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1. Introduction

The computation of Radiative Corrections (RCs) is very demanding from a technical point of
view. A lot of work has been recently devoted to deal, in an efficient way, with 1-loop processes
at large multiplicities [1, 2, 3, 4], and progress has been achieved also in the field of the multi-
loop calculations [5, 6, 7, 8, 9]. Most of the difficulties aretriggered by the usual treatment, in
the framework of Dimensional Regularization (DR) [10], of the infinities arising in the intermedi-
ate steps of the calculation, so that several attempts have been tried out to find four-dimensional
alternatives to the DR treatment of the UV infinities, such asdifferential renormalization [11], con-
strained differential renormalization [12, 13], which both work in the coordinate space, implicit
renormalization [14, 15], symmetry preserving regularization [16] and LR [17], directly applicable
in the momentum space.

In a recent work, the FDR approach [18] has been proposed in which the UV problem is solved
by simply re-interpreting the loop integrals appearing in the calculation. They aredefinedin such
a way that infinities do not occur. The price to pay is the appearance of an arbitrary scale, calledµ ,
which plays the role of the renormalization scale. Technically speaking, infinities never appear, and
the procedure works because the FDR re-interpretation respects, by construction, shift and gauge
invariance. In this contribution, I review the state-of-the-art of the FDR approach.

2. The FDR integral

The UV convergence of a loop integral can be improved by a repeated use of thepartial
fraction identity

1

Di
=

1

q2

(
1+

di

Di

)
, (2.1)

with

Di = q2−di , di = M2
i − p2

i −2(q· pi) , (2.2)

and

Di = Di −µ2 , q2 = q2−µ2 , (2.3)

whereq is the loop momentum andµ an arbitrary, vanishing, scale needed to avoid the appearance
of possible infrared divergences in the second term of the r.h.s of eq. (2.1). Consider, as an example,
the 1-loop integral1

I=

∫
d4q

1
D0 D1

. (2.4)

After promoting

q2 → q2 , (2.5)

1I take p0 = 0.
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namely

Di → Di , (2.6)

eq. (2.1) yields

I= lim
µ→0

∫
d4q

([
1

q4

]
+

d1

q4D1
+

d0

q2D0D1

)
. (2.7)

Only the term between square brackets in eq. (2.7) leads to UVdivergences. On the other hand,
any physically relevant scale is contained in the remainingpart. One can thereforedefinethe FDR
integral by simply dropping the divergent integrand:

I
FDR =

∫
[d4q]

1

D0D1
≡ lim

µ→0

∫
d4q

(
d1

q4D1
+

d0

q2D0D1

) ∣∣∣∣∣
µ=µR

. (2.8)

The final identificationµ = µR effectively eliminates the dependence on the original cut-off, as ex-
plained in detail in [18]. The extension to more loops is straightforward. Any multi-loop integrand
J = JV +JF can be always be split into terms which only containsµ , called vacuum configurations
JV , and a finite partJF , resulting in

I
FDR
ℓ =

∫ ℓ

∏
i=1

[d4qi ] J({q2}) ≡ lim
µ→0

∫ ℓ

∏
i=1

d4qi JF({q2})
∣∣∣∣∣
µ=µR

. (2.9)

When computing Feynman diagrams, it is important to realizethat the shift in eq. (2.5) should be
performed in both denominatorsandnumerators; and thatµ2 integrals such as

I
FDR(µ2) =

∫
[d4q]

µ2

D0D1D2
, (2.10)

require thesamedenominator expansion needed to subtract the vacuum configurations from
∫
[d4q]

q2

D0 D1 D2
. (2.11)

That ensures, for example, identities between integrals, such as [19]
∫
[d4q]

q2

D0D1D2
=
∫
[d4q]

1

D1 D2
+
∫
[d4q]

d0

D0 D1 D2
, (2.12)

which are essential to keep the cancellations needed to prove the Ward Identities in gauge theories.

3. Shift invariance of the FDR integral

The definition in eq. (2.9) implies invariance under any change of variable, as it becomes
evident by considering the FDR integral as a difference between an integralIDR

ℓ , regulated (for
example2) in dimensional regularization, and its vacuum configurations:

I
FDR
ℓ = I

DR
ℓ − lim

µ→0
µ−ℓε

R

∫ ℓ

∏
i=1

dnqi JV({q2})
∣∣∣∣∣
µ=µR

. (3.1)

2One is free to choose any regulator.
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Shift invariance can be easily verified explicitly. Consider, e.g.

Iα =

∫
[d4q]

qα

D̄2
p
, I ′α =

∫
[d4q]

(qα − pα)

D̄2 , (3.2)

with

D̄p = (q+ p)2−M2−µ2 , D̄ = q2−M2−µ2 . (3.3)

One must haveIα = I ′α , which can be proved either directly, from the FDR definitionof Iα andI ′α , or
indirectly, by subtracting vacuum configurations from the corresponding dimensionally regulated
integrals.

The direct computation ofIα requires the following expansion of its integrand

qα

D̄2
p
=

[
qα

q̄4

]
−4

[
(q· p)qα

q̄6

]

+ d0qα

(
1

q̄4D̄p
+

1
q̄2D̄2

p

)
−2qα(q· p)d(q)

(
2

q̄6D̄p
+

1
q̄4D̄2

p

)
, (3.4)

with

q̄2 = q2−µ2 , d(q) = d0−2(q· p) , d0 = M2− p2 , (3.5)

and where the terms between square brackets are divergent. Therefore

Iα = d0(J1α −2J2α)+4J3α , (3.6)

with

J1α = lim
µ→0

∫
d4qqα

(
1

q̄4D̄p
+

1
q̄2D̄2

p

)
,

J2α = lim
µ→0

∫
d4qqα(q· p)

(
2

q̄6D̄p
+

1
q̄4D̄2

p

)
,

J3α = lim
µ→0

∫
d4qqα(q· p)2

(
2

q̄6D̄p
+

1
q̄4D̄2

p

)
.

Computing the previous integrals gives

Iα = iπ2pα ln
M2

µ2 .

The starting point for the indirect computation ofIα is instead

Iα = lim
µ→0

∫
dnqqα

{
1

((q+ p)2−M2−µ2)2 −
[

1
(q2−µ2)2 −4

(q· p)
(q2−µ2)3

]}
, (3.7)

namely the l.h.s. of eq. (3.4) subtracted by the divergent integrands appearing in the r.h.s. An easy
calculation gives

Iα = iπ2pα ln
M2

µ2 .

Analogously, both direct and indirect computations ofI ′α confirm that

I ′α = iπ2pα ln
M2

µ2 = Iα .
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4. Fermions in FDR

In the presence of strings of Dirac matrices, the replacement of eq. (2.5) in the numerator of
the amplitude is equivalent to a shift

/q→ /q≡ q±µ , (4.1)

directly performed in the fermionic string [19], where/q is defined according to its position:

(. . . /q γα1 . . .γαn /q . . .) = (. . . (/q+µ) γα1 . . .γαn(/q− (−)nµ) . . .) . (4.2)

To prove the equivalence, one should also make use the fact the FDR integrals involving odd powers
of µ in the numerator vanish [18].

If chirality matrices are involved, a gauge invariant treatment [20] requires their anticommu-
tation at the beginning (or the end) of open strings before replacing/q→ /q. In the case of closed
loops,γ5 should be put next to the vertex corresponding to a potentialnon-conserved current. This
reproduces the correct coefficient of the triangular anomaly, as observed in [18].

5. FDR at two-loop

As an example of two-loop FDR regularization, consider the integral
∫
[d4q1][d

4q2]
1

D̄1D̄2D̄12
, (5.1)

where the propagators are given by

D̄1 = q̄2
1−m2

1 ,

D̄2 = q̄2
2−m2

2 ,

D̄12 = q̄2
12−m2

12. (5.2)

In the same spirit of the one-loop case, divergent integrands can be subtracted before integration
by means of eq. (2.1), or

1

q̄2
12

=
1

q̄2
2

− q2
1+2(q1 ·q2)

q̄2
2q̄2

12

, (5.3)

resulting in the following expression:
∫
[d4q1][d

4q2]
1

D̄1D̄2D̄12
=

lim
µ→0

∫
d4q1

∫
d4q2

(
m2

1m2
2

(D̄1q̄2
1)(D̄2q̄2

2)q̄
2
12

+
m2

1m2
12

(D̄1q̄2
1)q̄

2
2(D̄12q̄2

12)
+

m2
2m2

12

q̄2
1(D̄2q̄2

2)(D̄12q̄2
12)

− m4
1
q2

1+2(q1 ·q2)

(D̄1q̄4
1)q̄

4
2q̄2

12

−m4
2
q2

2+2(q1 ·q2)

q̄4
1(D̄2q̄4

2)q̄
2
12

−m4
12

q2
12−2(q1 ·q12)

q̄4
1q̄2

2(D̄12q̄4
12)

+
m2

1m2
2m2

12

(D̄1q̄2
1)(D̄2q̄2

2)(D̄12q̄2
12)

)∣∣∣∣
µ=µR

. (5.4)

Notice that all kind of infinities are eliminated at once, namely overall quadratic, overall logarithmic
and overlapping logarithmic sub-divergences.
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Figure 1: Virtual and real diagrams contributing toZ → f f̄ .

6. Soft and collinear divergences

FDR can also be used to regularize soft and collinear divergences. In fact, virtual and real con-
tributions can be considered as different cuts of the same two-loop diagrams. Therefore unitarity
requires, for would be massless cut lines,

1

q2
j −µ2

→ δ (q2
j −µ2)θ(q j (0)) ,

and theµ dependence cancels, in theon-shelllimit µ → 0, when adding virtual and real corrections.
In this section, I illustrate the simple case of the fully inclusive QED corrections toZ → f f̄ given
in figure 1. The total virtual contribution reads

ΓV(Z → f f̄ ) = Γ0(Z → f f̄ )
α
π

[
−1

2
ln2
(

µ2

s

)
− 3

2
ln

(
µ2

s

)
+

7
18

π2− π
√

3
2

− 1
2

]
, (6.1)

while the real part gives

ΓR(Z → f f̄ ) = Γ0(Z → f f̄ )
α
π

[
1
2

ln2
(

µ2

s

)
+

3
2

ln

(
µ2

s

)
− 7

18
π2+

π
√

3
2

+
5
4

]
. (6.2)

Adding the two terms gives the known result

Γ(Z → f f̄ ) = Γ0(Z → f f̄ )

(
1+

3
4

α
π

)
. (6.3)

Unlike the computation presented in [18], any appearance ofµ -the common vanishing mass given
to all particles- has been neglected in the numerator, keeping theµ dependence only in the propa-
gators. This works fine in this simple QED example. For completeness, I list, in the following, the
integrals used in the computation

B(s) =

∫
[d4q]

1
(q2−µ2)((q+ p)2−µ2)

∣∣∣∣
p2=s

= iπ2
[
ln

(
−µ2− iε

s

)
+2

]
,

B0 =

∫
[d4q]

1
(q2−µ2)(q2+2(q· p))

∣∣∣∣
p2=µ2

= − iπ2
(

π√
3
−2

)
,

C(s) =
∫
[d4q]

1
(q2−µ2)(q2+2(q· p1))(q2−2(q· p2))

∣∣∣∣
p2

1=p2
2=µ2;(p1+p2)2=s

=
iπ2

s

[
1
2

ln2
(
−µ2− iε

s

)
+

π2

9

]
,
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CR =

∫
[d4q]

µ2

(q2−µ2)(q2+2(q· p1))(q2−2(q· p2))
=

iπ2

2
,

I2 =

∫

R
dxdz

1
xz

=
1
2

ln2
(

µ2

s

)
− 7

18
π2 ,

I3 =
∫

R
dxdz

1
x

= − ln

(
µ2

s

)
−1− π√

3
,

I4 =
∫

R
dxdz

x
z
=

I3
2
− 1

4
, (6.4)

where R is the full available massive three-body massive phase-space

∫
dΦ3 =

π2

4s

∫
ds12ds23, (6.5)

parametrized in terms of the two invariants

x=
s12−µ2

s
, z=

s23−µ2

s
. (6.6)

Note that, since

Re
[
C(s)

s
iπ2

]
= I2 , (6.7)

the infrared/collinear double log is fully matched betweenvirtual and real contributions. Further-
more -as in DR- a lnµ of UV origin compensates a collinear log inB0, leaving a finite piece.

7. Physical interpretation and tests of FDR

In the case of simple scalar theories, such asλΦ3 andλΦ4, it can be shown [18] that some
of the divergent contributions, discarded in the definitionof FDR integral, can be reabsorbed, at
one-loop, into an unphysical vacuum expectation value of the field. In more complicated cases, one
simply subtracts such infinities, considering that they represent an unphysical contribution to the
scattering process generated when the integration momentaget large, as illustrated in figure 2. The
key point of this reasoning is that the part of the integration which is left, after subtraction, possesses
all the relevant physical information and, in case of gauge theories, respects gauge invariance.

The latter property can be tested in realistic cases. For example, the calculation of the gluon
self-energy in figure 3 (withnf = 0) in a general gauge with gluon propagator

∆µν(p) =−i
1
p2

(
gµν +(ξ −1)

pµ pν

p2

)
, (7.1)

gives

Π(p2)
∣∣
FDR = Ncol

( αs

4π

)
p2
[(

−13
6

+
ξ
2

)
ln

(
− p2

µR

)(
85
36

+
ξ
2
+

ξ 2

4

)]
, (7.2)

which is the same result one obtains in Dimensional Reduction in the MS scheme. The result
in Conventional Dimensional Regularization is the same, but with 85

36 replaced by97
36. Known

transition rules [21, 22] can be applied in case one needs to recover the latter scheme.
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(a)

(b)

(c)

Figure 2: Generic diagram contributing to a process (a). Unphysicalvacuum diagramsgenerated when all
integration momenta are large (b) and when one sub-loop integration momentum goes to infinity (c).

α
p

β = i
(
gαβ − pα pβ/p2

)
Π(p2)

∣∣
FDR

Figure 3: Gluon self-energy in QCD.

As a second example, I take the loop-induced decay amplitudeof a Higgs into two photons,
H → γ(kµ

1 )γ(kν
2). A recent FDR calculation in an arbitraryRξ gauge [19] shows full agreement

with the well known result

M
µν(β ,η) =

(
M̃W(β )+∑

f

NcQ
2
f M̃ f (η)

)
Tµν ,

Tµν = kν
1kµ

2 − (k1 ·k2) gµν ,

M̃W(β ) =
ie3

(4π)2sWMW

[
2+3β +3β (2−β ) f (β )

]
,

M̃ f (η) =
−ie3

(4π)2sWMW
2η
[

1+(1−η) f (η)
]
, (7.3)

with

β =
4M2

W

M2
H

, η =
4m2

f

M2
H

, f (x) =−1
4

ln2
( 1+

√
1−x+ iε

−1+
√

1−x+ iε

)
. (7.4)

8. Conclusions

Taking the final step ofdefining the loop integrals in such a way that infinities simply do
not occur looks promising. Such an approach is allowed as long as the definition respects shift and
gauge invariance. The FDR integral obeys such properties and it is therefore a very good candidate.

One is then led to consider the difference between renormalizable and non-renormalizable
theories. When computed atℓ-loop in FDR, both theories give, before renormalization, Green’s
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functions of the kind

GFDR
ℓ−loop(µR) =

ℓ

∑
i=0

ai logi(µR)+R({p,M}) , (8.1)

where R({p,M}) depends upon the kinematical variables of the process. Whenfixing the bare
parameters of the Lagrangian in terms of observables, all universal logi(µR) terms disappear. While
no additional logarithms of the unphysical scaleµR remain in the renormalizable case, no guarantee
exists of their disappearance in non-renormalizable theories. However, even in this case, one can
in principle performjust oneadditional measurement to fixµR, and obtain -at least- an effective
theory valid at energy scales around the fitted value ofµR. Of course, nothing but the comparison
with experiment can tell whether the theory is a viable one. But the problem is moved, in this way,
from the occurrence of infinities to the consistency of the theory at hand.
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