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On duality symmetry in perturbative quantum field
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Non-compact symmetries of extended 4d supergravities involve duality rotations of vectors and
thus are not manifest off-shell invariances in standard “second-order” formulation. To study how
such symmetries are realised in the quantum theory we consider examples in 2 dimensions where
vector-vector duality is replaced by scalar-scalar one. Using a “doubled” formulation, where
fields and their momenta are treated on an equal footing and the duality becomes a manifest
symmetry of the action (at the expense of Lorentz symmetry), we argue that the corresponding
on-shell quantum effective action or S-matrix are duality symmetric as well as Lorentz invariant.
This contribution is based on [1].

Proceedings of the Corfu Summer Institute 2012 "School and Workshops on Elementary Particle Physics
and Gravity"
September 8-27, 2012
Corfu, Greece

∗Speaker.
†Also at Lebedev Institute, Moscow.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:tseytlin@imperial.ac.uk


P
o
S
(
C
o
r
f
u
2
0
1
2
)
0
8
1

Duality symmetry A.A. Tseytlin

Recent discussions of potential divergences in 4d supergravities brought to light the question
of how the non-compact symmetries [2] of classical N ≥ 4 supergravity equations of motion (in-
volving transformation of scalars combined with a 4d duality rotation of vectors) extend to quantum
level and which constraints on counterterms they impose (see [4, 6] and refs. therein). A prototyp-
ical example of a relevant scalar-vector subsector of (N ≥ 4) supergravity theory is provided by
the following (Minkowski-space) action

S =−1
2

∫
d4x
[
(∂mφ)2 + e4φ (∂mχ)2

+1
2 e−2φ F2

mn +
1
2 χF∗mnFmn

]
, (1)

where F∗kl ≡ 1
2 εklmnFmn and k, l,m,n = 0,1,2,3. The scalar part here is SO(1,2)/SO(2) sigma

model; its global invariance under SL(2,R) ≈ SO(1,2) is promoted to the invariance of the full
equations of motion (written in first-order form) when combined with vector-vector duality trans-
formation. The simplest example of such a transformation is at χ = 0, when φ →−φ , Am→ Ãm

with F̃mn = e−2φ F∗kl . As this symmetry is not of a standard type, i.e. is not a manifest local sym-
metry of the action (1), one may wonder how it is reflected in the corresponding quantum effective
action or S-matrix. If one integrates out the vector field, i.e. if one considers the effective action
Γ depending only on the scalars, then it is expected to be SL(2) invariant. Indeed, performing the
vector-vector Am → Ãm duality in the path integral (by adding, as usual, the Lagrange multiplier
term, etc. [7]) one finds the same partition function with Ãm coupled to SL(2) transformed scalars,
implying that integrating out the vector should give an invariant functional of the scalars.

A non-trivial question is what happens if one keeps both the scalars and the vector as arguments
of the effective action or external states in the S-matrix. A natural expectation is that this duality
symmetry (in its form as defined on the classical equations of motion) should be present in the
quantum effective action evaluated on the equations of motion or in the on-shell S-matrix. A far
less obvious possibility (discussed in [6]) is that the quantum effective equations derived from an
off-shell effective action should be covariant under a deformed version of this duality. A motivation
is to try to clarify these questions. The vector-vector duality in 4 dimensions, or more generally
the p-form – p-form duality in d = 2p+ 2 dimensions, naturally acts on the phase space: the
corresponding first-order action is duality-invariant [8]. Replacing momenta by spatial derivative of
a new (dual) field, one can rewrite the phase-space action as an action for a “doubled” set of fields
in which the duality acts locally (without inverse spatial derivatives) and is a manifest off-shell
symmetry. This is achieved at the expense of Lorentz invariance; in its standard form, the Lorentz
invariance is recovered on the equations of motion. Such a manifestly duality invariant action
was first written down in 2 dimensions (following earlier work on chiral scalars [9] generalized
to chiral p-forms in [10]) in [11]. This action for the “doubled” set of fields is describing the
same number of degrees of freedom as the original action (and an equivalent quantum theory) but
is more suitable for addressing the above questions about realization of duality at the quantum
level. Detailed study of symmetry aspects of quantum theory based on this “doubled” version
of N = 8 supergravity (in particular, the absence of SU(8) anomaly) appeared in [4] though the
crucial question of preservation of 4d Lorentz symmetry at the quantum level was not addressed.

As the general issues with quantum realization of a symmetry involving the duality are the
same in any number d = 2p+2 of dimensions here we shall concentrate on a technically simpler
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but still non-trivial case d = 2, p = 0, i.e. the case when the 4d vectors are replaced by scalars.
The 2d analog of the action (1) is

S =−1
2

∫
d2

σ

[
(∂aφ)2 + e4φ (∂aχ)2

+e−2φ (∂axs)
2 + ε

ab
ε

rs
χ∂axr∂bxs

]
, (2)

where a,b= 0,1 and r,s= 1,2. Like (1), this model has the SL(2) symmetry of the (φ ,χ) sector ex-
tended to the full set of equations of motion provided it is combined with 2d duality transformation
on the scalars xs. We need at least n = 2 scalars xs to have the O(n,n) duality group (acting on xs

and their “momenta”) big enough to contain the SL(2) acting on (φ ,χ). Integrating out xs one finds
the SL(2) invariant quantum theory for (φ ,χ) modulo local dilaton shift term, but the realization of
the duality symmetry on the full set of fields at the quantum level is a priori non-trivial.

We shall consider the “doubled” formulation [11] in which the duality in xs sector and thus the
SL(2) symmetry of (2) is manifest but the Lorentz symmetry is not (but is recovered on-shell). It
turns out to be natural to split xs into its chiral parts so that in the simplest case of χ = 0 the duality
symmetry of the S-matrix translates into a symmetry under flipping the sign of the anti-chiral part
and the sign of φ . Similar transformation will apply to higher-dimensional models, e.g., in 4d one
would need to flip the sign of the anti-chiral part of the vector field.

In [1] we considered examples of computations of quantum effective actions for simple sigma
models with structure similar to (2) or its truncations and demonstrating how the duality is realised
at the quantum level. We shall concentrate on the most non-trivial discrete subgroup of the duality
(φ →−φ for χ = 0) as generalization to continuous transformations does not bring new conceptual
problems. Starting with the manifestly duality symmetric formulation we shall check the presence
of the 2d Lorentz invariance in the quantum on-shell effective action or in the S-matrix.

Let us consider the following extension of the χ = 0 truncation of the model (2):

S(φ ,x) = 1
2

∫
d2

σ

[
− (∂aφ)2− e−2φ (∂axs)

2
]

→ S(φ , p,x) = 1
2

∫
d2

σ

[
− (∂aφ)2 +2psẋs

−e−2φ x′2s − e2φ p2
s

]
(3)

and introducing a new field x̃s such that ps = x̃′s we get the following duality-invariant action [11]

Ŝ(φ ,x, x̃) = 1
2

∫
d2

σ

[
− (∂aφ)2 + ẋsx̃′s + ˙̃xsx′s

−e−2φ x′2s − e2φ x̃′2s
]

(4)

This action describes the same number of degrees of freedom as (3) and is manifestly invariant
under the duality transformation

φ →−φ , xs→ x̃s , x̃s→ xs

Introducing the combinations (that become free chiral scalars for φ = 0)

xs = x+s + x−s , x̃s = x+s − x−s , x±s = 1
2(xs± x̃s) ,
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we get (∂± =±∂0 +∂1)

Ŝ(φ ,x+,x−) =−
∫

d2
σ

[
1
2(∂aφ)2 + x+s

′
∂−x+s + x−s

′
∂+x−s

+ f1(φ) (x+s
′2
+ x−s

′2
)−2 f2(φ) x+s

′x−s
′
]
,

f1 = 2sinh2
φ , f2 = sinh2φ .

The corresponding duality symmetry of this action is

φ →−φ , x+s → x+s , x−s →−x−s .

The equations of motion for x± are again Lorentz-invariant.
Let us now turn to the quantum theory. The original (3) and the doubled theory are expected

to be equivalent quantum mechanically when probed with common observables. An example of
such observables are scattering amplitudes of x fields, in which x̃ fields enter only through loops.
Indeed, integrating out x̃ gives back (3). The doubled theory allows, however, for a larger set of
observables, e.g. scattering amplitudes of both x and x̃ fields which have duality acting as a standard
symmetry. Given the duality symmetry (5) of the classical action ,(5) one expects to find the same
symmetry in the quantum effective action, Γ[φ ,x, x̃] = Γ[−φ , x̃,x], i.e.

Γ[φ ,x+,x−] = Γ[−φ ,x+,−x−] . (5)

For this to happen one should maintain the symmetry at the quantum level by a proper choice of
quantization prescription (i.e. regularization and path integral measure). This may not be automatic
if other fields and symmetries are also present. For example, the simplest special case to consider
would be effective action depending just on φ (found by integrating out both xs and x̃s) which
should be invariant (by standard path integral transformation argument) under just φ →−φ . As we
shall discuss in Appendix A, maintaining this duality depends on assumptions about preservation
of other symmetries (like target space diffeomorphism invariance), i.e. on the choice of measure
and regularization scheme.

The central question, however, is if, like the classical action, the quantum effective action or S-
matrix will be Lorentz-invariant on-shell. This on-shell invariance may a priori have two different
interpretations:

(I) Γ[φ ,x, x̃] should be Lorentz-invariant once evaluated on a solution of the equations of mo-
tion, i.e., to the leading order;

(II) the quantum equations of motion following from Γ[φ ,x, x̃] should be Lorentz-invariant.
The property (I) should indeed be expected given that the classical equations of motion are Lorentz-
invariant and that integrating over x̃ leads us back to the Lorentz-invariant action (3). This may
be verified explicitly at 1-loop order, i.e. by expanding to quadratic order in fluctuations near a
classical solution (φ(0),x(0), x̃(0)) and restoring the Lorentz invariance of the fluctuation Lagrangian
by a field redefinition of the fluctuation fields which makes the Lorentz invariance of the resulting
effective action manifest. The property (II) is likely to be true too if understood in a perturbative
sense, i.e. that the effective equations of motion are solved order by order in loop expansion: then
given the classical Lorentz invariance, the 1-loop corrected equations of motion should also be
Lorentz-invariant, etc. However, (II) is far from obvious if considered as an exact property of the
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effective action: it is not a priori clear if one should expect (some deformed version of) Lorentz
invariance to apply to the full quantum equations of motion. (II) is essentially equivalent to an
assumption that quantum equations of motion derived from the original Lorentz-covariant action
(3) should admit an analog of the duality symmetry.

Since Γ[φ ,x, x̃] evaluated on a general classical solution with “in” (plane-wave) initial condi-
tions at zero coupling is the generating functional for the S-matrix, (I) is equivalent to the condition
of Lorentz invariance of the the S-matrix for {φ ,x+s ,x−s }. The key fact is that the on-shell conditions
for the chiral scalars implied by (5) are Lorentz-invariant

∂−x+s = 0 , ∂+x−s = 0 . (6)

To demonstrate Lorentz invariance of the S-matrix one should note also that:
(i) to any loop order, x± lines cannot “terminate": they are either open (i.e. x± coming into

a diagram eventually exits it) or closed (representing a loop of x± fields with φ lines attached to
it); (ii) a tree-level Green’s function with on-shell x± and off-shell φ ’s is Lorentz invariant; (iii)
the determinant of the x± -quadratic fluctuation operator depending on an off-shell φ is Lorentz
invariant.
The observation (i) allows us to break up any S-matrix element into parts of two types that appear in
(ii) and (iii) which are connected by (Lorentz-invariant) φ propagators. Since each part is Lorentz
invariant, the whole S-matrix element is then also invariant.

The same observations (i) and (ii) will apply of course in the 4d vector case of (1) where we
can split Fmn into selfdual and anti-selfdual parts that should correspond at the S-matrix level to
positive and negative helicity photons; the (discrete part of) duality symmetry of the S-matrix will
then mean a symmetry analogous to (5).

We may also compute the 1-loop S-matrix elements explicitly and check their invariance under
the duality transformations (5) as well as their Lorentz invariance. As expected, they are Lorentz-
invariant and renormalize the trilinear interaction in (5). The matrix elements with four external
x±s are the simplest ones with non-singular external momentum configurations. It is easy to see
that the Feynman rules following from the action (5) do not allow four-point scattering amplitudes
with an odd number of external x−s . For the ones with an even number of external x−s lines we find
nontrivial result [1]. As expected, these amplitudes are also Lorentz-invariant provided that the
regularization scheme included in the integration measure is chosen to preserve Lorentz symmetry.

To try to check the possibility (II), i.e. that the quantum effective action may have a nonlinear
analog of the tree-level duality (cf. BI action vs. Maxwell action) one may try to compute the
1-loop Γ = Γ1 for a classically invariant theory like (1) or (3) in some approximation (e.g. keeping
only field strength dependence but ignoring dependence on its derivatives). For example, starting
with (1) it is easy to find Γ1[F(0)] for F(0)=const. To have a consistent classical solution we will
need to require that φ = φ(0) =const and thus (F(0))mn(F(0))mn = 0. In this case Γ1 will depend
only on the traceless stress tensor or T k

n = e−2φ(0)(F(0))mn(F(0))mk and thus is (an even) function of
only one invariant e−2φ(0)(F(0))mn(F∗(0))

mn. It is then invariant under the classical duality symmetry
but this approximation is not sufficient to address the question about possible duality symmetry of
the quantum equations following from Γ: for that we need to know the dependence of Γ on both
FmnFmn and FmnF∗mn invariants.
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Let us now turn to four-dimensional vector models. Duality symmetries (in 2d or 4d) discussed
above are on-shell symmetries; it is not possible to promote them to manifest symmetries of the
action while preserving all the other symmetries of the theory, in particular Lorentz invariance. The
“doubled” formalism provides a framework in which the duality symmetry becomes a manifest off-
shell symmetry; while the “doubled” action is not invariant under the Lorentz transformations, it
nevertheless exhibits a symmetry which becomes the standard Lorentz symmetry on shell. The
advantage of the “doubled” formalism is that details of the duality group are not important for its
quantum realization – the main features are the same for discrete or continuous duality symmetries.
Since the “doubled” action is manifestly duality invariant it should be possible to maintain it in the
presence of a UV regularization. If the regularization also preserves the off-shell Lorentz-type
symmetry present in the classical action then the on-shell observables, such as S-matrix elements,
should exhibit both the duality and the Lorentz invariance.

For example, it is straightforward to construct the “doubled” action for the theory (1) similar
to the one describing the scalar-vector sector of N > 4 supergravity in 4 dimensions. Dropping
total derivatives (and fixing A0 = 0), the result is [12] (i = 1,2,3)

Ŝ =
∫

d4x
[
− 1

2(∂aφ)2− 1
2 e4φ (∂aχ)2 + L̂(A, Ã;φ ,χ)

]
,

L̂ = 1
2

(
ET

i Ω̂Bi−BT
i MBi

)
, (7)

where

Ei = ∂0Ai , Bi = εi jk∂ jAk , Ai = (Ai, Ãi)

In the case of χ = 0, this action is invariant under the Z2 duality transformation

A′i = Ãi , Ã′i =−Ai , φ
′ =−φ . (8)

The action (7) has also a modified Lorentz-type symmetry [12] which becomes the standard
Lorentz symmetry on the equations of motion; as in the 2d examples, the S-matrix elements should
exhibit this symmetry simultaneously with being invariant under (8).

Given that Ω̂2 =−I it is natural to introduce the complex combinations

A±i ≡ Ai± iÃi , Ā+
i = A−i , (9)

which transform under the duality (8) as

(A±i )
′ =∓iA±i , φ

′ =−φ . (10)

For φ = 0 they become the (anti)self-duality conditions: F±mn =±iε kl
mn F±kl , where as before k, l,m,n=

0,1,2,3. A±i will thus describe on shell photons of definite helicity. The Lagrangian L̂ in (7) written
in terms of A±i becomes

L̂ = 1
4

[
i(E+

i B−i −E−i B+
i )−2cosh2φ B+

i B−i

−sinh2φ (B+
i B+

i +B−i B−i )
]
, (11)
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and is obviously invariant under (10). This symmetry implies that the S-matrix elements without
external φ lines labeled by A± fields, (A+)n+(A−)n− , pick up a phase i−n++n− under the duality
(10); since they must be invariant, they are nonvanishing only if n+−n− = 4k.

Finally, let us comment on some implications for extended supergravities. The N = 8 su-
pergravity may be obtained by compactifying type IIB 10d supergravity on a 6-torus; the corre-
sponding O(6,6) symmetry is a subgroup of the full E7(7) duality group. The physical states of the
theory are in one-to-one correspondence with the states of the doubleton multiplet of the maximally
extended superconformal group in 4 dimensions, SU(2,2|8). While our discussion focussed on a
simple example of discrete Z2 duality similar considerations should apply also to the full duality
symmetry of the N = 8 supergravity. Let us note that as was argued in [3] and more explicitly in
[4] the SU(8) chiral anomalies that would imply [4] a breakdown of E7(7) duality in the quantum
theory (the E7(7) anomaly is determined by the SU(8) anomaly through a Wess-Zumino consis-
tency condition [4]) actually cancel out. Our focus here was not on the possible anomaly aspect
but rather on the realization of the duality in the quantum theory.

Note that to relate the leading divergence of the effective action Γ = ∑n Γn (first appearing at
some n-th loop order) to to the corresponding divergent term in the S-matrix one needs to evaluate
Γn on a “scattering” solution of just classical (un-corrected) equations. For the same reason, being
interested only in the duality properties of the leading counterterms, one does not need to worry
about modification of the duality transformation by finite quantum corrections. Our discussion
suggests that the S-matrix and the associated on-shell counterterms computed in perturbative loop
expansion should be invariant under the E7(7) transformations of the scalar fields together with
duality transformations acting on the chiral (anti/self-dual) parts of the vector fields. The latter
symmetries are manifest in the “doubled" formulation of the theory, where the action is not invariant
under the standard (tangent-space) Lorentz symmetry; nevertheless, as we have argued in examples
above, the on-shell effective action and/or the S-matrix should have this symmetry along with the
duality symmetry. It remains an open question whether there may be some additional implications
of the E7(7) duality for the structure of potential counterterms, as conjectured.
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