q2) = αLO(Q2)[1 − b′αLO(Q2) log log
Q2

Λ2 + ...] (2.22)

whereα−1
LO = blogQ2/Λ2 is the LO result (actually at NLO the definition ofΛ is modified ac-

cording toblogµ2/Λ2 = 1/α +b′ logbα).
At present the universally adopted definition ofαs is in terms of dimensional regularization

[14], with the so-called Modified Minimal Subtraction (MS) scheme [15] and a value quoted forαs

is normally referring to this definition. Different measurements obtained at different energy scales
are usually made comparable to each other by translating theresult in terms of the value at theZ
mass:αs(mZ).

The third [17] and fourth [18] coefficients of the QCDβ function are also known in theMS
prescription (recall that only the first two coefficients arescheme independent). The calculation of
the last term involved the evaluation of some 50,000 4-loop diagrams. Translated in numbers, for
nf = 5 one obtains :

β (α) = −0.610α2[1 + 1.261...
α
π

+ 1.475...(
α
π

)2 + 9.836...(
α
π

)3...] (2.23)

It is interesting to remark that the expansion coefficients are of order 1 or 10 (only for the last one),
so that theMSexpansion looks reasonably well behaved.

Summarizing, massless classical QCD is scale invariant. But the procedure of quantization,
regularization and renormalization necessarily breaks scale invariance. In the quantum QCD theory
there is a scale of energy,Λ, which, from experiment, is of the order of a few hundred MeV,
its precise value depending on the definition, as we shall seein detail. Dimensionless quantities
depend on the energy scale through the running coupling which is a logarithmic function ofQ2/Λ2.
In QCD the running coupling decreases logarithmically at largeQ2 (asymptotic freedom), while in
QED the coupling has the opposite behaviour.

3. Measurements of αs

Very precise and reliable measurements ofαs(mZ) are obtained frome+e− colliders (in partic-
ular LEP), from deep inelastic scattering and from the hadron Colliders (Tevatron and LHC). The
”official” compilation due to Bethke [20] and included in the2012 edition of the PDG [19] leads
to the world averageαs(mZ) = 0.1184± 0.0007. A similar analysis with equivalent conclusions
was recently presented in ref. [21]. The agreement among so many different ways of measuring
αs is a strong quantitative test of QCD. However for some entries the stated error is taken directly
from the original works and is not transparent enough as seenfrom outside (e.g. the lattice deter-
mination). In my opinion one should select few theoretically simplest processes for measuringαs

and consider all other ways as tests of the theory. Note that this is what is usually done in QED
whereα is measured from one single very precise and theoretically reliable observable (one pos-
sible calibration process is at present the electron g-2 [22]). The cleanest processes for measuring
αs are the totally inclusive ones (no hadronic corrections) with light cone dominance, like Z decay,
scaling violations in DIS and perhapsτ decay (but, forτ , the energy scale is dangerously low). We
will review these cleanest methods for measuringαs in the following.
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3.1 αs from e+e− colliders

The totally inclusive processes for measuringαs at e+e− colliders are hadronic Z orτ decays
(Rl ,τ = Γ(Z,τ → hadrons)/Γ(Z,τ → leptons), σh, σl , [σF = 12πΓl ΓF/(m2

ZΓ2
Z) with F=h or l are

the hadronic or leptonic cross sections at theZ peak], and the totalZ width ΓZ = 3Γl + Γh + Γinv.
For each of this quantities, for exampleRl , one can write a general expression of the form:

Rl ∼ REW(1 + δQCD + δNP) (3.1)

whereREW is the electroweak-corrected Born approximation,δQCD, δNP are the perturbative (log-
arithmic) and non perturbative (power suppressed) QCD corrections. For a measurement ofαs (we
always refer to theMS definition of αs) at the Z resonance peak one can use all the information
from Rl , ΓZ and σh,l . In the past the measurement fromRl was preferred (by itself it leads to
αs(mZ) = 0.1226±0.0038, a bit on the large side) but after LEP there is no reason for this prefer-
ence. In all these quantitiesαs enters throughΓh, but the measurements of, say,ΓZ, Rl andσl are
really independent as they are affected by an entirely different systematics:ΓZ is extracted from the
line shape,Rl andσl are measured at the peak butRl does not depend on the absolute luminosity
while σl does. The most sensitive single quantity isσl . It givesαs(mZ) = 0.1183±0.0030. The
combined value from the measurements at the Z (assuming the validity of the SM and the observed
Higgs mass) is [23]:

αs(mZ) = 0.1187±0.0027 (3.2)

By adding all other electroweak precision electroweak tests (in particularmW) one similarly finds
[24]:

αs(mZ) = 0.1186±0.0026 (3.3)

These results have been obtained from theδQCD expansion up to and including thec3 term of order
α3

s . But by now thec4 term (NNNLO!) has also been computed [25] for inclusive hadronic Z and
τ decay. This remarkable calculation of about 20.000 diagrams, for the inclusive hadronic Z width,
led to the result, fornf = 5 andas = αs(mZ)/π:

δQCD = [1 + as + 0.76264a2
s − 15.49 a3

s − 68.2 a4
s + . . .] (3.4)

This result can be used to improve the value ofαs(mZ) from the EW fit given in eq. (3.3) that
becomes:

αs(mZ) = 0.1190±0.0026 (3.5)

Note that the error shown is dominated by the experimental errors. Ambiguities from higher pertur-
bative orders [26], from power corrections and also from uncertainties on the Bhabha luminometer
(which affectσh,l ) [27] are very small. In particular, having now fixedmH does not decrease the
error significantly [28, 29]. The main source of error is the assumption of no new physics, for
example in theZbb̄ vertex that could affect theΓh prediction.

We now consider the measurement ofαs(mZ) from τ decay.Rτ has a number of advantages
that, at least in part, tend to compensate for the smallness of mτ = 1.777 GeV. First,Rτ is maximally
inclusive, more thanRe+e−(s), because one also integrates over all values of the invariant hadronic
squared mass:

Rτ =
1
π

∫ m2
τ

0

ds
m2

τ
(1−

s
m2

τ
)2ImΠτ(s) (3.6)
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As we have seen, the perturbative contribution is now known at NNNLO [25]. Analyticity can be
used to transform the integral into one on the circle at|s| = m2

τ :

Rτ =
1

2π i

∮
|s|=m2

τ

ds
m2

τ
(1−

s
m2

τ
)2Πτ(s) (3.7)

Also, the factor(1− s
m2

τ
)2 is important to kill the sensitivity the regionRe[s] = m2

τ where the phys-
ical cut and the associated thresholds are located. Still the sensitivity to hadronic effects in the
vicinity of the cut is a non negligible source of theoreticalerror that the formulation of duality
violation models try to decrease. But the main feature that has attracted attention toτ decays for
the measurement ofαs(mZ) is that even a rough determination ofΛQCD at a low scaleQ ∼ mτ

leads to a very precise prediction ofαs at the scalemZ, just because in logQ/ΛQCD the value of
ΛQCD counts less and less asQ increases. The absolute error onαs shrinks by a factor of about
one order of magnitude going fromαs(mτ) to αs(mZ). Still I find a little suspicious that to obtain
a better measurement ofαs(mZ) you have to go down to lower and lower energy scales. And in
fact, in general, in similar cases one finds that the decreased control of higher order perturbative
and of non perturbative corrections makes the apparent advantage totally illusory. Forαs from Rτ

the quoted amazing precision is obtained by taking for granted that corrections suppressed by 1/m2
τ

are negligible. The argument is that in the massless theory,the light cone expansion is given by:

δNP =
ZERO

m2
τ

+ c4 ·
< O4 >

m4
τ

+ c6 ·
< O6 >

m6
τ

+ · · · (3.8)

In fact there are no dim-2 Lorentz and gauge invariant operators. For example,∑AgA
µgAµ , where

gA
µ are the gluon fields, is not gauge invariant. In the massive theory, the ZERO is replaced by

the light quark mass-squaredm2. This is still negligible ifm is taken as a lagrangian mass of a
few MeV. If on the other hand the mass were taken to be the constituent mass of orderΛQCD, this
term would not be negligible at all and would substantially affect the result (note thatαs(mτ)/π ∼

0.1 ∼ (0.6 GeV/mτ)
2 and thatΛQCD for 3 flavours is large). The principle that coefficients in

the operator expansion can be computed from the perturbative theory in terms of parton masses has
never been really tested (due to ambiguities on the determination of condensates) and this particular
case where a ZERO appears in the massless theory is unique in making the issue crucial. Many
distinguished people believe the optimistic version. I am not convinced that the gap is not filled
up by ambiguities of 0(Λ2

QCD/m2
τ) from δpert: the [ZERO/m2

τ ] terms in eq. 3.8 are vulnerable
to possible ambiguities from the so-called ultraviolet renormalons [30]. In fact one must keep in
mind that the QED and QCD perturbative series, after renormalization, have all their coefficients
finite, but the expansion does not converge. Actually the perturbative series is not even Borel
summable (for reviews, see, for example refs. [31]). After the Borel resummation, for a given
process one is left with a result which is ambiguous by terms typically down by exp−n/(bα),
with n an integer and b is the absolute value of the firstβ function coefficient. In QED these
corrective terms are extremely small and not very importantin practice. On the contrary in QCD
α = αs(Q2) ∼ 1/(blogQ2/Λ2) and the ambiguous terms are of order(1/Q2)n, that is are power
suppressed. It is interesting that, through this mechanism, the perturbative version of the theory is
able to somehow take into account the power suppressed corrections. A sequence of diagrams with
factorial growth at large ordern is made up by dressing gluon propagators by any number of quark

9
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bubbles together with their gauge completions (renormalons).The problem of the precise relation
between the ambiguities of the perturbative expansion and the higher twist corrections has been
discussed in recent years [31].

There is a vast and sophisticated literature onαs from τ decay. Unbelievably small errors on
αs(mZ) are obtained in one or the other of several different procedures and assumptions that have
been adopted to end up with a specified result. With time therehas been an increasing awareness
on the problem of controlling higher orders and non perturbative effects. In particular fixed order
perturbation theory (FOPT) has been compared to resummation of leading beta function effects
in the so called contour improved perturbation theory (CIPT). The results are sizably different in
the two cases and there have been many arguments in the literature on which method is best. One
important progress comes from the experimental measurement of moments of theτ decay mass
distributions, defined by modifying the weight function in the integral in eq.(3.6). In principle
one can measureαs from the sum rules obtained from different weight functionsthat emphasize
different mass intervals and different operator dimensions in the light cone operator expansion. A
thorough study of the dependence of the measured value ofαs on the choice of the weight function
and in general of higher order and non perturbative corrections has appeared in ref.[32] and I advise
the interested reader to look at that paper and the references therein. It would be great to be able to
fit both the value ofαs and of the coefficient of the 1/m2

τ term at the same time. Unfortunately a
good precision onαs is only obtained if that coefficient is fixed.

We consider here the recent evaluations ofαs from τ decay based on the NNNLO perturbative
calculations [25] and different procedures for the estimate of all sorts of corrections. From the
papers given in refs. [33] we obtain an average value and error that agrees with the Erler and
Langacker values given in the PDG’12 [19]:

αs(mτ) = 0.3285±0.018 (3.9)

or
αs(mZ) = 0.1194±0.0021 (3.10)

In any case, one can discuss the error, but what is true and remarkable, is that the central value ofαs

from τ decay, obtained at very smallQ2, is in good agreement with all other precise determinations
of αs at more typical LEP values ofQ2.

3.2 αs from Deep Inelastic Scattering

In principle DIS is expected to be an ideal laboratory for thedetermination ofαs but in practice
the outcome is still to some extent open. QCD predicts theQ2 dependence ofF(x,Q2) at each
fixed x, not thex shape. But theQ2 dependence is related to thex shape by the QCD evolution
equations. For each x-bin the data allow to extract the slopeof an approximately straight line in
dlogF(x,Q2)/dlogQ2: the log slope. TheQ2 span and the precision of the data are not much
sensitive to the curvature, for mostx values. A single value ofΛQCD must be fitted to reproduce
the collection of the log slopes. For the determination ofαs the scaling violations of non-singlet
structure functions would be ideal, because of the minimal impact of the choice of input parton
densities. We can write the non-singlet evolution equations in the form:

d
dt

logF(x, t) =
αs(t)
2π

∫ 1

x

dy
y

F(y, t)
F(x, t)

Pqq(
x
y
,αs(t)) (3.11)
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wherePqq is the splitting function. At present NLO and NNLO corrections are known. It is clear
from this form that, for example, the normalization error onthe input density drops away, and the
dependence on the input is reduced to a minimum (indeed, onlya single density appears here, while
in general there are quark and gluon densities). Unfortunately the data on non-singlet structure
functions are not very accurate. If we take the difference ofdata on protons and neutrons,Fp−Fn,
experimental errors add up in the difference and finally are large. TheF3νN data are directly non-
singlet but are not very precise. Another possibility is to neglect sea and glue inF2 at sufficiently
largex. But by only taking data atx > x0 one decreases the sample, introduces a dependence onx0

and an error from residual singlet terms. A recent fit to non singlet structure functions in electro- or
muon-production extracted from proton and deuterium data,neglecting sea and gluons atx > 0.3
(error to be evaluated) has led to the results [34]:

αs(mZ) = 0.1148±0.0019(exp) + ? (NLO) (3.12)

αs(mZ) = 0.1134±0.0020(exp) + ? (NNLO) (3.13)

The central values are rather low and there is not much difference between NLO and NNLO. The
question marks refer to the uncertainties from the residualsinglet component atx > 0.3 and also
to the fact that the old BCDMS data, whose systematics has been questioned, are very important at
x > 0.3 and push the fit towards small values ofαs.

When one measuresαs from scaling violations inF2 measured with e orµ beams, the data
are abundant, the statistical errors are small, the ambiguities from the treatment of heavy quarks
and the effects of the longitudinal structure functionFL can be controlled, but there is an increased
dependence on input parton densities and especially a strong correlation between the result onαs

and the adopted parametrization of the gluon density. In thefollowing we restrict our attention to
recent determinations ofαs from scaling violations at NNLO accuracy, as, for example, those in
refs. [35, 36] that report the results, in the order:

αs(mZ) = 0.1134±0.0011(exp) + ? (3.14)

αs(mZ) = 0.1158±0.0035 (3.15)

In the first line my question mark refers to the issue of theαs-gluon correlation. In factαs tends to
slide towards low values (αs ∼ 0.113−0.116) if the gluon input problem is not fixed. Indeed, in
the second line from ref. [36], the large error also includesan estimate of the ambiguity from the
gluon density parametrization. One way to restrict the gluon density is to use the Tevatron highpT

jet data to fix the gluon parton density at largex that, via the momentum conservation sum rule,
also constrain the smallx values of the same density. Of course in this way one has to go outside
the pure domain of DIS. Also, the jet rates have been computedat NLO only. In a simultaneous fit
of αs and the parton densities from a set of data that, although dominated by DIS data, also contains
Tevatron jets and Drell- Yan production, the result was [37]:

αs(mZ) = 0.1171±0.0014 + ? (3.16)

The authors of ref. [37] attribute their larger value ofαs to a more flexible parametrization of
the gluon and the inclusion of Tevatron jet data that are important to fix the gluon at largex. An
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alternative way to cope with the gluon problem is to drastically suppress the gluon parametrization
rigidity by adopting the neural network approach. With thismethod, in ref. [38], from DIS data
only, treated at NNLO accuracy, the following value was obtained:

αs(mZ) = 0.1166±0.0008(exp)±0.0009(th) + ? (3.17)

where the stated theoretical error is that quoted by the authors within their framework, while the
question mark has to do with possible additional systematics from the method adopted. Interest-
ingly, in the same approach, by also including the Tevatron jets and the Drell-Yan data not much
difference is found:

αs(mZ) = 0.1173±0.0007(exp)±0.0009(th) + ? (3.18)

We see that when the gluon input problem is suitably addressed the fitted value ofαs is increased.

As we have seen there is some spread of results, even among themost recent determinations
based on NNLO splitting functions. We tend to favour determinations from the whole DIS set of
data (i.e. beyond the pure non singlet case) and with attention paid to the gluon ambiguity problem
(even if some non DIS data from Tevatron jets at NLO have to be included). A conservative pro-
posal for the resulting value ofαs from DIS, that emerges from the above discussion is something
like:

αs(mZ) = 0.1165±0.0020 (3.19)

The central value is below those obtained fromZ andτ decays but perfectly compatible with those
results.

3.3 Other αs(mZ) Measurements as QCD Tests

There are a number of other determinations ofαs that are important because they arise from
qualitatively different observables and methods. All together they provide an impressive set of
QCD tests. Here I will give a few examples of these interesting measurements.

A classic set of measurements is from a number of infrared safe observables related to event
rates and jet shapes ine+e− annihilation. One important feature of these measurementsis that they
can be repeated at different energies in the same detector, like the JADE detector in the energy
range of PETRA or the LEP detectors from LEP1 to LEP2 energies. As a result one obtains a
striking direct confirmation of the running of the coupling according to the renormalization group
prediction. The perturbative part is known at NNLO [39] and resummations of leading logs arising
from the vicinity of cuts and/or boundaries have been performed in many cases using effective
field theory methods. The main problem of these measurementsis the possible large impact of non
perturbative hadronization effects on the result and therefore on the theoretical error. According
to ref.[20] a summary result that takes into account the central values and the spread from the
JADE measurements, in the range 14 to 46 GeV, at PETRA is givenby: αs(mZ) = 0.1172±
0.0051, while from the ALEPH data at LEP, in the range 90 to 206 GeV, the reported value [40]
is αs(mZ) = 0.1224± 0.0039. It is amazing to note that among the related works thereare a
couple of papers by Abbate et al [41, 42] where an extremely sophisticated formalism is developed
for the thrust distribution, based on NNLO perturbation theory with resummations at NNNLL
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plus a data/theory based estimate of non perturbative corrections. The final quoted results are
unbelievably precise:αs(mZ) = 0.1135±0.0011 from the tail of the Thrust distribution [41] and
αs(mZ) = 0.1140± 0.0015 from the first moment of the Thrust distribution [42] (note the low
central value). I think that this is a good example of an underestimated error which is obtained
within a given machinery without considering the limits of the method itself. Another allegedly
very precise determination ofαs(mZ) is obtained from lattice QCD by several groups [43] with
different methods and compatible results. A value that summarizes these different results is [19]
αs(mZ) = 0.1185±0.0007. With all due respect to lattice people I think this small error is totally
umplausible.

4. Conclusion: My Recommended Value of αs(mZ)

According to my proposal to calibrateαs(mZ) from the theoretically cleanest and most trans-
parent methods, identified as the totally inclusive, light cone operator expansion dominated pro-
cesses, I collect here my understanding of the results: fromZ decays and EW precision tests,
eq.(3.3):

αs(mZ) = 0.1190±0.0026; (4.1)

from scaling violations in DIS, eq.(3.19):

αs(mZ) = 0.1165±0.0020; (4.2)

from Rτ , eq.(3.10):
αs(mZ) = 0.1194±0.0021. (4.3)

If one wants to be on the safest side one can take the average ofZ decay and DIS:

αs(mZ) = 0.1174±0.0016. (4.4)

This is my recommended value. If one adds to the average the relatively conservativeRτ value and
error given above in eq. 3.10, that takes into account the dangerous low energy scale of the process,
one obtains:

αs(mZ) = 0.1184±0.0011. (4.5)

Note that this is essentially coincident with the "official"average with a moderate increase of the
error. Thus we see that a sufficiently precise measure ofαs(mZ) can be obtained, eqs. (4.4,4.5),
by only using the simplest processes where the control of theoretical errors is maximal. One is left
free to judge whether a further restriction of theoretical errors is really on solid ground.

The value ofΛ (for nf = 5) which corresponds to eq. (4.4) is:

Λ5 = 202±18 MeV (4.6)

while the value from eq. (4.5) is:
Λ5 = 213±13 MeV (4.7)

In conclusion, we see that a reasonably precise measure ofαs(mZ) can be obtained, eqs.
(4.4,4.5), by only using the simplest processes where the control of theoretical errors is maxi-
mal. One is left free to judge whether a further decrease of the error is really worthwhile at the
price of a loss in transparency and rigour.
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