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1. Motivation

Einstein’s theory of General Relativity (GR) is a very sigsfal example of contemporary theoret-
ical physics. It explains, and predicts, with remarkableuaacy, observables such as the perihelion
shift of Mercury or the angle at which light is bent when pagdby a very massive object; and in
the low energy regime it perfectly agrees with classical deian dynamics.

However, despite these successes there are problems agrmighof the energy scale. In
the infrared regime we have difficulties matching observaldug rotation curves to theoretical
models, forcing us to introduce the concept of dark mattantHermore, there is the infamous
cosmological constant problem: the measured value of tamalmgical constant is many orders
of magnitude smaller than what we would naively expect froeotetical considerations. In the
ultraviolet regime we would like to understand the singtiks that plague our classical equations,
by quantum effects of a putative quantum theory of gravitgt, Yhere is no unique candidate for
a quantum theory of gravity, one that would explain for exemmicroscopically, the entropy of
black holes or the information loss paradox.

These considerations motivate us to search for modificatidrEinstein’s theory of General
Relativity. An overview of the vast variety of modificatiots gravity that have been considered
so far can be found in [1]. One idea, which could improve orhljmbblems mentioned in the
previous paragraph, and which will be the focus of our aitb@rih this note, is to give a mass to the
graviton. Long range interactions would be damped expdagnand this could narrow the gap
between the expected and the observed value of the cosmalaginstant. Giving a mass to the
graviton could also be relevant to the quantum aspects dhdwy since, if the mass is introduced
by higher-derivative terms in the action, it affects ther{poative) renormalizability of the theory.

Thus, we will investigate how we can add a mass to the graviaea also [2] for a review
on massive gravity in particular. For concreteness, andasbtfor simplicity, we will focus on
gravity in three space-time dimensions. In section 2 we stdh a discussion of the linearized
theory for a massive graviton, which was introduced by Faerd Pauli. Then, in sections 3 and 4
respectively, we discuss two models of gravity that at thedrized level reduce to the Fierz—Pauli
(FP) theory. Section 5 presents extensions and geneiafigaif the models described in sections
3 and 4. Finally, we conclude in section 6 and give an outlaokassible new roads to massive
gravity and its extensions.

2. Linearized massive gravity: Fierz—Pauli theory

The question whether the graviton can have a (small) mdssrritan being massless, as classical
GR predicts, has been addressed already in 1939. Fierz aidiRh proposed to modify GR at
the linearized level by adding an explicit mass term to thestein—Hilbert action.

To describe the graviton, a spin-2 particle, one can usetédmelard representation of a rank-2
tensorhy,, symmetric in its indices. Il space-time dimensions it hagd + 1)/2 independent
components but not all of them describe spin-2 helicitieem& of these components describe
spin-1 and spin-0 helicities. In order not to have any ghegtrees of freedom (DoF) the equation

1Though the gauge/gravity or AdS/CFT correspondence hdsezhas to understand these phenomena much better.
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of motion of the massive fielth,, should describéd —2)(d + 1)/2 DoF. A massive graviton
excitation in 3 dimensions has 2 DoF.

The starting point for the Fierz—Pauli (FP) equations isklen—Gordon equation for a mas-
sive spin-2 fieldh,,. In order to describe the correct number of DoF we have to sammme
constraints that will excise the unwanted DoF. To keep tted Bmergy of the field positive and to
avoid the helicities that do not correspond to spin-2 modeszFand Pauli additionally imposed
a divergenceless conditio@/h,, = 0, and a tracelessness conditiart;"h,, = 0, on the field
hyv. Hence, the FP equations consist of a Klein—-Gordon equédiaasymmetric tensor field,,,,
together with a differential and an algebraic subsidianyst@int:

(D - mz)h/,lv = 07
o*hyy =0, (2.1)
h=nH*h,, =0.
This set of equations can be integrated to the FP Lagrangian
1 v lin Y 2
Lep= E{h“ G(h)| — P (h*Vhyy —h )}, (2.2)

whereG(h)'ﬂ,’Q, denotes the linearized Einstein tensor which has the fatigiorm in three dimen-
sions:

G(h)'h, = £,7P&,"%05 9y hgs . (2.3)

Note that the trace of the field,, is included into the action although we require it to vanish o
shell. In order to derive that all rank-2¢h,,) modes vanish, it is necessary to show first that all
rank-0 @*0"hyy) modes vanish. One cannot obtain the latter constraintowitintroducing an
additional scalar fieldh.

It is not possible to use a symmetric traceless tertsgy, in order to construct an action that
yields the FP equations. The reason for this is that one ¢armmmstruct equations of motion that
have the same symmetry properties as the field itself. Cenid instance the equations

(O—m)Hp =0,  9HH, =0 (2.4)
and rewrite them as
aa(aaHuv_a“Hav) —mZH“V :O (25)

These equations are not symmetric and traceless,Hjke and therefore can not serve as the
equations of motion foH,,. If we were to start from the most general second-order atviy
equations that are symmetric and traceless we find that wishabways have to solve the constraint
0"9VH,, = O first, in order to derive the subsidiary constraitH,,, = 0. Therefore, we would
have to introduce an auxiliary field that willimpo8€dVH,, = 0. For the FP theory, see egs. (2.1)
and (2.2), this additional field is the scatar

The special tuning of the mass term in the FP action is esdentorder not to have any ghost-
like DoF. Following [2] it is easy to show that the action (Pfzopagates only a massive spin-2
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mode, i.e. that there are not more than two DoF. For this marpee Legendre-transform the action
(2.2) with respect to the spatial components. This leadsddallowing expressions for the spatial
momenta

- 0%p
ALFTS

= hij — hdij — 20ihj )0 + 200k & (2.6)
and inverting for the velocitiel;; we obtain
Sp= / d3X{ le’jhij — 0+ 2o 0TI + mzh§k+ hoo(Dzhkk — aidj hij — n12hkk) } . (2.7)

The terms ins# do not containhg or hgg, nor any time derivatives. Thus, we note from (2.7)
that hgp appears as a Lagrange multiplier, independently of theevafur?. This is due to the
special tuning of the mass term in the FP Lagrangian (2.2)hdfrelative coefficient of the two
contributions to the mass term was not exaetly, hgo would appear quadratically in (2.7). For
a genericm we have three DoF for the symmetric ten$gr, minus one constraint coming from
hoo, giving two DoF for a massive spin-2 in three dimensionan ke 0, then thehg become also
Lagrange multipliers, and we have to subtract another twb [Baving no DoF for the massless
spin-2.

The kinetic term of the FP action stems from the Einstein tamd thus, being invariant under
diffeomorphisms, has the gauge symmetry

Certainly, the mass term in (2.2) breaks the diffeomorphisrariance of the theory. Using Sttick-
elberg fields one could by hand reintroduce such an invagiahthe cost of introducing additional
gauge fields.

It is known that the FP theory suffers from the van Dam—\Vettrzakharov (vDVZ) discontinuity
[3]. Namely, the massless limit of the FP theory does not gige linearized General Relativiy.
This is due to the fact that the scalar mode does not decoufiés can be verified using the
Stickelberg fields mentioned above and coupling the massideh,,, to matter via a conserved
energy-momentum tensdj,,. Then, in the massless limit one observes a non-vanishingliog
of the traceh to the trace off,,. We will shortly outline this procedure.

Consider the FP theory of a massive spin 2 figld coupled to the energy-momentum tensor
Tuv

o= 3 {WPUCG (P 1)} T @9

Stiickelberg field¥,, and¢ are introduced by the following field redefinition

1 2
huv = hluv + m (duvv + dvvu) +—

=~ 0,0y Q. (2.10)

2atin indices denote spatial components of the tensors B¥yhave explicitly written out the time components.
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For genericm the Stlickelberg fields are pure gauge as can be seen for exémphe gauge-
transformations

and a similar one fdn’w andV, with a vector gauge-parameter. These gauge transfornsdéane
the action (2.9) invariant provided that we require thateéhergy-momentum tensor is conserved,
i.e.0HTy,, =0.

Inserting (2.10) into (2.9), together with the requirem@Hi,, = 0, we can take the limit
m — 0 and obtain an action where the vect@rdecouples, but we get off-diagonal terms mixing
@ andh),,. This action, however, can be diagonalized by shiftmg with n,, ¢, at the cost of
introducing the infamous coupling gfto the trace of the energy-momentum tengét' T, .

However, it has been argued by Vainshtein that the linearyhis inaccurate if we take the
mass to zero [4] (see also [5] and the recent review [6]). Hmveld that the solutions of the
linearized FP theory are only valid far outside a charastierdistance scale, the Vainshtein radius

Ry = [M/(m*M3)]*/®. (2.12)

Here,Mp is the Planck mass amd the mass of a (heavy) central object, e.g. the sun, thatrdites
the metric that our 'test’ mag® probes. The Vainshtein radius goes to infinity when the méss o
the gravitonmis sent to zero. At distances smaller tHApnon-linearities begin to dominate and
the linear approximation cannot describe the massless limi

For distances > Ry the Stiickelberg scalar fietdbehaves with the usua)/i Coulomb form
causing an extra attractive scalar force. However, foadists < Ry there is an extra repulsive
force that cancels the scalar force responsible for the vBigZontinuity, and GR is restored inside
the Vainshtein radius.

To find a non-linear generalization of the FP action, thasdo® lead to ghosts and yields General
Relativity in the limitm— 0, is a highly non-trivial task. In the following section warioduce two
recently proposed actions whose linearized versions eestiu2.2).

3. New Massive Gravity

One possibility to acquire a theory with massive spin-2 nsodgart from explicit mass terms, is
to introduce higher-derivative terms in the action. Suaphbr-order derivative modifications of
gravity where considered in [7] in an effort to improve theagemalizability properties of general
relativity.

The main drawback of higher-derivative theories is thas¢hmodels in general suffer from
ghost instabilities, because of the higher-order timevdévies in their actions. One way to cir-
cumvent this conclusion is to confine oneself to gravity ire¢hspace-time dimensions. In three
dimensions the 'massless’ Einstein modes do not propadéates, any potentially ghost-like fea-
ture connected to them would be harmless, since it does matitde any physical degree of
freedom.
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Using this idea we can write down a higher-derivative actigtih a 'healthy’ massive spin-2
mode and a massless spin-2 ghost mode, which is pure gauge carhbe seen by writing the
linearized action with the help of an auxiliary field, see.€s%5) below.

To be specific, we consider the three-dimensional highevatese action of New Massive Gravity
(NMG) [8]

1 1 3
S = p/d3x\/_—g{R+W(R‘“’RW—§R2>}. (3.1)
The linearized field equations around a Minkowski vacuunfauad to be
(O-m?)Gjh, =0, R"=0, (3.2)

whereGE{‘V andR" are the linearized Einstein tensor and Ricci scalar, réspeéc Writing the
linearized Einstein tensor in the form of eq. (2.3) we not the equations (3.2) can be interpreted
as a “boosted-up” version of the following FP equations feymmetric perturbatiokd,,,:

By identifying H,, = Gf,”\,(h) we solve for the differential subsidiary constraint, whie trace-
lessness oH,,, is encoded in the vanishing &". Thus, we get the FP equations for a massive
spin-2 field from NMG.

It is instructive to see how, using auxiliary fields, we cankenananifest the connection of
NMG to the FP theory, at the level of the Lagrangian. Usingrarsgtric auxiliary fieldf,, we
can rewrite the action (3.1) as

1 nm?
Sux-NMG = 2 /dSX\/—Q{R-i- fHYGpy — vy (fIJV fuv — fz) } : (3.4)
The linearized Lagrangian will take the form
. 1 . M2/~ A ~
Lin—aux-NMG = (fIJV - E hHV) Gl/llnv(h) - ? (fHV f/Jv - fz) ) (3-5)

where ﬂ,v denotes the perturbation éf,. Next, we can recombine the terms of (3.5) to obtain

P

E[fWGmm (- )] (3.6)

1o o .
ZFp_NMG = 3 h“VGILIJnv(h) 3

where we have defineli:[,v =hyy — ﬂ,v. In this form we can clearly identify the non-propagating
Einstein modeﬁw, as well as its ghost-like nature, and the decoupled, ghest-massive spin-2
mode,ﬂ,v, given by a FP Lagrangian.

The possibility of having massive spin-2 excitations irethdimensions was realized earlier in [9].
This theory does not reduce to the FP theory at the lineateesd. This is due to the fact that it
is not parity invariant and propagates only one of the twéchglstates of the massive graviton in
NMG. To be more specific, the combination of two topologieahts, the Einstein—Hilbert action
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plus a Chern—Simons term, leads to so-called topologicadlgsive gravity (TMG). This is a ghost-
free and parity-odd theory that propagates one massive ofdadicity either+2 or—2, depending
on the sign of the mass parameterThe action with cosmological constaivtis given by

‘ 1 2
Swe = [ dx/=g{R-2A+ 2t o (0ur gy + 5T 50) }- (3.7)

TMG is in some sense the 'square-root’ of NMG because it dosithalf as many degrees of
freedom. Also its field equations can be understood as thereqoot of the FP equations. We will
not consider this model further in this note.

It is known that higher-derivative theories allow for codogical solutions even without including
a cosmological constant term in the action [10]. We can ribetrss define a 'cosmological’
version of NMG, i.e. the action (3.1) supplemented by a cdsgical parameter. The cosmological
constant is then a function of this parameter and other (nmsameters in the action. The mass
M? of the propagating mode in cosmological NMG is given by a cioaiiion of the parameter
n? that multiplies the fourth order term and the cosmologiaaiameter. In the limiM? — 0 the
massive mode becomes massless and degenerates with ttergimsde. Such a degeneration of
solutions leads to so-called logarithmic or critical gtid [11], which are holographically dual to
logarithmic conformal field theories, see e.g. [12].

In conclusion, NMG is an interesting way to describe masghavity in three dimensions. The
two massive graviton modes of helicity2 and—2 are the only modes that propagate in the bulk.
The massless excitations are pure gauge. This, howevet $o1n higher dimensions. Therefore,
the main drawback of NMG is that it serves as a unitary modehas$sive gravity only in three
dimensions. In the following we will discuss a different nebthat describes massive gravity also
in higher dimensions.

4. Massive Gravity

To construct non-linear generalizations of the FP mass wathout higher-derivative 'interaction’
terms an additional non-dynamical reference méfiicis required. Recently, a class of ghost-free
theories have been proposed by de Rham, Gabadadze and (BB [13]2 The interaction

is given by a matrix of the form/g—1f, where the square root of the matrix is defined such that
Vo 1f\/g-1f = g** f,,. Their original analysis was done for a flat backgrodpg = nyy. Ind
dimensions the dRGT action can be written in the followingrfo

Swor= 20 [y g{r-T iﬁna (vVen) }. (4.1)

The first term inside the brackets is the Einstein—Hilbenekc term for the metrig,,, the sec-
ond one corresponds to a potential term containing no daegaof the dynamical metrig,,, but
depending explicitly omyy. The Einstein—Hilbert part of this action is invariant undkffeo-
morphisms but the mass term breaks this symmetry due to fieaegnce of the fixed background

3Earlier work on massive gravity and bi-metric gravity goesloto [14, 15, 16, 17].



A new road to massive gravity? Eric Bergshoeff

metricnyy. The coefficientd, are free parameters and theh elementary symmetric polynomial
of the eigenvalues of the matrix square roogdfn,, is represented b,.

This potential term had + 1 parameters, but one can discard two of them taking intowetco
that the first and thd-th symmetric polynomials are just cosmological constémtsj,, (andny,
for non-flatn,y). Another coefficient can be eliminated by takimgo be the mass of the massive
spin-2 mode and set

—d! +(d—2)! % B =-8. 4.2)
ij' L, (k—2)!(d—k)!
Therefore, in addition to the mass and the cosmologicaltaats the theory has— 2 free param-
eters.

It has been shown [18] that the dRGT massive gravity model dimensions has a dynamically
equivalent Vielbein formulation, by introducing the Viein fieIdsEﬁ(x)

Ouv = EuAEvBr)AB- (4.3)

The action now reads

SiRGT = Mpzd_z </ddx det E)R[E]

-7 /me I Enpp AN AT AERLA /\EAd>

where the first term is the Einstein—Hilbert action in Vietbéorm, and the potential terms are
written using wedge products of the Vielbein one-forfs= E“Adx“ and unit one-forms which
can be thought of as Vielbeins for the flat background méftie- 5“Adx“.

The advantage of using this Vielbein formulation is thateasl of working with the symmetric
polynomials and matrix square roots, it contains wedge ymrtsdof the possible combinations of
the Vielbeins which is much simpler. In this form, it is alsaseer to show that the Boulware—Deser
ghost is absent to all orders in the fields and beyond any gdoguimits.

(4.4)

It is worth pointing out that the massless limit of dRGT gtavnust yield Einstein gravity. Unlike
the higher-derivative theories discussed earlier, dRGdets) in any dimension, propagate only
the massive spin-2 mode. Taking the mass to zero must leatthémey with only a massless spin-2
mode, inevitably Einstein gravity. The usual coupling oé thcalar to the trace of the energy-
momentum tensor that plagues the linearized theory vamiskiee value of the graviton mass goes
to zero*

Despite successful applications of the dRGT model in cosgicl setups much still has to be
better understood about these kinds of massive gravity Inoder example, for particular po-
tentials the massive gravity model allows for closed tikekurves and therefore is acausal [19].
Additionally, a study of perturbations on top of black hotdutions [20] in the dRGT model and
its bi-gravity extension (see section 5) reveals that aflittear level the bi-Schwarzschild black
hole solutions are unstable. These results may indicatestiéiic black holes in massive gravity do
not exist.

4See, e.g., [5] for a general discussion.



A new road to massive gravity? Eric Bergshoeff

5. Generalizations

In this section we would like to discuss generalizations famther developments connected to the
two theories of massive gravity introduced in sections 3 4ia this section we restrict to three
spacetime dimensions.

5.1 Bi-metric gravity

We first consider a particular class of bi-metric theoriebust two dynamical spin-2 fields—and
show how, by taking special limits, it leads to the three theodiscussed so far: FP, NMG and
three-dimensional dRGT massive gravity [21]. In particul@e consider the bi-metric theory of
[22].

We start by discussing the model. It will be convenient totevihe actions in first-order
formalism. Using the Vielbein formulation of [18] the Laggian takes the form

1 1
Loi—grav=— O'Mlela(dwf—F Efabcw;t[)wf) - M2e2a(d0~)za+ EEabcwEwS)
1
— 2 M eac(€1 + €)%(e1 — €)°(e1 — €)° (5.1)

4
+ aMpNPeac(er — €)% (61— €)° (e — ).

There are two Dreibeing ,2 and corresponding spin-connections,®, with | = 1,2. Products
of the one-formsg ;,* andw ,, are understood as exterior products. The three mass paramet
M1, My, m and the two dimensionless parameterand a, where o takes only the values:1,
determineM;, = cM31M; /(oM + My) and complete the action.

In the following we describe the linearized theory and shaw o obtain NMG and dRGT
gravity, in Dreibein formalism, from the action (5.1) in tan parameter limits.

The Fierz—Pauli model

We first show how we can obtain the FP theory by linearizingreel above. We linearize around
a flat background and, for simplicitly, take= 1 and seiM; = M = M. The fluctuations ark; ,2
andv; 2, i.e.

e a:c‘i"’w—ih a W a:5""4—iv| a (5.2)

M H \/M 2 M M \/M [

with 5ya5Vbnab = Nuv. With these simplifications the Lagrangian (5.1), afteririgkthe limit
M — oo, can be diagonalized in terms of new variabileg® = hy ;2 +hy, 2 andvy @ = vy, 2 £ v, &
1
2

2 (N-ah 4 JEmeBNVE 4 NP HO S ).

The first line is linearized Einstein gravity and the secadnd Is the FP Lagrangian (2.2), both in
first-order form.

1
Tin =5 (1100 + 58N

(5.3)

5This formula and the discussion below was obtained fromudisions with Sjoerd de Haan, Wout Merbis and Jan
Rosseel.
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The NMG limit

The NMG model has only one dynamical metric, hence we have tinf: Dreibein and spin-
connection in terms of the other ones. This can be achievesgttingo = —1, substituting

A
eZua:elua‘FW fuaa wZua:O)l/Ja—)\ hua> (5.4)
and taking the following limit [23]:
A —)O, M1,My — oo with M7 — My =AM, = constant= Mp. (5.5)

This leads to the Lagrangian

*
m2
The curvature and torsion two-forni® and T# are determined by the dreibe,®. The La-
grangian (5.6) is identified with NMG in the Chern—Simorielformulation of [24]. By solving

the equations for the auxiliary fielf},?, substituting this solution back into the action and goimg t
second-order formalism we can go from (5.6) to the Lagrangigen in (3.1).

L = Mp{eaRa+haTa— (faRa+ %sabceafbfc> } (5.6)

The dRGT limit

The three-dimensional dRGT model can be obtained from tlgedrayian (5.1) by choosing =
+1 and setting

e = 8,2+ M, 2 56y, (5.7)
If we now take the limitVi, — oo the fluctuatione,,# decouple from the massive moeg,® and
the second metric is fixed to its background value, which waosh to be the flat metric. In this
limit M2 = M1 = Mp, and the Lagrangian (5.1) becomes

LURCT = Mp{ —eRR— ?sabc(eJr d)%e— 5)b(e— 0)° (5.8)

+ amPeanc(e— 8)3(e— 3)P(e— 5)0} .
This is the first-order formulation of dRGT gravity in threiengnsions.

We end this section with a short note on the main differenetwéden higher-derivative and dRGT
massive gravities. Surprisingly, in three dimensions thiari very different Lagrangians (5.6)
and (5.8) effectively describe the same bulk degrees oflfnee two degrees of freedom which
are the two helicity states of a massive graviton in threeedisional space-time. It is only when
one goes to higher dimensions that these two Lagrangiarsildesather different theories. A
higher-derivative theory analogue to NMG will describe asslass spin-2 plus a massive spin-2,
one of them necessarily being a ghost. For a recent effonte@te “healthy” higher-dimensional
analogues of NMG, see [25]. On the other hand, the dRGT madaigher dimensions still
propagates only the massive spin-2 mode. Interestinghastbeen claimed that the acausalities
that could be present in dRGT massive gravity are not existebi-gravity, but rather are an
artefact of freezing out the degrees of freedom of one of tbgios [26].

10
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5.2 Supersymmetry

One can also consider a supersymmetric generalizatioredhtfories discussed so far. For NMG
this has been done in [27]. This was done using only the mairithigher-derivative action. Al-
ternatively, one may consider the auxiliary field versiotNdG. For simplicity, we only consider
the linearized theory.

For a supersymmetric extension, one needs to obtain tharimesl massive spin-2 multiplet
in three dimensions. This multiplet can be obtained by a KahKlein reduction of the massless
multiplet in four dimensions and a truncation to the first aiaes mode sector. This truncation is
consistent only at the linearized level, therefore we abtaily the linearized multiplet in three
dimensions. We will give a brief outline on how this is donee Y&fer to [28] for more details.

We start from the off-shell, four-dimensional” = 1 massless spin-2 multiplet which consists
of a symmetric tensdim, , a gravitino , an auxiliary vectov&ﬁ, and two auxiliary scalars! and
N (all hatted fields are four-dimensional and unhatted fielgstaree-dimensional fields). The
supersymmetry rules, with constant spinor paramgtend gauge transformations of these fields,
with local vector parametefk[, and local spinor paramet@r, are given by [29, 30]:

1 55 .« 1 - . 1. - 1. 5z .
50 = _erA aﬁhms—Erﬁ(M+|r5N)s+Z|Aﬂr5s— 1—2|r[,rPAﬁr5s+aAn ;
OM = —grPA a[)Lll;\ , (5.9)

SN = —iETsMPA 95 |

.3 s o "
O0A; = Elsrsrﬂp/\ 0p Lll;\ —I£r5r[1rp)‘ ﬁﬁlp}\ .

Next, we split the four-dimensional coordinates<ds= (x#,x3), write all fields as a Fourier series
and impose reality conditions on the bosonic fields and Majaiconditions on the fermionic fields.
After this, we project onto the lowest, massive (!), Kalugkein sector i = 1 modes) and obtain
the transformation rules of all the fields. Since this praredeffectively doubles our variables
we have to truncate half of the fields and the gauge paramtéteneby getting rid of the so-called
central charge transformations.

This way we find a three-dimensional massive multiplet wisaggersymmetry algebra closes
off-shell. Formally, this multiplet contains the same feettiat occur in a massless mutiplet with
A = 2 supersymmetry. However, in the massive case the gaugewsyias of the four-dimen-
sional fields carry over to the three-dimensional fields ichsaiway that some of them are subject
to trivial shift-symmetries. Hence these fields are not gatsbut rather represent Stiickelberg
symmetries and can be gauged away.

We fix all Stlickelberg symmetries by choosing a certain gataigng into account the com-
pensating gauge transformations. Thus we obtain the fina & the supersymmetry rules of the
three-dimensionaly” = 1 off-shell massive spin-2 multiplet. The off-shell sug@nsnetric version

11
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of FP is then given by the action

mo= [ x{nGl () — P (R, — 1?)

— Ay V“Vpavq-’p —4AXy V“VpavXp + 8my, vV xv (5.10)
2 5 2.5 2 5 2 u
— M7 SNP - SPP S AA }

The first line is the standard FP action. The fermionic offeinal mass term can be diagonalized
by going to a basis in terms of the sum and difference of thev@ador-spinorsy,, andx, each

of which describes one helicity state with helicity eith&/'2-or -3/2. The “trivial* auxiliary fields
M, N, P andA, are needed for off-shell closure of the supersymmetry aggellhe algebra is
determined in terms of the supersymmetry transformatiéesru

— 1_

1 1
Sy, = —Zyp)‘dph)\us—k 1—yp(|v| +P)e+ 12mau(N +yPAy)E
1 1
4 g mE T W
OM = gyP 9,y —meyPx, (5.11)

ON = —&yP dpxp +MeyP Y,
1_ —
P= Esyp)‘dpw)\ +MEYPX,

3— — 1 _ —
OAy = ESVupAapXA —&yuy? doXa — STEVL Yo +meyy

which also leave invariant the action (5.10).

The off-shell massive spin-2 multiplet (5.11), togethettvtine off-shell massless spin-2 multi-
plet given in [27], can be used to write a supersymmetricigargf linearized NMG in the auxiliary
field form. This can be achieved by separately supersymnragrihe massless and massive parts
of the action (3.6) using the known massless off-shell mlgtiand the given massive off-shell
multiplet (5.11), respectively.

A non-linear version of the multiplet (5.11) is not known andupersymmetric auxiliary field
version of (non-linear) NMG does not (yet) exist. To obtaiglsa non-linear extension most likely
a superspace approach is needed.

6. Outlook

We have motivated and discussed recent efforts towards sistent theory of massive gravity.
After reviewing the work of Fierz and Pauli on a linearizeegdhy of massive spin-2 particles
we focused on two recently proposed models of massive graNMG and dRGT gravity. We
discussed the pros and cons of these two models and shatlysdied different generalizations.
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One extension we discussed, in the case of three-dimensiasshe incorporation of the dif-
ferent models into a bi-gravity theory. Bi-gravity thearieave received a lot of attention recently.
They allow for interesting cosmological solutions. From arentheoretical point of view one can
ask questions such as how the intrinsic “good” featureseda¢hmodels, like ghost-freedom, vanish
in certain limits [26].

A second generalization we discussed concerns supersyimmdensions. Three-dimensional
supergravity theories with higher-curvature actions Haeen studied in [27]. An interesting open
guestion is whether one can combine the two extensions wes$isd and construct a supersym-
metric bi-gravity theory. Such and other questions makée#rcthat much more work needs and
can to be done in the field of massive gravity.
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