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1. Introduction

The modern theory of strong interactions, QCD (Quantum @iak®@ynamics) [1, 2, 3], has a
simple structure but a very rich dynamical content (for k®akd reviews, see for example [4, 5]).
It gives rise to a complex spectrum of hadrons, implies thkist properties of confinement and
asymptotic freedom, is endowed with an approximate chiyadrsetry which is spontaneously
broken, has a highly non trivial topological vacuum struet(instantonslJ (1) symmetry break-
ing, strong CP violation (which is a problematic item in QC@spibly connected with new physics,
like axions, ...), an intriguing phase transition diagrawidur deconfinement, quark-gluon plasma,
chiral symmetry restoration, colour superconductivity, .

How do we get testable predictions from QCD? On the one hagek thre non perturbative
methods. The most important at present is the techniqudtizidaimulations (for a recent review,
see ref. [6]): it is based on first principles, it has produged, valuable results on confinement,
phase transitions, bound states, hadronic matrix elenagmisso on, and it is by now an estab-
lished basic tool. The main limitation is from computing povand therefore there is continuous
progress and a lot of good perspectives for the future. Aerotkass of approaches is based on
effective lagrangians which provide simpler approximagidhan the full theory, but only valid in
some definite domain of physical conditions. Typically atmgnes below a given scaleparticles
with mass larger thah cannot be produced and thus only contribute short distaffieet® as vir-
tual states in loops. Under suitable conditions one carewlotvn a simplified effective lagrangian
where the heavy fields have been eliminated (one says “"atghiout”). Virtual heavy particle
short distance effects are absorbed into the coefficientheoizarious operators in the effective
Lagrangian. These coefficients are determined in a matgimocedure, by requiring that the ef-
fective theory reproduces the matrix elements of the fibtly up to power corrections. Important
examples of effective theories are chiral lagrangiansedas soft pion theorems [7] and valid for
suitable processes at energies below 1 GeV (for a recertissoreview see ref. [8] and references
therein); heavy quark effective theories [9], obtainedrfrexpanding in inverse powers of the heavy
guark mass, mainly important for the study of b and, to lessi@cy, ¢ decays (for reviews, see, for
example, ref. [10]); soft-collinear effective theorie<CET) [11], valid for processes where quarks
with energy much larger than their mass appear. On the ot®, lthe perturbative approach,
based on asymptotic freedom, still by far remains the maangtative connection to experiment,
due to its wide range of applicability to all sorts of "hardbpesses.

The crucial ingredient of perturbative QCD is the "runnirnguplingas(Q), the scale depen-
dent effective coupling that decreases logarithmicallthvincreasing values of the energy scale
Q and tends towards zero at infinity ("asymptotic freedom").lakge scales the detailed form of
the running is prescribed by the QCD theory. The running bogps a property of the theory
and it enters in the perturbative expansion of any hard gscgome particularly simple and clear
hard processes must be used to measure the running coupérsugable energy scale. Once the
running coupling is measured it can be used to predict akables related to a variety of hard
processes. In particular QCD plays a crucial role in the jglsyat hadron colliders where many
important processes, like jets at lange, heavy quark pair production, Higgs production and many
more have rates that start at or@ef. It is clear that the measurementscgfare very important to
work out the relevant predictions of the theory. The errottm measured value @fs is a main
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component of the theoretical error in all perturbative QGBdictions. In this article after recall-
ing the basic definitions and facts about the running cogplre go to our main focus which is a
critical discussion of the methods for precisely measudggnd the corresponding results.

2. The QCD running coupling

In the QCD lagrangian the only parameters with the dimensf@mnergy are the quark masses
(inunitsh=c=1). Thus at the classical level massless QCD is scale invariaat the scale
invariance of massless QCD does not remain true in the gumtiteory. The scale symmetry of
the classical theory is unavoidably destroyed by the regalton and renormalization procedure
which introduce a dimensional parameter in the quantuniomeis the theory. When a symmetry
of the classical theory is necessarily destroyed by quaiidiz, regularization and renormalization
one talks of an "anomaly”. So, in this sense, scale invagiamenassless QCD is anomalous.

While massless QCD is finally not scale invariant, the depeast from scaling are asymptot-
ically small, logarithmic and computable. In massive QCPBr¢hare additional mass corrections
suppressed by powers of m/E, where E is the energy scaler@foegses that are non singular in
the limitm— 0). At the parton level (g and g) we can conceive to apply tiyengsotic predictions
of massless QCD to processes and observables (we use théprocdsses"” for both) with the
following properties ("hard processes"). (a) All relevanergy variables must be large:

E = zQ, Q>>mj; z: scaling variables @) (2.1)

(b) There should be no infrared singularities (one talksimfrdred safe" processes). (c) The pro-
cesses concerned must be finiterfor- 0 (no mass singularities). To possibly satisfy these caiter
processes must be as "inclusive" as possible: one sholldiaall final states with massless gluon
emission and add all mass degenerate final states (givequhats are massless alge- g pairs
can be massless if "collinear", that is moving together smgsame direction at the common speed
of light).

In perturbative QCD one computes inclusive rates for par{tme fields in the lagrangian, that
is, in QCD, quarks and gluons) and takes them as equal tofatbadrons. Partons and hadrons
are considered as two equivalent sets of complete statas.isTtalled "global duality" and it is
rather safe in the rare instance of a totally inclusive finales It is less so for distributions, like
distributions in the invariant mass M ("local duality") wiedt can be reliable only if smeared over
a sufficiently wide bin in M.

For the derivation of the running coupling the basic framewie the renormalization group
formalism. In this section we denote witheitheras in the case of QCD or its analogue in QED.
For a sufficiently well defined Green functidd, the renormalization group equation (RGE) in
massless QCD can be written as:

7] 7]
[W + B(a)d_a + ¥6(a)]Gren = 0 (2.2)

wherea is the renormalized coupling defined at the sqal@: cannot be zero because of infrared

divergences) and
~ Oda
~ dlogu?

B(a) (2.3)
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and dlogz
G
Ve(a) = dlogu?
Note that((a) does not depend on which Green functi@nwe are considering; actually it is a
property of the theory and of the renormalization schemedly whileys(a) also depends on
G. Strictly speaking the RGE as written above is only validie Landau gauge\(= 0). In other
gauges an additional term that takes the variation of thgedining parameteA should also be
included. We omit this term, for simplicity, as it is not redet at the 1-loop level.

Assume that we want to apply the RGE to some hard process sjeadaaleQ, related to a
Green function G that we can always take as dimensionless(iiiyplication by a suitable power
of Q). Since the interesting dependence@wiill be logarithmic we introduce the variableas :

QZ

u?

(2.4)

t = log (2.5)
Then we can writé&s,en = F (t, a,X ) wherex; are scaling variables (we often omit to write them in
the following). In the naive scaling limf should be independent bfaccording to the classical
intuition that massless QCD is scale invariant. To find tHeaadependence dnwe want to solve
the RGE ) P

with a given boundary condition at= 0 (or Q> = u?): F(0,a). The solution of this general
equation is given by:

F(t,a) — F[O,a(t)]exp/aa(t) %da’ 2.7)

where the "running coupling (t) is defined by:

alt) 1 ,
t:/a S 2.8)

Note that from this definition it follows thatr(0) = a, so that the boundary condition is also
satisfied. To prove thef (t,a) in eq. 2.7 is indeed the solution, we first take derivativethwi
respect ot anda (the two independent variables) of both sides of eq. (2.8)taBing d/dt we

obtain
1 Jda(t)

SRCONT 29
We then takel/da and obtain
1 1 Jda(t)
0= — + 2.10
Ba) * Bla® oa (240
These two relations make explicit the dependence of themgrooupling ont anda:
daf(t
20~ ga) (2.11)
da(t) _ B(a(t))
da B (2.12)
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Using these two equations one immediately checksFHtigtr) is indeed the solution. In fact the
sum of the two derivatives acting on the fackdD, a (t)] vanishes and the exponential is by itself a
solution of the complete equation. Note that the boundanglition is also satisfied. The important
point is the appearance of the running coupling as the gyathi@t determines the asymptotic
departures from scaling.

The next step is to study the functional form of the runninggimg. From eq. (2.11) we see
that the rate of change wittof the running coupling is determined by tBdunction. In turn(a)
is determined by the dependence of the renormalized coupling through eq. (ZI&arly there is
no dependence gu of the basic 3-gluon vertex in lowest order (orégrThe dependence starts at
1-loop, that is at ordeg® (one extra gluon has to be emitted and reabsorbed). Thus tai dbat
in perturbation theory:

de
— - 0é 2.13
dlogu? © (2.13)
Recalling thatr = €?/41, we have:

Jda _ Jde 4 2
Jlog 12 O 2"6Iogu2 Oe Oa (2.14)

Thus the behaviour @8 (a) in perturbation theory is as follows:
B(a) = +ba?[l + ba +..] (2.15)

Since the sign of the leading term is crucial in the followifigcussion, we stipulate that always
b > 0 and we make the sign explicit in front.
By direct calculation at 1-loop one finds:

NcQ?
3

QED: B(a) ~ +ba? +..... b=%

(2.16)

whereNc = 3 for quarks andNc = 1 for leptons and the sum runs over all fermions of ch&pge
that are coupled. Also, one finds:
~ 1INc —2ry

: 2
QCD: B(a) ~ —ba“ +..... b= o7 (2.17)

where, as usualp; is the number of coupled (see below) flavours of quarks (wenasshere
thatns < 16 so thatb > 0 in QCD). If a(t) is small we can computg(a(t)) in perturbation
theory. The sign in front ob then decides the slope of the coupling(t) increases with t (or
Q?) if B is positive at smaltr (QED), or a(t) decreases with t (a®?) if B is negative at small
a (QCD). A theory like QCD where the running coupling vanislsymptotically at larg&? is
called (ultraviolet) "asymptotically free". An importargsult that has been proven [12] is that in 4
spacetime dimensions all and only non-abelian gauge #mare asymptotically free.

Going back to eq. (2.8) we replagda) ~ =ba?, do the integral and perform a simple
algebra. We find

a

QED: a(t) ~ 1 bat (2.18)
and a

QCD: a(t) ~ 17 bat (2.19)
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A slightly different form is often used in QCD. Definimyocp by 1/a = blog uz//\ZQCD, we can

write:

aft) ~ - = 1 1 (2.20)
o + bt blogt= + blog%  blog
Naeo H

2
/\QCD

The parametep has been traded for the paramefejcp. We see thati(t) decreases logarith-
mically with Q? and that one can introduce a dimensional paranm’edep that replacegi. Often

in the following we will simply write /A for Aqgcp. Note that it is clear thaf\ depends on the
particular definition ofa, not only through the defining scale but also on the renormalization
scheme adopted. It also depends on the numpef coupled flavours through the parameler
and in general through th@ function. It is very important to note that QED and QCD arepties
with "decoupling”: up to the scal® only quarks with massa®s << Q contribute to the running
of a. This is clearly very important, given that all applicatsoof perturbative QCD so far apply to
energies below the top quark mass For the validity of the decoupling theorem [13] it is neces-
sary that the theory where all the heavy particle intermeddiare eliminated is still renormalizable
and that the coupling constants do not vary with the masssé& hequirements are true for heavy
quarks in QED and QCD, but are not true in the electroweakryhetere the elimination of the
top would violateSU(2) symmetry (because the t and b left-handed quarks are in dedpahd the
quark couplings to the Higgs multiplet (hence to the lorgjital gauge bosons) are proportional
to the mass. In conclusion, in QED and QCD, quarks with> Q do not contribute ta; in
the coefficients of the relevafit function. The effects of heavy quarks are power suppresseéd a
can be taken separately into account. For example/ @ annihilation for 2Zn, < Q < 2my, the
relevant asymptotics is fox; = 4, while for 2n, < Q < 2m; nf = 5. Going accross thethreshold
the 8 function coefficients change, so th€t) slope changes. But(t) is continuous, so thah
changes so as to keeit) constant at the matching point@t~ o(2my). The effect om\ is large:
approximately\s ~ 0.65\4 where/\45 are forns = 4,5.

Note the presence of a pole in egs.(2.18,2.19 b#it = 1, called the Landau pole, who
realized its existence in QED already in the '50’s. or~ mg, in QED, the pole occurs beyond
the Planck mass. In QCD the Landau pole is located for negiativ atQ < u in the region of
light hadron masses. Clearly the issue of the definition hadehaviour of the physical coupling
(which is always finite, when defined in terms of some physicatess) in the region around the
perturbative Landau pole is a problem that lies outside tdmain of perturbative QCD.

The non leading terms in the asymptotic behaviour of the inghooupling can in principle
be evaluated going back to eq. (2.15) and computingt 2-loops and so on. But in general the
perturbative coefficients gB(a) depend on the definition of the renormalized couplindthe
renormalization scheme), so one wonders whether it is widnith to do a complicated calculation
to getb/ if then it must be repeated for a different definition or schein this respect it is interest-
ing to remark that actually one can easily prove that, duéeadefinition of3(a), bothb andb’
are independent of the definition af while higher order coefficients do depend on that.

In QCD (Nc = 3) one has obtained [16]:

153— 19n¢

b = —————
2m(33—2ny)

(2.21)
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By takingl' into account one can write the expression of the running laoyipt next to the leading
order (NLO):

a(Q?) = ao(Q@)[1 — Hao(Q?)log Iogﬁ + ..] (2.22)

wherea 5 = blogQ?/A? is the LO result (actually at NLO the definition #f is modified ac-
cording toblog u?/A? = 1/a + 1 logba).

At present the universally adopted definitionafis in terms of dimensional regularization
[14], with the so-called Modified Minimal SubtractioM®) scheme [15] and a value quoted foy
is normally referring to this definition. Different measuorents obtained at different energy scales
are usually made comparable to each other by translatingethdt in terms of the value at the
mass:as(my).

The third [17] and fourth [18] coefficients of the QgBfunction are also known in th&l1S
prescription (recall that only the first two coefficients acheme independent). The calculation of
the last term involved the evaluation of some 50,000 4-ldagrams. Translated in numbers, for
ns = 5 one obtains :

B(a) = —0.6100%[1 + 1.261..% n 1.475..(%)2 + 9.836..(%)3...] (2.23)

It is interesting to remark that the expansion coefficientésoh order 1 or 10 (only for the last one),
so that theMSexpansion looks reasonably well behaved.

Summarizing, massless classical QCD is scale invariant.ti&uprocedure of quantization,
regularization and renormalization necessarily brealikesnvariance. In the quantum QCD theory
there is a scale of energy\, which, from experiment, is of the order of a few hundred MeV,
its precise value depending on the definition, as we shallrsdetail. Dimensionless quantities
depend on the energy scale through the running couplinghwia logarithmic function oQ?/A2.

In QCD the running coupling decreases logarithmically ajd&? (asymptotic freedom), while in
QED the coupling has the opposite behaviour.

3. Measurements of as

Very precise and reliable measurementsigtin; ) are obtained frone™e™ colliders (in partic-
ular LEP), from deep inelastic scattering and from the had®olliders (Tevatron and LHC). The
"official” compilation due to Bethke [20] and included in t2812 edition of the PDG [19] leads
to the world averagers(my) = 0.11844 0.0007. A similar analysis with equivalent conclusions
was recently presented in ref. [21]. The agreement amongasty mifferent ways of measuring
as is a strong quantitative test of QCD. However for some esititie stated error is taken directly
from the original works and is not transparent enough as seanoutside (e.g. the lattice deter-
mination). In my opinion one should select few theoreticalimplest processes for measuriag
and consider all other ways as tests of the theory. Note ltligid what is usually done in QED
wherea is measured from one single very precise and theoreticalighle observable (one pos-
sible calibration process is at present the electron g-p.[22e cleanest processes for measuring
as are the totally inclusive ones (no hadronic correctiongh\Wwiht cone dominance, like Z decay,
scaling violations in DIS and perhapsiecay (but, forr, the energy scale is dangerously low). We
will review these cleanest methods for measudggn the following.
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3.1 asfrom eTe™ colliders

The totally inclusive processes for measuringat e e~ colliders are hadronic Z ar decays
(R = IN(Z,T — hadrong /I (Z,T — leptons, ok, ai, [0r = 1207 ¢ /(m&l3) with F=h or | are
the hadronic or leptonic cross sections atZhgeak], and the totaZ width 'z = 3 + '+ Finy.
For each of this quantities, for examp®g one can write a general expression of the form:

R ~ REY(1 + égcp + Onp) (3.1)

whereREW is the electroweak-corrected Born approximatidgep, Onp are the perturbative (log-
arithmic) and non perturbative (power suppressed) QClectians. For a measurementaf (we
always refer to théviS definition of as) at the Z resonance peak one can use all the information
from R, 'z and o,. In the past the measurement frdinwas preferred (by itself it leads to
as(mz) = 0.1226+0.0038, a bit on the large side) but after LEP there is no reasiothis prefer-
ence. In all these quantities, enters througli'y,, but the measurements of, séy, R andgj are
really independent as they are affected by an entirelyrdiffiesystematicd: 7 is extracted from the
line shapeR ando; are measured at the peak IRytdoes not depend on the absolute luminosity
while oj does. The most sensitive single quantityjs It gives as(mz) = 0.1183+ 0.0030. The
combined value from the measurements at the Z (assuminglickty of the SM and the observed
Higgs mass) is [23]:

as(mz) =0.1187+ 0.0027 (3.2)

By adding all other electroweak precision electroweakstést particularmy) one similarly finds
[24]:
as(mz) = 0.1186+40.0026 (3.3)

These results have been obtained fromdbep expansion up to and including tieg term of order
aZ. But by now thec, term (NNNLO!) has also been computed [25] for inclusive loadr Z and
T decay. This remarkable calculation of about 20.000 diagrdon the inclusive hadronic Z width,
led to the result, fon; = 5 andas = as(mz) /Tt

docp=[1 + as + 0.76264a2 — 1549a% — 68242 + .. ] (3.4)

This result can be used to improve the valueogfmz) from the EW fit given in eq. (3.3) that
becomes:
as(mz) = 0.1190+ 0.0026 (3.5)

Note that the error shown is dominated by the experimentaterAmbiguities from higher pertur-
bative orders [26], from power corrections and also fromeuntainties on the Bhabha luminometer
(which affectoy)) [27] are very small. In particular, having now fixeg; does not decrease the
error significantly [28, 29]. The main source of error is tleswamption of no new physics, for
example in thez bb vertex that could affect thie, prediction.

We now consider the measurementogfmz) from 1 decay.R; has a number of advantages
that, at least in part, tend to compensate for the smallrfesge 1.777 GeV. FirstR; is maximally
inclusive, more thaRe:¢- (S), because one also integrates over all values of the intdradronic
squared mass:

1 (™ ds S
RT_7_T/0 g (1 ) Ime(9) (3.6)
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As we have seen, the perturbative contribution is now knasWNINLO [25]. Analyticity can be
used to transform the integral into one on the circlgsjat m?:

17 d
= 37 fy g ) T &7
=y T

Also, the factor(1— %)2 is important to kill the sensitivity the regidRels] = m? where the phys-
ical cut and the associated thresholds are located. Silsémsitivity to hadronic effects in the
vicinity of the cut is a non negligible source of theoretieator that the formulation of duality
violation models try to decrease. But the main feature thatdttracted attention tdecays for
the measurement afs(my) is that even a rough determination Afcp at a low scaleQ ~ my;
leads to a very precise prediction @f at the scalemy, just because in l0Q/Aqcp the value of
Nqcp counts less and less gsincreases. The absolute error agshrinks by a factor of about
one order of magnitude going from(m;) to as(mz). Still | find a little suspicious that to obtain
a better measurement af(mz) you have to go down to lower and lower energy scales. And in
fact, in general, in similar cases one finds that the decdeesetrol of higher order perturbative
and of non perturbative corrections makes the apparenngaya totally illusory. Foors from R,
the quoted amazing precision is obtained by taking for gattiat corrections suppressed biyrg
are negligible. The argument is that in the massless thdwrjight cone expansion is given by:

ZERO+C <O4>+ < Og >
R A

NP = (3.8)

In fact there are no dim-2 Lorentz and gauge invariant opesatFor examplezAgﬁgA“, where

gﬁ are the gluon fields, is not gauge invariant. In the massieerih) the ZERO is replaced by
the light quark mass-squared®. This is still negligible ifm is taken as a lagrangian mass of a
few MeV. If on the other hand the mass were taken to be the ito@st mass of ordef\qcp, this
term would not be negligible at all and would substantiaffeet the result (note thats(m;) /7~

0.1 ~ (0.6 GeV/m;)? and thatAqcp for 3 flavours is large). The principle that coefficients in
the operator expansion can be computed from the pertuebiiory in terms of parton masses has
never been really tested (due to ambiguities on the detatmomof condensates) and this particular
case where a ZERO appears in the massless theory is uniquakingrthe issue crucial. Many
distinguished people believe the optimistic version. | ashceonvinced that the gap is not filled
up by ambiguities of \&cp/mZ) from Jpert: the [ZERQ/NE] terms in eq. 3.8 are vulnerable
to possible ambiguities from the so-called ultravioletamnalons [30]. In fact one must keep in
mind that the QED and QCD perturbative series, after renlizaton, have all their coefficients
finite, but the expansion does not converge. Actually theupeative series is not even Borel
summable (for reviews, see, for example refs. [31]). Aftex Borel resummation, for a given
process one is left with a result which is ambiguous by terypgcélly down by exp-n/(ba),
with n an integer and b is the absolute value of the fi#dtunction coefficient. In QED these
corrective terms are extremely small and not very imporiatractice. On the contrary in QCD
a = as(Q?) ~ 1/(blogQ?/A?) and the ambiguous terms are of ord&yQ?)", that is are power
suppressed. It is interesting that, through this mechartisenperturbative version of the theory is
able to somehow take into account the power suppressedctiong A sequence of diagrams with
factorial growth at large ordaris made up by dressing gluon propagators by any number okquar
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bubbles together with their gauge completions (renorngldhe problem of the precise relation
between the ambiguities of the perturbative expansion headigher twist corrections has been
discussed in recent years [31].

There is a vast and sophisticated literatureagiirom 1 decay. Unbelievably small errors on
as(mz) are obtained in one or the other of several different proeiand assumptions that have
been adopted to end up with a specified result. With time thasebeen an increasing awareness
on the problem of controlling higher orders and non pertiivbaeffects. In particular fixed order
perturbation theory (FOPT) has been compared to resummatiteading beta function effects
in the so called contour improved perturbation theory (QIFhe results are sizably different in
the two cases and there have been many arguments in théulieeca which method is best. One
important progress comes from the experimental measurteofienoments of ther decay mass
distributions, defined by modifying the weight function imetintegral in eq.(3.6). In principle
one can measures from the sum rules obtained from different weight functighat emphasize
different mass intervals and different operator dimersiorthe light cone operator expansion. A
thorough study of the dependence of the measured valagmf the choice of the weight function
and in general of higher order and non perturbative cooesthas appeared in ref.[32] and | advise
the interested reader to look at that paper and the refes¢heeein. It would be great to be able to
fit both the value ofs and of the coefficient of the/t? term at the same time. Unfortunately a
good precision oy is only obtained if that coefficient is fixed.

We consider here the recent evaluationsigfrom 1 decay based on the NNNLO perturbative
calculations [25] and different procedures for the estamaitall sorts of corrections. From the
papers given in refs. [33] we obtain an average value and #red agrees with the Erler and
Langacker values given in the PDG’12 [19]:

as(my) = 0.3285+0.018 (3.9)

or
as(mz) = 0.1194+ 0.0021 (3.10)

In any case, one can discuss the error, but what is true aratkabie, is that the central value af
from 1 decay, obtained at very sm&F, is in good agreement with all other precise determinations
of as at more typical LEP values @2

3.2 asfrom Deep Inelastic Scattering

In principle DIS is expected to be an ideal laboratory fordegermination ofrg but in practice
the outcome is still to some extent open. QCD predictsQhalependence of (x,Q%) at each
fixed x, not thex shape. But th&)? dependence is related to theshape by the QCD evolution
equations. For each x-bin the data allow to extract the std@n approximately straight line in
dlogF(x,Q?)/dlog@: the log slope. TheQ? span and the precision of the data are not much
sensitive to the curvature, for masvalues. A single value of\gcp must be fitted to reproduce
the collection of the log slopes. For the determinatiormgthe scaling violations of non-singlet
structure functions would be ideal, because of the minimmgact of the choice of input parton
densities. We can write the non-singlet evolution equatiarthe form:

d o as(t) (1dyF(yt) X
glogFet) = S | 3 Foc Py ) (3.12)

10
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wherePyq is the splitting function. At present NLO and NNLO correctsoare known. It is clear
from this form that, for example, the normalization errortba input density drops away, and the
dependence on the input is reduced to a minimum (indeed aosilygle density appears here, while
in general there are quark and gluon densities). Unforélydhe data on non-singlet structure
functions are not very accurate. If we take the differenceath on protons and neutror$, — F,,
experimental errors add up in the difference and finally argd. The~,N data are directly non-
singlet but are not very precise. Another possibility is églect sea and glue i at sufficiently
largex. But by only taking data at > xg one decreases the sample, introduces a dependernxge on
and an error from residual singlet terms. A recent fit to naglsit structure functions in electro- or
muon-production extracted from proton and deuterium daglecting sea and gluonsat- 0.3
(error to be evaluated) has led to the results [34]:

as(mz) = 0.1148+0.0019exp + ? (NLO) (3.12)
as(mz) = 0.1134+0.0020exp + ? (NNLO) (3.13)

The central values are rather low and there is not much diffex between NLO and NNLO. The
guestion marks refer to the uncertainties from the residumglet component at > 0.3 and also
to the fact that the old BCDMS data, whose systematics hasdpgestioned, are very important at
x> 0.3 and push the fit towards small valuesogf

When one measurass from scaling violations i~ measured with e op beams, the data
are abundant, the statistical errors are small, the antlegudrom the treatment of heavy quarks
and the effects of the longitudinal structure functigncan be controlled, but there is an increased
dependence on input parton densities and especially egstamelation between the result og
and the adopted parametrization of the gluon density. Iridh@wving we restrict our attention to
recent determinations afs from scaling violations at NNLO accuracy, as, for examphese in
refs. [35, 36] that report the results, in the order:

as(mz) = 0.1134+0.0011exp + ? (3.14)
as(mz) = 0.1158+0.0035 (3.15)

In the first line my question mark refers to the issue ofdizgluon correlation. In facirs tends to
slide towards low valuesag ~ 0.113— 0.116) if the gluon input problem is not fixed. Indeed, in
the second line from ref. [36], the large error also includesstimate of the ambiguity from the
gluon density parametrization. One way to restrict the igldensity is to use the Tevatron high

jet data to fix the gluon parton density at langéhat, via the momentum conservation sum rule,
also constrain the smatlvalues of the same density. Of course in this way one has tatgide
the pure domain of DIS. Also, the jet rates have been com@itdidLO only. In a simultaneous fit
of as and the parton densities from a set of data that, althoughréted by DIS data, also contains
Tevatron jets and Drell- Yan production, the result was [37]

as(mz) = 0.117140.0014 + ? (3.16)

The authors of ref. [37] attribute their larger value af to a more flexible parametrization of
the gluon and the inclusion of Tevatron jet data that are imapb to fix the gluon at largg. An
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alternative way to cope with the gluon problem is to dradlicauppress the gluon parametrization
rigidity by adopting the neural network approach. With thisthod, in ref. [38], from DIS data
only, treated at NNLO accuracy, the following value was oted:

as(myz) = 0.1166:+0.0008 exp) + 0.0009th) + ? (3.17)

where the stated theoretical error is that quoted by theoasithithin their framework, while the
guestion mark has to do with possible additional systemmditmm the method adopted. Interest-
ingly, in the same approach, by also including the Tevatet® agnd the Drell-Yan data not much
difference is found:

as(myz) = 0.1173+0.0007exp) + 0.0009th) + ? (3.18)

We see that when the gluon input problem is suitably adddessefitted value ofrs is increased.

As we have seen there is some spread of results, even amonmgheecent determinations
based on NNLO splitting functions. We tend to favour detaations from the whole DIS set of
data (i.e. beyond the pure non singlet case) and with adteptid to the gluon ambiguity problem
(even if some non DIS data from Tevatron jets at NLO have tmbkided). A conservative pro-
posal for the resulting value afs from DIS, that emerges from the above discussion is songethin
like:

as(mz) = 0.1165+0.0020 (3.19)

The central value is below those obtained frédrandt decays but perfectly compatible with those
results.

3.3 Other ag(mz) Measurements as QCD Tests

There are a number of other determinationsrgthat are important because they arise from
gualitatively different observables and methods. All thge they provide an impressive set of
QCD tests. Here | will give a few examples of these intergstireasurements.

A classic set of measurements is from a number of infrareel sladervables related to event
rates and jet shapeséie™ annihilation. One important feature of these measurenigihst they
can be repeated at different energies in the same detek®the JADE detector in the energy
range of PETRA or the LEP detectors from LEP1 to LEP2 energies a result one obtains a
striking direct confirmation of the running of the couplingcarding to the renormalization group
prediction. The perturbative part is known at NNLO [39] ardummations of leading logs arising
from the vicinity of cuts and/or boundaries have been peréat in many cases using effective
field theory methods. The main problem of these measurerigethits possible large impact of non
perturbative hadronization effects on the result and fhezeon the theoretical error. According
to ref.[20] a summary result that takes into account theraénalues and the spread from the
JADE measurements, in the range 14 to 46 GeV, at PETRA is diyenag(mz) = 0.1172+
0.0051, while from the ALEPH data at LEP, in the range 90 to 20¥,@&w®e reported value [40]
is as(mz) = 0.12244 0.0039. It is amazing to note that among the related works thezea
couple of papers by Abbate et al [41, 42] where an extremedhisticated formalism is developed
for the thrust distribution, based on NNLO perturbationottyewith resummations at NNNLL
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plus a data/theory based estimate of non perturbative atamns. The final quoted results are
unbelievably preciseas(mz) = 0.1135+ 0.0011 from the tail of the Thrust distribution [41] and
as(mz) = 0.1140+ 0.0015 from the first moment of the Thrust distribution [42] t@dhe low
central value). 1 think that this is a good example of an uesimated error which is obtained
within a given machinery without considering the limits betmethod itself. Another allegedly
very precise determination afs(my) is obtained from lattice QCD by several groups [43] with
different methods and compatible results. A value that sarnmes these different results is [19]
as(mz) = 0.1185+ 0.0007. With all due respect to lattice people | think this draalor is totally
umplausible.

4. Conclusion: My Recommended Value of as(myz)

According to my proposal to calibrate(my) from the theoretically cleanest and most trans-
parent methods, identified as the totally inclusive, light& operator expansion dominated pro-
cesses, | collect here my understanding of the results: #odecays and EW precision tests,
eq.(3.3):

as(Mz) = 0.1190-+ 0.0026; (4.1)
from scaling violations in DIS, eq.(3.19):
as(Mz) = 0.1165-+ 0.0020; (4.2)
from R;, eq.(3.10):
as(mz) = 0.1194+0.0021 (4.3)

If one wants to be on the safest side one can take the averagdeafy and DIS:
as(mz) = 0.1174+0.0016 (4.4)

This is my recommended value. If one adds to the average ldite/ety conservativedR; value and
error given above in eqg. 3.10, that takes into account thgetans low energy scale of the process,
one obtains:

as(mz) = 0.1184+0.0011 (4.5)

Note that this is essentially coincident with the "officiallerage with a moderate increase of the
error. Thus we see that a sufficiently precise measums@f;) can be obtained, egs. (4.4,4.5),
by only using the simplest processes where the control ofétieal errors is maximal. One is left
free to judge whether a further restriction of theoreticgabes is really on solid ground.

The value ofA (for ny = 5) which corresponds to eq. (4.4) is:

As = 202+ 18 MeV (4.6)

while the value from eq. (4.5) is:
N5 =213+ 13 MeV 4.7)

In conclusion, we see that a reasonably precise measueg(of;) can be obtained, egs.
(4.4,4.5), by only using the simplest processes where thé&aoof theoretical errors is maxi-
mal. One is left free to judge whether a further decrease ektior is really worthwhile at the
price of a loss in transparency and rigour.
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