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We use numerical simulations of different dark energy cosmologies to investigate the

concentration-mass (c−M) relation in galaxy clusters. In particular, we consider a reference

Λ cold dark matter (ΛCDM) model, two models with dynamical dark energy, viewed asa

quintessence scalar field [using a Ratra and Peebles (RP) anda supergravity (SUGRA) potential

form], and two extended quintessence models, one with positive and one with negative coupling

(EQp and EQn respectively), where the quintessence scalar field interacts non-minimally with

gravity (scalar-tensor theories). All the models are normalized in order to match CMB data from

Wilkinson Microwave Anisotropy Probe3 (WMAP3). For each model, we have performed nu-

merical simulations in a cosmological box of(300 Mpch−1)3. We fit the dark matter profile

with a Navarro-Frenk-White (NFW) profile, and recover the concentration of each halo. We con-

sider both the complete catalog of clusters and groups and a subsample of relaxed objects. The

c−M relation of our referenceΛCDM model is in good agreement with the results in literature,

and relaxed objects have a higher normalization and a shallower slope with respect to the com-

plete sample. For the different dark energy models, we find that for ΛCDM, RP and SUGRA

the normalization of thec−M relation is linked to the growth factorD+ and the power spectrum

normalizationσ8, with models having a higher value ofσ8D+ having also a higher normalization.

This simple scheme is no longer valid for EQp and EQn because in these models it is present a

time dependent effective gravitational interaction, whose redshift evolution depends on the sign

of the coupling. This leads to a decrease (increase) of the expected normalization in the EQp

(EQn) model. This result shows a direct manifestation of thecoupling between gravity and the

quintessence scalar field characterizing EQ models that cannot be seen at the background level

but can be investigated in the non-linear regime.
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1. Introduction

Over the last decade great observational evidence ([1 – 4]) has shown that at the present time the
Universe is expanding at an accelerated rate. This fact can be attributed to a component with neg-
ative pressure, which is usually referred to as dark energy, that today accounts for about 3/4 of the
entire energy budget of the Universe. The simplest form of dark energy is a cosmological con-
stant termΛ in Einstein’s equation, within the so-calledΛ cold dark matter (ΛCDM) cosmologies.
Though in good agreement with observations, a cosmological constant is theoretically difficult to
understand in view of the fine-tuning and coincidence problems. A valid alternative consists in a
dynamical dark energy contribution that changes in time and space, often associated to a scalar field
(‘quintessence’) evolving in a suitable potential ([5, 6]). Dynamical dark energy allows for appeal-
ing scenarios in which the scalar field is the mediator of a fifth force, either within scalar-tensor
theories or in interacting scenarios ([7 – 11] and references therein).In view of future observations,
it is of fundamental interest to investigate whether dark energy leaves someimprints in structure
formation, giving a practical way to distinguish among different cosmologies([12 – 17]).

The internal properties of dark matter halos are known to reflect their formation history and
thus the evolution of the background cosmology. [18] (hereafter NFW) found that the dark matter
profile of a halo can be characterized by a scale radius, which is linked to the virial radius through
the concentration of the object. The concentration of a dark matter halo is related to the mean
density of the universe at the halo formation time.

Because of the hierarchical nature of structure formation and the fact that collapsed objects
retain information on the background average matter density at the time of their formation ([18]),
concentration and mass of a dark matter halo are related. Since low-mass objects form earlier
than high-mass ones, and since in the past the background average matterdensity was higher,
low-mass halos are expected to have a higher concentration compared to high-mass ones. These
expectations have been confirmed by the results ofN-body numerical simulations which find, at
z= 0, a concentration-mass relationc(M) ∝ Mα , with α ∼−0.1 ([19, 20, 14]), with a log-normal
scatter ranging from 0.15 for relaxed systems to 0.30 for disturbed ones ([21]).

N-body simulations have been carried out by several authors in order to study thec−M re-
lation in dark matter halos with sizes of galaxy groups and clusters. [19] performed simulations
with different cosmological models in order to verify the effects of dark energy dynamics. They
found that the halo concentration depends on the dark energy equation of state through the linear
growth factor at the cluster formation redshift,D+(zcoll). [22] also noted that non-relaxed objects
have a lower concentration and a higher scatter with respect to relaxed ones. [23] made a compari-
son between concentrations in theWilkinson Microwave Anisotropy Probe1 (WMAP1), WMAP3
and WMAP5 cosmologies in order to study the effects of different cosmological parameters (in
particular the power spectrum normalizationσ8) on thec−M relation.

Since the concentration of a halo is linked to the background density of the universe at the
time it collapsed, and since different dark energy models predict different evolutions of the cosmo-
logical background, it is interesting to investigate the impact of dark energyon thec−M relation.
Moreover, since some dark energy models can also affect the linear andnon linear evolution of the
density fluctuations, leaving some imprints in collapsed structure, one can thinkabout using the
c−M relation as a cosmological probe, orthogonal to others that are commonly used.N-body cos-
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mological simulations of extended quintessence models, including the effects on thec−M relation,
were presented in [24].

2. Dark energy models

We consider the same cosmological models discussed in [25]. Here we recall only the main features
of the different models, and refer to [25] for more details.

As a reference model we use the concordanceΛCDM model. This model is characterized by
the presence of a dark energy component given by a cosmological constantΛ, with equation of
statewΛ =−1.

The second case is a model with dynamical dark energy, given by a quintessence scalar field
φ with an equation of state evolving with redshift,w= w(z) ([5, 6]). As in [25], as potentials for
minimally coupled quintessence models, we consider an inverse power-law potential

V(φ) =
M4+α

φ α , (2.1)

the so called RP potential ([6]), as well as its generalization suggested by supergravity arguments
([26]), known as SUGRA potential, given by

V(φ) =
M4+α

φ α exp(4πGφ2) , (2.2)

where in both casesM andα ≥ 0 are free parameters (see Table 1 for details).
The third possibility we consider is the case in whichφ interacts non minimally with gravity

([5, 9]). In particular we refer to the extended quintessence (EQ) models described in [27], [28]
and [10]. The parameterξ represents the "strength" of the coupling (see Table 1 for details). In
particular we consider here a model with positive couplingξ > 0 (EQp) and one with negative
ξ < 0 (EQn). For an extensive linear treatment of EQ models we refer to [10].Here we only
recall for convenience that EQ models behave like minimally coupled quintessence theories in
which, however, a time dependent effective gravitational interaction is present. In particular, in the
Newtonian limit, the gravitational parameter is redefined as

G̃=
2[F +2(∂F/∂φ)2]

[2F +3(∂F/∂φ)2]

1
8πF

. (2.3)

Here the couplingF(φ) is chosen to be

F(φ) =
1
κ
+ξ (φ2−φ2

0) , (2.4)

with κ = 8πG∗, whereG∗ represents the “bare” gravitational constant ([29]).
For small values of the coupling, that is to sayξ ≪ 1, the latter expression becomes

G̃
G∗

∼ 1−8πG∗ξ (φ2−φ2
0) , (2.5)

which manifestly depends on the sign of the couplingξ . We note that, since the derivative of the
RP potential in equation (2.1) with respect toφ is ∂V(φ)/∂φ < 0, we haveφ2 < φ2

0 . This leads to
the behaviour ofG̃/G∗ shown in Fig. 1. Note that the corrections are only within the percent level.
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Figure 1: Correction to the gravity constant for the two extended quintessence models, EQp (cyan) and EQn
(red), as expressed in equation (2.5). Note that the corrections are only within the percent level.

3. Numerical simulations

In order to study the formation and evolution of large scale structures in these different cosmologi-
cal scenarios we useN-body simulations performed with theGADGET-3code ([30, 31]). For each
model, we simulated a cosmological box of size(300 Mpch−1)3, resolved with(768)3 dark matter
particles with a mass ofmdm≈ 4.4×109 M⊙ h−1.

As in [19], we modified the initial conditions for the different dark energy scenarios adapting
the initial redshift for the initial conditions in the dark energy scenarios determined by the ratio of
the linear growth factorsD+(z),

D+(zini)

D+(0)
=

D+,ΛCDM(zini
ΛCDM)

D+,ΛCDM(0)
. (3.1)

Therefore, all simulations start from the same random phases, but the amplitude of the initial fluc-
tuations is rescaled to satisfy the constraints given by CMB.
Our referenceΛCDM model is adapted to the WMAP3 values ([32]), with the following cosmo-
logical parameters:

• matter density:Ω0m = 0.268

• dark energy density:Ω0Λ = 0.732

• baryon density:Ω0b = 0.044

• Hubble parameter:h= 0.704

• power spectrum normalization:σ8 = 0.776

• spectral index:ns = 0.947

We trimmed the parameters of the four dynamical dark energy models so thatw0 = w(0) ≈
−0.9 is the highest value still consistent with observational constraints in orderto amplify the

4



P
o
S
(
C
o
r
f
u
2
0
1
2
)
0
5
9

c-M relation in dark energy cosmologies Cristiano De Boni

Model α ξ w0 σ8

ΛCDM — — −1.0 0.776
RP 0.347 — −0.9 0.746
SUGRA 2.259 — −0.9 0.686
EQp 0.229 +0.085 −0.9 0.748
EQn 0.435 −0.072 −0.9 0.729

Table 1: Parameters for the different cosmological models:α is the exponent of the inverse power-law
potential;ξ is the coupling in the extended quintessence models;w0 is the present value of the equation of
state parameter for dark energy;σ8 is the normalization of the power spectrum.

Figure 2: Redshift evolution of the equation of state parameterw for the different cosmological models
considered:ΛCDM (black), RP (blue), SUGRA (green), EQp (cyan), and EQn (red).

effects of dark energy. Fig. 2 shows the evolution with redshift ofw in each cosmology. The
parametersΩ0m, Ω0Λ, Ω0b, h, andns are the same for all the models, but since we normalize all
the dark energy models to CMB data from WMAP3, this leads to different values ofσ8 for the
different cosmologies:

σ8,DE = σ8,ΛCDM
D+,ΛCDM(zCMB)

D+,DE(zCMB)
, (3.2)

assumingzCMB = 1089. This fact, along with the different evolution of the growth factorD+

(shown in Fig. 3), has an impact on structure formation. Table 1 lists the parameters chosen for the
different cosmological models.

Using the outputs of the simulations, we extract galaxy clusters from the cosmological boxes,
using the spherical overdensity criterion to define the collapsed structures. We take as halo centre
the position of the most bound particle. Around this particle, we construct spherical shells of
matter and stop when the overdensity drops below 200 times themean(as opposed tocritical)
background density defined byΩmρ0c; the radius so defined is denoted withR200m and the mass
enclosed in it asM200m. We consider all the halos havingM200m > 1014 M⊙ h−1. In addition, we
selected subsamples of the 200 objects withM200m closest to 7×1013 M⊙ h−1, 5×1013 M⊙ h−1,
3× 1013 M⊙ h−1, and 1013 M⊙ h−1. Starting from the centres of the halos, we construct radial
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Figure 3: Ratio between the value ofσ8D+ for theΛCDM (black), RP (blue), EQp (cyan), EQn (red), and
SUGRA (green) cosmologies and the corresponding value forΛCDM as a function of redshift.

profiles by binning the particles in radial bins. We concentrate on objects atz= 0. For the following
analysis, we also calculate for each cluster selected in this way the radius atwhich the overdensity
drops below 200 times thecritical background density and denote it asR200. The corresponding
mass is indicated asM200. It is useful to define a quantitative criterion to decide whether a cluster
can be considered relaxed or not because, in general, relaxed clusters have more spherical shapes,
better defined centres and thus are more representative of the self-similarbehaviour of the dark
matter halos. We use a simple criterion similar to the one introduced in [22]: first we definexo f f as
the distance between the centre of the halo (given by the most bound particle) and the barycentre of
the region included inR200m; then we define as relaxed the halos for whichxo f f < 0.07R200m. We
plot the distribution ofxo f f for the objects in the five cosmological models atz= 0 in the left-hand
panel of Fig. 4. Note that the distribution and the median value ofxo f f are similar in the different
cosmological models.

4. c−M relation

For each cluster atz= 0 in the five cosmological models under investigation, we perform a log-
arithmic fit, using Poissonian errors(ln10×√

ndm)
−1 (wherendm is the number of dark matter

particles in each radial bin, of the order of 10−103 depending on the mass of the object), of the
three-dimensional dark matter profileρdm(r) in the region [0.1−1]R200 (where the value ofR200 is
taken directly from the true mass profile) with a NFW profile ([18])

ρdm(r)
ρc

=
δ

(r/rs)(1+ r/rs)2 , (4.1)

whereρc is the critical density,rs is the scale radius andδ is a characteristic density contrast.
Then, instead of definingc200≡ R200/rs, we directly find the concentration parameterc200 from the
normalization of the NFW profile
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Figure 4: Left-hand panel: the distribution ofxo f f (in units ofR200m) for the objects inΛCDM (black), RP
(blue), SUGRA (green), EQp (cyan), and EQn (red) atz= 0. The vertical lines of the corresponding colours
mark the median value ofxo f f in each cosmological model. The vertical pink line corresponds to the value
defining relaxed objects,xo f f = 0.07R200m. Right-hand panel: the same as in the left-hand panel, but for
σrms.

δ =
200
3

c3
200

[

ln(1+c200)− c200
1+c200

] . (4.2)

We require the central density parameterδ to be greater than 100 and the scale radiusrs to be
within [0.1−1]R200. We exclude the inner regions from the fit because we are limited in resolution
inside a given radius. We indicate the dark matter concentration found in this way asc200dm. We
define the rms deviationσrms as

σ2
rms=

1
Nbins

Nbins

∑
i=1

[log10ρdmi − log10ρNFWi ]
2 , (4.3)

whereNbins is the number of radial bins over which the fit is performed andρNFW is the best-fitting
NFW profile. We plot the distribution ofσrms for the objects in the five cosmological models at
z= 0 in the right-ended panel of Fig. 4. Note that the distribution and the median value ofσrms are
similar in the different cosmological models, meaning that the NFW profile is as good as inΛCDM
in describing the dark matter profile of galaxy clusters in dark energy cosmologies.

We bin the objects in the complete sample in groups of 200, so that we have bins around
1013 M⊙ h−1, 3×1013 M⊙ h−1, 5×1013 M⊙ h−1, and 7×1013 M⊙ h−1. For halos more massive
than 1014 M⊙ h−1, we bin the objects starting from the low-mass ones, so that the most massive
bin can contain less than 200 objects. The analysis for the relaxed sample is done by selecting the
relaxed objects inside each bin. Once we havec200dm for each object in each mass bin, since the
distribution ofc200dm is log-normal inside each bin, we evaluate the meanM200 and the mean and
rms deviation of log10c200dm in each bin, for the two samples. In the following of the proceeding,
when we indicate the value ofc200dm in a mass bin, we refer to 10〈log10c200dm〉.

With the mean and rms deviation of log10c200dm in each bin at hand, we fit, for the complete
and relaxed samples, the binnedc−M relation using
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log10c200= log10A+B log10

(

M200

1014 M⊙

)

, (4.4)

where log10c200 andM200 are the mean values in each bin. For the error on the mean of log10c200dm

in each bin,σc̄, we use the rms deviation of log10c200dm divided by the square root of the number
of objects in the bin. For each fit we also define

χ2 =
Nmass

∑
j=1

(

log10c200dmj − log10c200f it j

σc̄ j

)2

, (4.5)

whereNmass is the number of mass bins over which the fit is performed andc200f it is obtained
from the best fit of equation (4.4), and evaluate the reduced chi-squared χ̃2, i.e. χ2 divided by the
number of degrees of freedom.

In the referenceΛCDM model, relaxed objects have a higher normalization and a shallower
slope with respect to the complete sample (see Table 2 for details). By comparing our results for
ΛCDM with previous works in literature (see [33] for the comparison), we find a good agreement,
in particular when the values of the cosmological parameters are similar, as in [23]. Thus, when
comparing the impact of different dark energy models on thec−M relation, we can rely on our
ΛCDM model as a reference. Thec−M relation for galaxy clusters extracted from dark matter
only simulations of different dark energy models, including RP and SUGRA,has been studied in
[19]. They fit a formula similar to equation (4.4) and find that, when the sameσ8 is used for all the
models, the normalization of thec−M relation for dark energy cosmologies is higher compared to
ΛCDM, depending on the ratio between the growth factors through

ADE → AΛCDM
D+,DE(zcoll)

D+,ΛCDM(zcoll)
, (4.6)

where the collapse redshiftszcoll are evaluated following the prescriptions of [34]. Whenσ8 values
are normalized to CMB data, as we do in this work, the normalization of thec−M relation for dark
energy cosmologies is lower compared toΛCDM. We find that, in order to recover the values of
the normalization they quote in this case, equation (4.6) should be multiplied by the ratio between
the values ofσ8, i.e. σ8,DE/σ8,ΛCDM. This fact goes in the same direction as what found in [23],
where models with higherσ8 also have a higher normalization of thec−M relation.

5. Results

We compare thec−M relation for the dark energy models under investigation with the one derived
for the ΛCDM cosmology. In Table 2 we summarize the best-fitting parameters, the standard
errors and the reduced chi-squared of thec−M relation equation (4.4) for the five cosmological
models here considered, both for the complete and relaxed samples. For thecomplete sample, the
differences in the normalizationA betweenΛCDM and the other cosmological models are less than
10%, with EQn being the only model having a higher normalization. The slopeB is within 5% of
theΛCDM value for all the models with the exception of EQn, which shows a 30% flatter slope. For
the slope the differences among the models, excluding EQn, are smaller than the standard errors,
while for the normalization these differences are significant. If we limit ourselves to the best-fitting
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Model σ8 A σA B σB χ̃2 A σA B σB χ̃2

all relaxed
ΛCDM 0.776 3.59 0.05 −0.099 0.011 0.48 4.09 0.05 −0.092 0.011 0.66

RP 0.746 3.54 0.05 −0.103 0.011 1.14 4.08 0.05 −0.081 0.011 0.92
SUGRA 0.686 3.41 0.05 −0.098 0.013 1.50 3.94 0.06 −0.081 0.012 1.55

EQp 0.748 3.36 0.05 −0.097 0.012 0.35 3.84 0.05 −0.097 0.011 1.32
EQn 0.726 3.70 0.05 −0.069 0.013 0.78 4.25 0.06 −0.081 0.013 0.51

Table 2: Best-fitting parameters, standard errors and reduced chi-squaredχ̃2 of thec−M relation equation
(4.4) for dark matter density profile fit in the region [0.1−1]R200 for the complete and relaxed samples of
the five different cosmological models atz= 0.

values, given that the slope is almost identical and that all the cosmological parameters exceptσ8

are fixed, we expect that the normalization should follow the values ofσ8, i.e. the higherσ8 the
higher the normalization (see [23]), andD+, i.e. the higherD+ atzcoll the higher the normalization
(see [19]). The quantity controlling the normalization is thus expected to beσ8D+(zcoll), which is
plotted as a function of redshift in Fig. 3 for the five cosmological models. Independently of the
precise definition ofzcoll, the cosmological model with the highest value of this quantity isΛCDM,
followed by RP, EQp, EQn, and SUGRA. We do expect the normalization of the c−M relation to
follow the same order, withΛCDM having the highest and SUGRA the lowest. Instead we see that,
on the one hand, EQp which has the third highestσ8D+ has the lowest normalization while, on the
other hand, EQn which has the second lowestσ8D+ has the highest normalization. The relative
order ofσ8D+ andA is preserved forΛCDM, RP and SUGRA, as in [19].

For the relaxed sample, compared toΛCDM, the differences in the normalization are less than 10%,
while the differences in the slope can almost reach 15%, but they are compatible with the standard
errors. Also in this case, the most extreme cosmologies are EQp and EQn, whose normalization
goes in the opposite direction with respect to theirσ8D+. This fact confirms the conclusions we
have drawn from the complete sample. The values of the reduced chi-squared indicate that equation
(4.4) is a good parametrization of thec−M relation for almost all cosmological models. Only
SUGRA has high values both for the complete and relaxed samples.

Our results are in good qualitative agreement with the findings of [24], where halos in extended
quintessence models have lower (higher) concentrations with respect to theΛCDM case for positive
(negative) values of the scalar field coupling.

We plot the best-fittingc−M relation for all the cosmological models, along with the binned
data, in Fig. 5. We clearly see that the results on the normalization are due to differences in the
concentrations over a wide mass range. If we look, for example, at the complete sample (left-hand
panel of Fig. 5), we see that the different slope of EQn is mainly originatedby the less massive
bin. But with the exception of this bin, EQn shows the highest concentration inalmost all the mass
bins, while in general EQp has the lowest concentration. For the relaxed sample (right-hand panel
of Fig. 5), the relative behaviour of the different cosmological models is even clearer, and indeed
the differences in the slope are less pronounced.

Before drawing our conclusions about the EQ models, we want to take into account the de-
pendence of the normalization on the slope that characterizes thec−M relation in the different

9
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Figure 5: Left-hand panel: the values ofc200dm for the complete sample of theΛCDM (black), RP (blue),
SUGRA (green), EQp (cyan), and EQn (red) cosmologies atz= 0. The lines of the corresponding colours
are our best fit ofc−M relation equation (4.4) and the vertical black bar is the error on the normalization
of ΛCDM as listed in Table 2. The symbols in the low part of the panel are the ratios betweenc200dm for
the model andc200dm for ΛCDM. Right-hand panel: the same as in the left-hand panel, but for the relaxed
sample.

cosmological models. To do this, we fix the slope at the best-fitting value for thecomplete sample
of ΛCDM at z= 0 (i.e. B= −0.099, see Table 2) and we fit equation (4.4) with onlyA as a free
parameter. We report the results in Table 3 and plot them in Fig. 6, which summarizes almost all
the information on thec−M relation atz= 0 for the cosmological models under investigation. We
show the values of the reduced chi-squared of the fit as a reference,but we do not discuss them
because we are imposing the slope forΛCDM also to other models. Also in this case, relaxed
objects have a higher normalization compared to the complete sample. Then, as ageneral trend,
both fixing or keeping the slope free, the normalization is decreasing going from ΛCDM to RP to
SUGRA, independently of the dynamical state. Finally EQn always has the highest normalization
while EQp alway has the lowest. The behaviour ofΛCDM, RP and SUGRA is in agreement with
the simple idea that the normalization of thec−M relation is driven by the value ofσ8D+, but the
one of EQp and EQn is not.
We hint that the behaviour of EQp and EQn is linked to the redshift evolution of the effective
gravitational interactionG̃, as pointed out in Section 2. In fact, in contrast withΛCDM, RP and
SUGRA, in EQ models the gravitational constantG is substituted byG̃, which is higher (lower)
thanG at high redshift for positive (negative) values of the coupling constant ξ , while it is equal
to G at z= 0 in order to recover General Relativity (see Fig. 1). This means that in EQp gravity
becomes weaker at low redshift compared to high redshift, while in EQn it becomes stronger. Thus
one can expect that in EQp (EQn) the halos expand (contract) due to the change in the gravitational
interaction, resulting in lower (higher) concentrations with respect to the case in which gravity is
constant.

6. Conclusions

In this proceeding, we reviewed thec−M relation for the halos extracted from the simulation set

10
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Model σ8 A σA B σB χ̃2 A σA B σB χ̃2

all relaxed
ΛCDM 0.776 3.59 0.05 −0.99 0.11 0.48 4.08 0.04 −0.99 — 0.62

RP 0.746 3.55 0.04 −0.99 — 0.97 4.04 0.05 −0.99 — 1.19
SUGRA 0.686 3.41 0.04 −0.99 — 1.20 3.89 0.04 −0.99 — 1.69

EQp 0.748 3.36 0.04 −0.99 — 0.30 3.83 0.04 −0.99 — 1.11
EQn 0.726 3.65 0.04 −0.99 — 1.56 4.21 0.05 −0.99 — 0.74

Table 3: Best-fitting parameters, standard errors and reduced chi-squaredχ̃2 of thec−M relation equation
(4.4), withB fixed at the best-fitting value for the complete sample ofΛCDM atz= 0, for dark matter density
profile fit in the region [0.1−1]R200 for the complete and relaxed samples of the five different cosmological
models atz= 0.

Figure 6: Left-hand panel: best-fitting normalization comparison for equation (4.4) for theΛCDM (black),
RP (blue), SUGRA (green), EQp (cyan), and EQn (red) cosmologies. Triangles: dark matter profile fit,
complete sample. Squares: dark matter profile fit, relaxed sample. The vertical black bar is the error on the
normalization of the complete sample ofΛCDM. Right-hand panel: the same as left-hand panel but withB
fixed at the best-fitting value for the complete sample ofΛCDM at z= 0.

introduced in [25] and [33]. We find that the normalization of thec−M relation in dynamical dark
energy cosmologies is different with respect to theΛCDM one, while the slope is more compatible.
In particular, atz= 0, the differences in the normalization for RP and SUGRA when compared to
ΛCDM reflect the differences inσ8D+, with models having a higherσ8D+ also having a higher
normalization. This simple scheme is not valid for the EQp and EQn scenarios. In the former case,
the normalization is lower than expected consideringσ8D+, while in the latter it is higher, and
indeed EQn is always the model with the highest normalization, regardless ofthe dynamical state
of the objects. This behaviour is due to the different redshift evolution ofthe effective gravitational
interactionG̃ that characterizes these models. Indeed, going from high to low redshift,G̃ decreases
(increases) for EQp (EQn), making the halos expanding (contracting) and thus decreasing (increas-
ing) the concentration. This is a very important result because it shows a direct manifestation of the
coupling between gravity and the quintessence scalar field that cannot beseen at the background
level but can be investigated in the non-linear regime.

11



P
o
S
(
C
o
r
f
u
2
0
1
2
)
0
5
9

c-M relation in dark energy cosmologies Cristiano De Boni

Acknowledgments

Computations have been performed at the “Leibniz-Rechenzentrum” with CPU time assigned
to the Project “h0073”. We acknowledge financial contributions from contracts ASI I/016/07/0
COFIS, ASI-INAF I/023/05/0, ASI-INAF I/088/06/0, ASI ‘EUCLID-DUNE’ I/064/08/0, PRIN
MIUR 2008 “Dark energy and cosmology with large galaxy survey”, andPRIN INAF 2009 “To-
wards an Italian network of computational cosmology”. We thank Matthias Bartelmann, Andrea
Macciò and Marco Baldi for useful discussions.

References

[1] A. G. Riess et al.,Observational Evidence from Supernovae for an Accelerating Universe and a
Cosmological Constant, AJ, 116, 1009, [arXiv:astro-ph/9805201]

[2] S. Perlmutter et al.,Measurements of Omega and Lambda from 42 High-Redshift Supernovae, ApJ,
517, 565, [arXiv:astro-ph/9812133]

[3] N. Jarosik et al.,Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky
Maps, Systematic Errors, and Basic Results, ApJS, 192, 14, [arXiv:1001.4744]

[4] A. Vikhlinin et al., Chandra Cluster Cosmology Project III: Cosmological Parameter Constraints,
ApJ, 692, 1060, [arXiv:0812.2720]

[5] C. Wetterich,Cosmologies with variable Newton’s “constant”, Nuclear Physics B, 302, 645

[6] B. Ratra, P. J. E. Peebles,Cosmological consequences of a rolling homogeneous scalarfield, Phys.
Rev. D, 37, 3406

[7] C. Wetterich,An asymptotically vanishing time-dependent cosmological"constant", A&A, 301, 321,
[arXiv:hep-th/9408025]

[8] L. Amendola,Coupled quintessence, Phys. Rev. D, 62, 043511, [arXiv:astro-ph/9908023]

[9] B. Boisseau, G. Esposito-Farèse , D. Polarski, A. A. Starobinsky,Reconstruction of a Scalar-Tensor
Theory of Gravity in an Accelerating Universe, Physical Review Letters, 85, 2236,
[arXiv:gr-qc/0001066]

[10] V. Pettorino, C. Baccigalupi,Coupled and extended quintessence: Theoretical differences and
structure formation, Phys. Rev. D, 77, 103003, [arXiv:0802.1086]

[11] D. F. Mota, V. Pettorino, G. Robbers, C. Wetterich,Neutrino clustering in growing neutrino
quintessence, Physics Letters B, 663, 160, [arXiv:0802.1515]

[12] W. Hu, I. Sawicki,Models of f(R) cosmic acceleration that evade solar system tests, Phys. Rev. D, 76,
064004, [arXiv:0705.1158]

[13] M. Baldi, V. Pettorino, G. Robbers, V. Springel,Hydrodynamical N-body simulations of coupled dark
energy cosmologies, MNRAS, 403, 1684, [arXiv:0812.3901]

[14] H. Zhao, A. V. Macciò., B. Li, H. Hoekstra, M. Feix,Structure Formation by Fifth Force: Power
Spectrum from N-Body Simulations, ApJ, 712, L179, [arXiv:0910.3207]

[15] M. Baldi, Time-dependent couplings in the dark sector: from background evolution to non-linear
structure formation, MNRAS, 411, 1077, [arXiv:1005.2188]

12



P
o
S
(
C
o
r
f
u
2
0
1
2
)
0
5
9

c-M relation in dark energy cosmologies Cristiano De Boni

[16] M. Baldi, V. Pettorino,High-z massive clusters as a test for dynamical coupled darkenergy, MNRAS,
412, L1, [arXiv:1006.3761]

[17] N. Wintergerst, V. Pettorino, D. F. Mota, C. Wetterich,Very large scale structures in growing neutrino
quintessence, Phys. Rev. D, 81, 063525, [arXiv:0910.4985]

[18] J. F. Navarro, C. S. Frenk, S. D. M. White,The Structure of Cold Dark Matter Halos, ApJ, 462, 563,
[arXiv:astro-ph/9508025]

[19] K. Dolag, M. Bartelmann, F. Perrotta, C. Baccigalupi, L. Moscardini, M. Meneghetti, G. Tormen,
Numerical study of halo concentrations in dark-energy cosmologies, A&A, 416, 853,
[arXiv:astro-ph/0309771]

[20] L. Gao, J. F. Navarro, S. Cole, C. S. Frenk, S. D. M. White, V. Springel, A. Jenkins, A. F. Neto,The
redshift dependence of the structure of massiveΛ cold dark matter haloes, MNRAS, 387, 536,
[arXiv:0711.0746]

[21] Y. P. Jing,The Density Profile of Equilibrium and Nonequilibrium Dark Matter Halos, ApJ, 535, 30,
[arXiv:astro-ph/9901340]

[22] A. F. Neto et al.,The statistics ofΛCDM halo concentrations, MNRAS, 381, 1450,
[arXiv:0706.2919]

[23] A. V. Macciò, A. A. Dutton, F. C. van den Bosch,Concentration, spin and shape of dark matter
haloes as a function of the cosmological model: WMAP1, WMAP3and WMAP5 results, MNRAS,
391, 1940, [arXiv:0805.1926]

[24] B. Li, D. F. Mota., J. D. Barrow,N-body Simulations for Extended Quintessence Models, ApJ, 728,
109, [arXiv:1009.1400]

[25] C. De Boni, K. Dolag, S. Ettori, L. Moscardini, V. Pettorino, C. Baccigalupi,Hydrodynamical
simulations of galaxy clusters in dark energy cosmologies -I. General properties, MNRAS, 415, 2758,
[arXiv:1008.5376]

[26] P. H. Brax, J. Martin,Quintessence and supergravity, Physics Letters B, 468, 40,
[arXiv:astro-ph/9905040]

[27] F. Perrotta, C. Baccigalupi, S. Matarrese,Extended quintessence, Phys. Rev. D, 61, 023507,
[arXiv:astro-ph/9906066]

[28] V. Pettorino, C. Baccigalupi, F. Perrotta,Scaling solutions in scalar tensor cosmologies, Journal of
Cosmology and Astro-Particle Physics, 12, 3, [arXiv:astro-ph/0508586]

[29] G. Esposito-Farèse, D. Polarski,Scalar-tensor gravity in an accelerating universe, Phys. Rev. D, 63,
063504, [arXiv:gr-qc/0009034]

[30] V. Springel, M. White, L. Hernquist,Hydrodynamic Simulations of the Sunyaev-Zeldovich Effect(s),
ApJ, 549, 681, [arXiv:astro-ph/0008133]

[31] V. Springel,The cosmological simulation code GADGET-2, MNRAS, 364, 1105,
[arXiv:astro-ph/0505010]

[32] D. N. Spergel et al.,Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations:
Implications for Cosmology, ApJS, 170, 377, [arXiv:astro-ph/0603449]

[33] C. De Boni, S. Ettori, K. Dolag, L. Moscardini,Hydrodynamical simulations of galaxy clusters in
dark energy cosmologies - II. c-M relation, MNRAS, 428, 2921, [arXiv:1205.3163]

[34] V. R. Eke, J. F. Navarro, M. Steinmetz,The Power Spectrum Dependence of Dark Matter Halo
Concentrations, ApJ, 554, 114, [arXiv:astro-ph/0012337]

13


