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1. Introduction

The computation of Radiative Corrections (RCs) is very daatirgg from a technical point of
view. A lot of work has been recently devoted to deal, in arcigfit way, with 1-loop processes
at large multiplicities [1, 2, 3, 4], and progress has bedriesed also in the field of the multi-
loop calculations [5, 6, 7, 8, 9]. Most of the difficulties dreggered by the usual treatment, in
the framework of Dimensional Regularization (DR) [10], bétinfinities arising in the intermedi-
ate steps of the calculation, so that several attempts hese toied out to find four-dimensional
alternatives to the DR treatment of the UV infinities, sucklifferential renormalization [11], con-
strained differential renormalization [12, 13], which batork in the coordinate space, implicit
renormalization [14, 15], symmetry preserving regularaa[16] and LR [17], directly applicable
in the momentum space.

In a recent work, the FDR approach [18] has been proposediahviie UV problem is solved
by simply re-interpreting the loop integrals appearinghia talculation. They ardefinedin such
a way that infinities do not occur. The price to pay is the apgeze of an arbitrary scale, called
which plays the role of the renormalization scale. Techhjiceaking, infinities never appear, and
the procedure works because the FDR re-interpretatiorecespby construction, shift and gauge
invariance. In this contribution, | review the state-oétart of the FDR approach.

2. The FDR integral

The UV convergence of a loop integral can be improved by aatepeuse of theartial
fraction identity

% _ % <1+%> , (2.1)

with
Di = ¢?—di, d = M?—p’—2(q-p), (2.2)

and
Di = Di—p?, ¢ = ¢ —p?, (2.3)

whereq is the loop momentum and an arbitrary, vanishing, scale needed to avoid the appearan
of possible infrared divergences in the second term of the of eq. (2.1). Consider, as an example,
the 1-loop integrat

1
~ 4
J—/d I5-5: (2.4)

After promoting

P — T, (2.5)

1) take pg = 0.
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namely
Di—%-ti, (2.6)
eg. (2.1) yields

. 1 dy do
J=Ilm [di%q| |5 — — . 2.7
H=0 q<lq4]+G4D1+G2DoD1> @)
Only the term between square brackets in eq. (2.7) leads tali\®fgences. On the other hand,

any physically relevant scale is contained in the remaipiag. One can therefoidefinethe FDR
integral by simply dropping the divergent integrand:

' 1 . d do
JFDR:/d“ = —im [d* A . 28
dq DoD1 le—>n0 a G4D1+GZD0D1 p=p o9
=HR

The final identificationu = ur effectively eliminates the dependence on the originalafijtas ex-
plained in detail in [18]. The extension to more loops isigttdorward. Any multi-loop integrand
J = Jv + Jr can be always be split into terms which only contginsalled vacuum configurations
Jv, and a finite parfg, resulting in

3FDR /I_!d4q' (9%} = I|m /I_!d4Q| F({a?})

When computing Feynman diagrams, it is important to redhag the shift in eq. (2.5) should be
performed in both denominatoasid numerators; and that? integrals such as

(2.9)

H=Hr

2

~FDR/ 2 4 H

W)= [ 555 (2.10

require thesame denominator expansion needed to subtract the vacuum caoatfimus from

R
d*g=—s—. 2.11
Jeis 5, (2.11)
That ensures, for example, identities between integrats) as [19]
/[d“Q]i— 4 z/ +/ (2.12)
DoD1D> D1 D> DoDl Dy’

which are essential to keep the cancellations needed te pnewVard Identities in gauge theories.

3. Shift invariance of the FDR integral

The definition in eq. (2.9) implies invariance under any g®wf variable, as it becomes
evident by considering the FDR integral as a difference betwan integraUER, regulated (for
examplée?) in dimensional regularization, and its vacuum configorai

- !
N LV | [ (@) (3.1)
=

H=HR

20ne is free to choose any regulator.



FDR Roberto Pittau

Shift invariance can be easily verified explicitly. Consgjdeg.

o= [letags. i = [l 32)
with
Dp = (@+p2-M2—p?, D = ?—M?—p2 (3.3)

One must havk, =1/, which can be proved either directly, from the FDR definitodt, andl/,, or
indirectly, by subtracting vacuum configurations from tleeresponding dimensionally regulated
integrals.

The direct computation df, requires the following expansion of its integrand

C {Q_a] _4[(q-p)qa}

D3 | Qe
+ dola (a‘TlDﬁqziD%) —20a(q- p)d(q) (q%ﬁq%g)’ (3.4)
with
= -, da=d—2(q-p), do=M—p? (3.5)
and where the terms between square brackets are diverderefdre
lg = do(J1a — 2J20) + 430, (3.6)
with

' 1 1
Jig = lim [ d* =
la }JITO qqa ((?'Dp + C—IZD%> )

1

: 2
f— i 4 . [ _—
Jog = ngno/d 4% (9-p) <66Dp+64D%> ;

2 1
p— i 4 . 2 —_— —_—
'J3O( - L@o/d qqﬂ(q p) (aBDp+q4D%> :

Computing the previous integrals gives

. M?
Ia - ”sza In ? .
The starting point for the indirect computationlgfis instead
i 1 1 (a-p) ] }
I :Ilm/dn { —[ —4 , 3.7
a 10 00 ((CH- p)z o M2_ u2)2 (qz _ u2)2 (qz _ “2)3 ( )

namely the |.h.s. of eq. (3.4) subtracted by the divergdrgirands appearing in the r.h.s. An easy
calculation gives

M2
lg =impg In — .
a pa uz

Analogously, both direct and indirect computations/ptonfirm that

2
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4. Fermionsin FDR

In the presence of strings of Dirac matrices, the replacémieeq. (2.5) in the numerator of
the amplitude is equivalent to a shift

q—a=9+u, (4.1)
directly performed in the fermionic string [19], Wheip's defined according to its position:
(oay™ vy ) =@+ )y yr@—(=)"u)...). 4.2)

To prove the equivalence, one should also make use the &EQOR integrals involving odd powers
of u in the numerator vanish [18].

If chirality matrices are involved, a gauge invariant treant [20] requires their anticommu-
tation at the beginning (or the end) of open strings befopéagingg — @. In the case of closed
loops, y5 should be put next to the vertex corresponding to a potembiaiconserved current. This
reproduces the correct coefficient of the triangular angnaal observed in [18].

5. FDR at two-loop

As an example of two-loop FDR regularization, consider ttiegral

4 4
/ [dqu[d Q2]7D1D2D127 (5.1)
where the propagators are given by
_1 - q_% - m§7
D2 = ch - nﬁ?
D12 = i, — Mi,. (5.2)

In the same spirit of the one-loop case, divergent integrarah be subtracted before integration
by means of eq. (2.1), or

1 1 gf+2(0u0p)

- =S5 —-—==", 5.3
% % @ >
resulting in the following expression:
1
4 b1t
[alo'es s,

_ e e M2

im [ d'e [ o < L . AT 2

woo) T T\ B 0:BF, T O FDiaf,) | & (D2R) (DrzRy)

2% %) a2 %) 4 B~ 2(0h- o)
' (D1G) BB, BB, GoB(D1E,)
AL )
+ (5.4)
(D102)(D203) (D12G3,)

Notice that all kind of infinities are eliminated at once, rdyroverall quadratic, overall logarithmic
and overlapping logarithmic sub-divergences.

H=HUR
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Figurel: Virtual and real diagrams contributing Io— f f.

6. Soft and collinear divergences

FDR can also be used to regularize soft and collinear diveg In fact, virtual and real con-
tributions can be considered as different cuts of the sarmddap diagrams. Therefore unitarity
requires, for would be massless cut lines,

1
P12 - 5(%2 — ?)6(qj(0)),
j
and theu dependence cancels, in thie-shelllimit ;1 — 0, when adding virtual and real coirections.
In this section, | illustrate the simple case of the fullylirsive QED corrections t@ — f f given

in figure 1. The total virtual contribution reads

Mv(Z— ff)=To(Z— ff_)% [—%Inz (”—:> —;In (”—S) +%3n2—"‘76—%] ., (6.2)

while the real part gives

_ _ 2
MR(Z— ff)=To(Z— ff)% [%an <“?> +

3. /u\ 7 m/3 5
Eln <?>_l_8n2+T+Z] . (6.2)

Adding the two terms gives the known result

M(Z— ff)=o(Z— ff_)<1+§%>. 6.3)

Unlike the computation presented in [18], any appearange-tifie common vanishing mass given

to all particles- has been neglected in the numerator, kgehieu dependence only in the propa-

gators. This works fine in this simple QED example. For cotepless, | list, in the following, the
(@ — 12 ((a+p)? — p?)

integrals used in the computation
2 i
_ i {In (-“ 'E> +2] ,
pP=s S
1

B0 = /[d4q] (qz—uz)(q2+2(q-p)>‘p2—u2 ) _in2<%_2> |
1

4
/ ' (07 — H2) (P +2(q- pr))(a? — 2(q- p)) 'p%-p%—uzxpﬁpﬁz‘s

im (1l L, pP—ig\ T
—?{z'” (‘ s )*3}’

1

B(s) = |[ld*

C(s) =
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u? i

/[d4q] T v =
(9% — 12)(@+2(9- p1))(9? —2(q- p2)) 2
11 (W 7
l2 = /Rdxdzx—Z — é||12 <?> _Enz’

: 1 u? T
ls= [dxdz= = —In(E)-1- L
3 /RXZX n<s> \/é,

Cr =

' X I3 1
g = [ dxdz == —= 6.4
4 /R xdz = -2, (6.4)
where R is the full available massive three-body massivegispace
)
ddbs=— [ ds;od 6.5
/ 3 45/ $12093, (6.5)
parametrized in terms of the two invariants
2 2
X2512 H ’ Z:SQS H . (6.6)
s s
Note that, since
S
Re[C(s)W] — 1y, (6.7)

the infrared/collinear double log is fully matched betwe@tual and real contributions. Further-
more -as in DR- a I of UV origin compensates a collinear logHg, leaving a finite piece.

7. Physical interpretation and tests of FDR

In the case of simple scalar theories, suchA @ andA ®*, it can be shown [18] that some
of the divergent contributions, discarded in the definitidr-DR integral, can be reabsorbed, at
one-loop, into an unphysical vacuum expectation valueefitid. In more complicated cases, one
simply subtracts such infinities, considering that theyr@epnt an unphysical contribution to the
scattering process generated when the integration morgentarge, as illustrated in figure 2. The
key point of this reasoning is that the part of the integratidnich is left, after subtraction, possesses
all the relevant physical information and, in case of galng®eties, respects gauge invariance.

The latter property can be tested in realistic cases. Faonpbe the calculation of the gluon
self-energy in figure 3 (witlm; = 0) in a general gauge with gluon propagator

1AV
AV (p) = —ié <9uv+ (&-1) ppf ) , (7.1)

gives

s 13 2 85 2
n(pz)‘FDR = Neol <Z_Tr) p? K—E —I—%) In (—&) (375*%*%)] , (7.2)

which is the same result one obtains in Dimensional Redudtiche MS scheme. The result
in Conventional Dimensional Regularization is the same, viith g—g replaced byg—g. Known
transition rules [21, 22] can be applied in case one needectaver the latter scheme.
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(b)

Figure2: Generic diagram contributing to a process (a). Unphysiaalium diagramgenerated when all
integration momenta are large (b) and when one sub-loogriatien momentum goes to infinity (c).

p

a Wﬂ =i (gap— papp/pz) I_I(pz)‘FDR

Figure3: Gluon self-energy in QCD.

As a second example, | take the loop-induced decay ampldtideHiggs into two photons,
H— y(kf) y(ky). A recent FDR calculation in an arbitraR;: gauge [19] shows full agreement
with the well known result

A (Bn) = (Aw(B)+ Y NQ A 4(m)) T,

TH = kK — (ki -k2) g7,

—~ ied
Mw(B) = (471259 Mh [2+3B+3[3(2—B)f([3)},
~ —ie?
Mi(n) = mzn [1-1-(1—’7)“('7)}7 (7.3)
with
AMg,  Ang 1,/ 14VI-xrie
B=T s M= 0= (S e (7.4)

8. Conclusions

Taking the final step oflefiningthe loop integrals in such a way that infinities simply do
not occur looks promising. Such an approach is allowed agédsrthe definition respects shift and
gauge invariance. The FDR integral obeys such propertie# eatherefore a very good candidate.

One is then led to consider the difference between renczatdé and non-renormalizable
theories. When computed &doop in FDR, both theories give, before renormalizatiomedh’s
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functions of the kind

é .
G} lsop(Hr) = ;aa log'(11z) + R({p,M}), (8.1)

where R{p,M}) depends upon the kinematical variables of the process. \fiieg the bare
parameters of the Lagrangian in terms of observables, aibrsal Iogj(uR) terms disappear. While
no additional logarithms of the unphysical scaleremain in the renormalizable case, no guarantee
exists of their disappearance in non-renormalizable tesoHowever, even in this case, one can
in principle performjust oneadditional measurement to fp, and obtain -at least- an effective
theory valid at energy scales around the fitted valugzofOf course, nothing but the comparison
with experiment can tell whether the theory is a viable ongt tBe problem is moved, in this way,
from the occurrence of infinities to the consistency of theotly at hand.
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